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Nonlinear oscillations in an electrolyte solution under ac voltage
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The response of an electrolyte solution bounded between two blocking electrodes subjected to an ac voltage
is considered. We focus on the pertinent thin-double-layer limit, where this response is governed by a reduced
dynamic model [L. Hgjgaard Olesen, M. Z. Bazant, and H. Bruus, Phys. Rev. E 82, 011501 (2010)]. During a
transient stage, the system is nonlinearly entrained towards periodic oscillations of the same frequency as that of
the applied voltage. Employing a strained-coordinate perturbation scheme, valid for moderately large values of
the applied voltage amplitude V, we obtain a closed-form asymptotic approximation for the periodic orbit which
is in remarkable agreement with numerical computations. The analysis elucidates the nonlinear characteristics of
the system, including a slow (logarithmic) growth of the zeta-potential amplitude with V and a phase straining
scaling as V~'1n V. In addition, an asymptotic current-voltage relation is provided, capturing the numerically

observed rapid temporal variations in the electric current.
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The response of an electrolyte solution subjected to a
time-dependent voltage is fundamental in numerous practical
applications. The simplest electrochemical-cell configuration,
where the liquid is bounded by two planar electrodes, is
particularly relevant to the study of energy storage [1], mi-
croscale cell manipulation [2], and self-assembly of colloidal
particles near planar electrodes [3,4]; transient current-voltage
measurements may also play an important role in settling the
ongoing controversy regarding the characteristics of charge
carriers in nonpolar liquids [5-8]. While it is a common
engineering practice to represent the electrochemical cell as a
linear circuit model, it is well known that such a description
is seldom justified beyond low voltages [9,10]. In the general
case of nonsmall voltages, transient ionic-species transport is
coupled to the electrostatics, as manifested in the nonlinear
Poisson-Nernst-Planck (PNP) set of equations.

Recently, Olesen et al. [11] considered in detail the case
of ideally blocking electrodes. In their paper they provide
a reduced model appropriate to the thin-double-layer limit.
This model allows for straightforward numerical computations
which avoid the scale disparity inherent in the underlying PNP
equations [12]. In the low-voltage regime, where the Debye
layers adjacent to the electrodes effectively constitute linear
capacitors, the (steady-state) response to a time-harmonic volt-
age is itself harmonic. A prominent feature of the numerical
solutions presented in Ref. [11] is that the steady-state response
to an ac voltage is periodic even beyond low voltages, having
the same period as that of the applied voltage. This periodic
response, however, is clearly not time harmonic; rather, it
exhibits distinct nonlinear features, such as voltage-dependent
amplification and phase shift, as well as rapid temporal
variations in the electric current [10,11].

In this paper we exploit the reduced model, first, to ratio-
nalize the nonlinear frequency locking, and second, to extract
the main features of the limiting oscillations via perturbative
methods. Towards this end we employ the thin-double-layer
framework to analyze the response of the system beyond
low voltages in a regime where the dynamics are inherently
nonlinear. Formulating a periodic boundary-value problem
governing the steady-state response, we derive a large-voltage
asymptotic solution which is in excellent agreement with
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numerical solutions. Our asymptotic analysis reveals the
scaling with voltage of the amplitude and phase shift pertinent
to the nonlinear response. The main outcome of this analysis
is an asymptotic current-voltage relation.

The problem considered entails a symmetric binary elec-
trolyte solution (permittivity €*, ionic valencies £Z) where
the ionic diffusion coefficients D3 are allowed to differ.
(Hereafter, an asterisk denotes a dimensional quantity.) The
solution is bounded by two planar electrodes separated a
distance L* apart (see Fig. 1). Initially, the system is in
equilibrium so that the anion and cation concentrations are
uniform, possessing identical values (say ¢*). Our interest lies
in the response of the system to an ac voltage of amplitude V*
and frequency w* /2m, initiated at time t* = 0; for definiteness,
we take V*cos(w*t*) to be the electric potential of the left
electrode relative to the right one. (With no loss of generality
we assume V* > 0.) The problem may be considered one
dimensional.

In most cases of practical interest, L* is much larger than

the Debye length,
| € k*T*
A= ——, 1
2226*26.* ( )

in which k* is Boltzmann’s constant, 7* the absolute tem-
perature, and e* the elementary charge. In the corresponding
asymptotic limit, A* < L*, two O(1*)-wide Debye layers
form adjacent to the electrodes, with the bulk liquid outside
them being approximately electroneutral; the natural time
scale for transport in this system is the “RC time” t* =
L*A*/D*, D* being a characteristic diffusivity [10]. When
* is not significantly larger than 1/7* and the applied voltage
is not too high (see Ref. [11] and the discussion at the end of
the present paper), this compound structure can be described
by a simple macroscale model, wherein the two Debye layers
remain in quasisteady equilibrium. Such a model was provided
in Ref. [11] (referred to there as “weakly nonlinear”) for the
case of identical diffusivities. In the Supplemental Material
[13] we perform a systematic asymptotic analysis of the
underlying transport equations, deriving the comparable model
for nonidentical diffusivities [14]. Notably, this description
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FIG. 1. (Color online) Schematic of the problem.

does not involve the individual diffusivities [15] but only
their average D* = (D3 + D¥)/2. In this description, the
ionic concentrations in the bulk are uniform and constant
(namely, ¢*). The bulk electric field is also uniform but is
of time-dependent magnitude [say E*(z*), defined positive to
the right].

We denote the zeta potential (i.e., the potential difference
between the electrode-electrolyte interface and the outer edge
of the adjacent Debye layer) at the left and right electrodes by
¢ and ¢, respectively. The thin-double-layer model relating
these quantities to E* consists of three equations. The first two
represent electrode charging on the RC scale (cf. [4]),

*p* *
2 ¥ sinh L)
A* o dt* 2¢p*

*p* *
—o*E* =22 sinh 2&_ ).
A* o dr* 2¢p*

o*E* =

2

wherein o* = Zze*zc*(Di + D*)/¢* is the bulk conductiv-
ity, in which ¢* = k*T*/Ze* is the thermal voltage. The
right-hand sides in Eqs. (2) are simply the time derivatives
of the electrode surface-charge density (or equivalently, the
inverse of the total Debye-layer charge per unit area, as given
by the Gouy-Chapman relation [16]). The third equation,

E*L*+¢f —¢p = V*cos(w™t™), 3)

represents the requirement that the total potential drop across
the cell equals the applied voltage. These equations are
supplemented by the initial conditions

;i =¢=0 for *=0. “4)

Mutual addition of (2) followed by integration with respect to
time yields, upon use of conditions (4),

&=t t* > 0. 5)

The antisymmetry (5) allows us to describe the dynamics
using a single variable, say ¢* = ¢/. It is convenient to write
the differential equation governing this variable, obtained by
combining (2)—(5), in a dimensionless form. Defining the
normalized variables

for all

t:t*/f*’ é‘ ZC*/W’ V= V*/(p*’ (6)
we thus obtain (cf. [11])
2 4 h 3 +2 Vv t 7
— sinh = = V coswt,
dt 2 3 @
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where w = w*t* is O(1) by assumption. (Dimensionless
variables appear without the asterisk decoration.) Equivalently,
we may write [17]

d
d_? +4sinh™! % = V cos wt, ®)
where
P4
Q = 2sinh 5 ©)

is the surface-charge density on the left electrode, normalized
by €*¢*/1* [cf. (2)]. The corresponding initial condition is
Qt=0)=0.

Numerical solutions of (8) approach a steady-state periodic
solution of angular frequency w. Its shape is actually indepen-
dent of the initial condition and is completely determined by
the parameters w and V. While entrainment of the system to
the forcing frequency may seem plausible, it is not in any sense
evident [18]. In the Supplemental Material [13] we prove that
the system indeed approaches a (unique) periodic solution.
The steady-state orbit Q(0), where 6 = wt, is governed by the
periodic boundary-value problem,

d
a)d—g + 4sinh™! % = V cosé, (10)

Q0 =0) = 00 =2m), Y

assured to possess a unique solution for any w and V. At low
voltages V « 1, one finds the harmonic linear response
0~

cos(f —a), «a = arctan %, (12)

Vv
Vit
with ¢ ~ Q. Beyond low voltages, it is in general necessary
to solve (10) and (11) numerically. Examples of zeta-potential
orbits are shown in Fig. 2 for V = 30 and 60, with ® = 1. A
comparison of the response at these moderately large voltages
with the (low-voltage) linear response (also depicted) clearly
demonstrates the voltage dependence of both the amplitude
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FIG. 2. (Color online) The periodic steady-state zeta potential
in response to a time-harmonic ac voltage input of magnitude
V =30 and 60, and angular frequency w = 1; the symbols represent
numerical solution of the boundary-value problem (10) and (11),
while the lines depict the corresponding large-voltage asymptotic

expression (17). The linear (voltage-independent) solution is also
shown.
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and phase (say at which ¢ obtains a maximum) of the nonlinear
response.

Our interest is in obtaining a simple asymptotic solution of
(10) and (11) in the limit of large voltages. An obvious leading-
order approximation Q ~ (V/w)sin# is readily obtained by
balancing the first and third terms in (10). A comparison of
this expression with the numerical solution, however, shows
a poor visual agreement. Whereas the amplitude maxima are
reasonably close, a small phase shift is evident; apparently,
its slow decay with respect to V renders the approximation
essentially impractical. It is natural to employ the method of
strained coordinates [19] in order to resolve such nonunifor-
mities. Thus we postulate the ansatz

o~ 5sin[9+ex(9)], 13)

where € is a small parameter which, together with x(6),
remains to be determined. Upon substituting (13) into (10),
a dominant-balance analysis implies

In(V/w)
€= ————=
Vv

whereby to leading order we find that x (6) [which inherits its
27 periodicity from Q(0)] satisfies the equation

, (14)

d
X sin6 — ﬁ cos® = 4 sgn(sin6). (15)

In solving (15), the integration constant is determined so that
the solution is continuous, as implied by the principle of
minimum singularity [20]. We therefore find
_ 2m —40 +8(0 — n)H(O — )
x= cos 0 '

(16)

where H is the Heaviside function; note that (16) is 2w
periodic.

Substitution of (13) and (14) into (9) provides the asymp-
totic expression for the zeta potential,

¢ ~ 2sinh™! {lsin [9+MX(9)“. (17)
2w Vv
A comparison of (17) and the numerical solution is shown
in Fig. 2 for V = 30 and 60, with w = 1; the agreement is
excellent. (For V = 80 the numerical and asymptotic solutions
are practically indistinguishable.) Note that at large voltages
the maximum amplitude of the zeta-potential asymptotes to

|4
é.max NZIH;, (18)

therefore remaining rather mild even for very large voltages.
The collapse on (18) at large voltages of the numerically
evaluated zeta-potential amplitudes for several values of w
is shown in Fig. 3. The collapse at low voltages on the linear
amplitude [see (12)] is also shown.

Perhaps of greater practical interest is the electric current
density, in principle a directly measurable quantity. (Note that
in our approximation level, the measurable current, i.e., the
time rate of change of the electrode charge, is equal to the
bulk electric current at any moment.) From (2) we find that
the current density, normalized by Ze*c*(D3 + D*)/L*, is
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FIG. 3. (Color online) Amplitude of zeta-potential oscillations as
a function of V /w for w = 0.5 (triangles), 1 (circles), and 7 (squares).
At large voltages, all the numerical data collapse on the logarithm
(18) (solid line). Upon changing the abscissa to V/+/4 + w?, the low-
voltage data collapse on the familiar linear response (12), depicted
by the dashed line.

given by

I =w 0 19)
This quantity can be extracted directly from (10) by sub-
stituting either the numerical zeta-potential solution or the
large-voltage asymptotic approximation (13). The latter yields

I ~ Vcosf — 4sinh™! {l sin [9 + M)((6’)]}.

2w Vv
(20)
This asymptotic current-voltage relation is the main outcome
of our analysis.

Figure 4 shows an excellent agreement between (20) and
the numerical data already at V = 40. The rapid temporal
variations in the electric current (a feature also mentioned in
Ref. [11]) are well captured by our asymptotic approximation.
Indeed, note that

2n

sinh™! { 1 sin ¢} ~ sgn(sin ¢) In {M }
2w w
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FIG. 4. (Color online) The periodic steady-state current in re-
sponse to a harmonic ac voltage input of magnitude V = 40, 60,
and 80, with @ = 0.5. The symbols represent the numerical solution;
the solid lines depict the corresponding large-voltage asymptotic
approximation (20).
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This “outer” approximation is valid outside two O(1/V)-wide
regions about ¢ = m and ¢ = 27 across, which the left-hand
side of (21) changes by O(InV). Thus, in the uniform
approximation (20), these near discontinuities appear at 6
values shifted by O(V~'1nV) phases relative to 7 and 27;
this is observed in Fig. 4. It is remarkable that the delicate
resolution of the transition regions is also in good agreement
with the numerical data.

We conclude with remarks concerning the range of validity
of the above results. As described by Olesen et al. [11],
when the nonlinear capacitance of the double layer comes into
play [cf. (9)], net salt (in addition to charge) is transported
in and out of the Debye layer. As the associated flux is
incompatible with the homogenous bulk, a diffusive boundary
layer of O(8'/?) width is formed outside the double layer.
For V = O(1) the concentration deviation in this layer is
asymptotically small and thereby has, to leading order, no
effect on our present analysis. For V = O(8~/2), however, this
deviation becomes appreciable and the asymptotics reshuffle.
While the voltage on the thin diffusive layer remains small, the
concentration deviation intermittently drives the diffuse layer
out of equilibrium. As the thin-double-layer model employed
herein breaks down at these moderately large voltages, this
restricts the range of validity of our analysis. Olesen et al. [11]
provide a (more involved) “strongly nonlinear” model [21]
which is solved numerically and is seen to agree well with
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the numerical solution of the full PNP model for all voltages.
Whether it is possible to apply the methods employed in the
present contribution to the strongly nonlinear regime is left as
an open question.

An additional large-voltage limitation may appear to
arise from the condition of total ion conservation in the
cell, which follows from the assumption of ideally blocking
electrodes. According to the thin-double-layer model, the
bulk ionic concentrations are uniform and constant, equal
to the equilibrium concentration. This assumption is easily
justified when the zeta potential is moderate, as the amount
of ions absorbed in the Debye layers is then only an O(6)
fraction of their amount in the bulk, and net ion conservation
is satisfied at the order of approximation of our analysis (see
Supplemental Material [13]). If the zeta potential becomes
mildly large, however, this fraction is modified to O(8e!¢!/?)
(essentially the Dukhin number [16]), which in principle may
become O(1). Employing our large-voltage result (18) for the
zeta-potential amplitude, we find that this fraction is actually
O(8V), implying a breakdown of the underlying asymptotic
model at V = O(8"). This places a less stringent limitation
on the model than that related to salt absorption in the diffusive
layer.
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