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Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution
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Recent advances in high-resolution measurements means it is now possible to identify and track the local
“fabric” or contact topology of individual grains in a deforming sand throughout loading history. These provide
compelling impetus to the development of methods for inferring changes in the contact forces and energies at
multiple spatiotemporal scales, using information on grain contacts alone. Here we develop a surrogate measure of
the fluctuating kinetic energy based on changes in the local contact topology of individual grains. We demonstrate
the method for dense granular materials under quasistatic biaxial shear. In these systems, the initially stable and
solidlike response eventually gives way to liquidlike behavior and global failure. This crossover in mechanical
behavior, akin to a phase transition, is marked by bursts of kinetic energy and frictional dissipation. Mechanisms
underlying this release of energy include the buckling of major load-bearing structures known as force chains.
These columns of grains represent major repositories for stored strain energy. Stored energy initially accumulates
at all of the contacts along the force chain, but is released collectively when the chain overloads and buckles.
The exact quantification of the buildup and release of energy in force chains, and the manner in which force
chain buckling propagates in the sample (i.e., diffuse and systemwide versus localized into shear bands), requires
detailed knowledge of contact forces. To date, however, the forces at grain contacts continue to elude measurement
in natural granular materials like sand. Here, using data from computer simulations, we show that a proxy for
the fluctuating kinetic energy in dense granular materials can be suitably constructed solely from the evolving
properties of the grain’s local contact topology. Our approach directly relates the evolution of fabric to energy
flux and makes possible research into the propagation of failure from measurements of grain contacts in real
granular materials.
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I. INTRODUCTION

A proper understanding of how failure propagates spatially
and temporally in granular materials is needed to ultimately
mitigate and manage natural hazards, as well as minimize
energy consumption or resource waste in particulate processes
in industry [1–4]. A long-standing problem that has hampered
research efforts is the lack of information at the microstruc-
tural level, viz., at the scale of individual grains. While
unprecedented high-resolution experimental measurements,
achieved over the past decade, have steadily expanded the
body of knowledge and insights into the processes at this scale,
many key properties continue to elude measurement [4–7].
To capitalize on progress, robust analytical tools are needed
to extract the most information from existing measurements
across multiple spatial and temporal scales. A way forward
is through the use of surrogate measures. The central idea is
to predict the effect of a particular mechanism by tracking its
influence on the surrogate, a property that can be measured—in
place of the primary material property of interest that is
difficult if not impossible to measure. For instance, the contacts
and kinematics of individual grains of sand in a triaxial
compression test can now be identified and tracked over many
stages of loading [5–8]. However, forces at grain contacts in
natural granular materials have so far eluded measurement. As
such, the precise identification and tracking of key emergent
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structures such as force chains [9], and the quantification
of energy fluxes into and out of these structures, remain
unattainable.

Force chains play a central role in force transmission and
energy flow in deforming granular systems [10–14]. These
functional groups of grains bear the majority of the applied
load and, in turn, serve as the main repositories for stored
free energy [2,15–17]. Energy flow in and out of force
chains is generally regulated by rearrangements among their
laterally supporting neighbors. We recently found evidence
that form and function go hand in hand in this process of
self-organization [18,19], suggesting that some aspect of these
rearrangements may provide a good surrogate for energy flow.

In Ref. [19], we studied the evolution of clusters comprising
a particle and its contacting neighbors, in an experiment
comprising circular photoelastic disks. We found favored
cluster conformations, residing in distinct stability states
in the structural stability landscape, which are reminiscent
of “magic numbers” for molecular clusters. We also found
that preferred conformational transitions are those that either
preserve or increase the structural stability of the cluster.
Clusters formed by particles in force chains reside in the
more stable states of the stability landscape. This stability is
provided by weak neighbors, which mobilize a dual resistance
to buckling in a way that exploits all the benefits that topology
can offer, viz., neighbors in n-cycles laterally brace and prop
up the column, and frustrate rotations through odd-cycle
conformations [9,17,20,21]. Under increasing compression
and shear, however, this resistance is ultimately overcome,
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FIG. 1. (Color online) Change in local contact and contact force topology of a group of grains from computer simulations of biaxial
compression under [(a)–(d)] constant confining pressure and [(e)–(h)] constant volume. Contacts are represented by bonds whose radius and
color (dark to light) indicates the magnitude of the contact force (low to high) at the start [(a) and (e)] and end of a strain interval [(b) and (f)].
An increase (decrease) in contact force magnitude typically accompanies a local increase (decrease) in number of contacts or, alternatively,
an increase (decrease) locally in lower (higher) length cycles. The change in the grain’s contact forces is summarized in the change in the
magnitude of its particle load vector magnitude [(c) and (g)]: The higher the change, the lighter the color. Our measure, which is based on
contact topology alone, is shown in (d) and (h). Grain positions in (c) and (g) and (d) and (h) are at the end of the strain interval, identical to
(b) and (f).

resulting in the collapse of the force chain by buckling. In
Ref. [19], the most likely conformational transitions during
buckling involve rearrangements among, or loss of, contacts
which break the 3-cycle topology. The stored free energy,
which is the potential elastic energy that was stored and
accumulated at all the contacts along the force chain during the
preceding stages, is then released collectively during buckling.

In sand experiments, the inability to identify force chains
and their supporting neighbors makes it impossible to track
this coordinated buildup and release of stored energy. Our
approach seizes emerging opportunities from state-of-the-art
experiments in granular micromechanics [5,6,8] and enables
research into the spatiotemporal evolution of energy flow
and failure propagation for geological materials. Answers to
questions such as “How is the energy budget in a granular
sample under load spatially and temporally distributed?” or
“What structural rearrangements are responsible for energy
dissipation?,” which remain very difficult if not unattainable
for natural materials, can now be undertaken at increasing
levels of accuracy, concomittant with improvements in the
temporal resolutions of measurement.

Specifically, in this paper, we propose a method that is
based on the evolving contact topology alone—thus making
the technique of value to state-of-the-art experimental mea-
surements in dense granular media micromechanics [5,6,8].
The method is centered around a surrogate measure or proxy
for the fluctuating kinetic energy so the mode of failure
(i.e., localization or diffuse) may be tracked independently

of knowledge of grains in force chains. To illustrate our idea,
consider the topology of a group of grains in Fig. 1. The left
column of Figs. 1(a) and 1(e) shows the contact topology of
the grains from two biaxial compression tests. Across a strain
interval, i.e., from Figs. 1(a) to 1(b) and from Figs. 1(e) to 1(f),
the grains change position, contacts, and contact forces. One
can clearly see the reconfigurations in the contact forces: this
change includes the creation (loss) of bonds (or contacts), the
increase (reduction) in bond strength (or contact force), and
the inclusion or not of rattlers (or grains with no contacts) in
the rearranged topology in Figs. 1(b) and 1(f). In the past [9],
we used the “particle load vector” to summarize the contact
forces acting on a given grain. The magnitude of this vector,
λ+, is derived as follows:

λ+ = s11 + s22

2
+

√(
s11 − s22

2

)2

+ s12s21, (1)

where sij = ∑Nc

c=1 n
(c)
i F

(c)
j denotes an effective force moment

tensor per grain, Nc is the grain’s coordination number, the
superscript (c) stands for the cth contact, the subscripts i and j

represent the ith and j th components of the unit normal vector
n

(c)
i , and F

(c)
j is a contact force vector [9]. The change in the

particle load vector magnitude can be used as a measure of the
reconfigurations in the contact forces of each grain [Figs. 1(c)
and 1(g)]. Now, to presage our results, we show in Figs. 1(d)
and 1(h) the results from one of our measures in this study
that is based on information on contacts alone. Note that the
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grains in Figs. 1(c) and 1(g) and Figs. 1(d) and 1(h) are in
their final positions as are those in Figs. 1(b) and 1(f). Here the
grains are colored light (dark) if they sustained large (small)
changes with respect to the property in question, across the
strain interval. It is convenient to partition the cluster into
four quadrants. Comparing Figs. 1(a) and 1(b), one can see
that the bottom left and top right quadrants of the cluster in
Fig. 1(a) sustained force reconfigurations that are accompanied
by marked changes in the local contact topology. Our measure
in Fig. 1(d) captures this dynamics well, as shown by the light
colors of the grains in these regions of the cluster. The same
can be said for the top quadrants of the cluster in Fig. 1(e):
here a strong “bridge” formed by the topmost grains weakens,
giving way to a new “bridge” in Fig. 1(f) forming from the
grains just below. Notice there is again a strong correlation
between these reconfigurations in force and contact topology
and the lightly colored grains in Fig. 1(h). By contrast, the
measure provided by the particle load vector in Figs. 1(c) and
1(g) reflects only the most significant force reconfigurations,
while changes in the local contacts bear only a secondary
influence. This is evident in the dark colors of grains in the
bottom left quadrant of the cluster in Fig. 1(c) and the left
quadrants of the cluster in Fig. 1(g): These regions sustained
marked changes in contact topology but not in contact forces.
Note, however, that our measure is not directional: It does
not distinguish between a change that involves an increase
versus a decrease in connectivity. That is, loading up of
stored energy due to gains in contacts is indistiguishable
from off-loading, or release, of stored energy due to loss of
contacts.

We will introduce our methods using two tests from a
well-studied family of computer simulations [9] based on the
methods in Ref. [22]. These samples consist of 5098 grains
subject to biaxial compression and two different boundary
conditions, namely constant confining pressure from the lateral
boundaries (CP test) and constant volume (CV test) [9]. The
grains are polydisperse spheres constrained to move in the
plane and so the simulation is effectively two dimensional.
The contact laws for two interacting grains is a combination of
springs, dashpots, and sliders. A coefficient of rolling friction
is introduced to a contact moment (μr = 0.02) to better model
the effects of grain shape seen in sand experiments [23]. Each
sample exhibits multiphase response and a crossover from a
solidlike to a liquidlike regime through the formation of a
persistent shear band. In the constant confining pressure test,
the shear band extends diagonally through the sample from the
bottom left corner to the top right. The persistent shear band
in the sample subject to constant volume boundary conditions
forms a V shape but, at different temporal windows throughout
the deformation, only one side of the V band is active. In both
cases, the active bands also manifest a spatial interlacing of
jammed and unjammed grains. The standard response behavior
indicating each material’s load-carrying capacity can be seen
from the macroscopic stress ratio (Fig. 2). The transition to
failure behavior is seen in the marked drop from peak stress
ratio with increasing strain. The rises and drops in stress
ratio can be attributed to stick-slip (jamming-unjamming)
motion. Our interest in this paper is to track the evolution
of the contact topology of each grain across strain intervals
spanning stick-slip (jamming-unjamming) motion. Based on
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FIG. 2. (Color online) The macroscopic stress ratio with respect
to increasing axial strain for the constant confining pressure test (CP
black squares) and the constant volume test (CV blue triangles).
Each test fails through strain localization and the formation of a
persistent shear band at the time of the drop in stress ratio from
peak.

how the local mesoscopic scale contact topology changes we
introduce a proxy for fluctuating kinetic energy. In particular,
by building on earlier work on mesoscopic cycle evolution
[24,25], we show here how a spectral property of a network
can also be used as an energy proxy measure. This means
that a costly calculation of a networks’ minimal cycle basis
can be circumvented, further opening the method to greater
practical use in real sands where hundreds of thousands of
grains are the norm. Macroscopic averages of this quantity
across the entire assembly of grains correlates strongly with
the fluctuating kinetic energy [26–28], including nonaffine
deformation measures that use full structural and kinematic
information available in numerical experiments [9,29–32]. We
argue that our method can be applied to the current state of
experimental measurements where standard measures are not
possible.

The remainder of this paper is organized as follows: In
Sec. II we briefly summarize how changes in mesoscopic cycle
topologies can be used to form a proxy for fluctuating kinetic
energy across a strain increment. We also describe how the
network spectral property of subgraph centrality can be used
in place of full knowledge of the cycles in a network. The
results of our methods and analysis when applied to the two
test systems mentioned above are presented in Sec. III. We
close the paper with a concluding discussion and speculate
on the generality and suitability of our method in identifying
sources of release of stored energy in real sands when only
contact information is available.

II. CYCLE EVOLUTION AND AN ENERGY MEASURE

In computer simulations and also in experiments (e.g.,
photoelastic disks in 2D [14,33–36] and ID-Track in real 3D
sand tests [5,6]) each grain and its contacts can be identified so
the entire granular assembly can be represented by a complex
network referred to as a contact network [37–40]. A complex
network in simplest terms consists of a collection of nodes
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which are connected by links. The structure of the network can
be summarized by many properties across different scales. For
example, locally, one can count the number of links associated
to each node (i.e., the degree) or the number of contacting
neighbors of a node that themselves are in contact with each
other (i.e., triangles quantified by clustering coefficient). In
addition to global averaging of these local properties at the
macroscopic end of the scale, one can examine properties
based on shortest path lengths (i.e., the minimum number of
links which connect any pair of nodes). In a contact network
each node represents an individual grain and a link between
nodes exists if the corresponding grains are in mutual contact.
In computer simulations and photoelastic disk experiments of
shear and compression tests we have shown that the observed
changes in rheology corresponds to evolving contact networks
and their changing properties [39,41,42].

Structures within these networks are also of great impor-
tance to the rheology and of special import are the motifs
associated to the (minimal) cycles in the network [43,44]. The
cycles in a network are simply the closed paths in the network
and geometrically can be described as the triangles, squares
(quadrilaterals), pentagons, and so on. In 2D one can think of
the minimal cycles of the contact network as the faces of a
planar graph.

For a given observed strain state of the deformation, each
grain and its associated network node is a member of a
collection of cycles. We refer to any grain not in a cycle as a
rattler and these grains are easily dealt with in our approach.
We construct a vector summarizing this cycle topology whose
elements are simply a count of the number and type of cycles
associated to a node, i.e.,

Ci
t = [c0,c3,c4, . . . ,cn], (2)

where, at strain t , node i has c3 3-cycles, c4 4-cycles, and up
to cn n-cycles in its local cycle topology. If node i is not in any
cycle, then we set c0 = 1 and cn = 0, n � 3.

Consider, for example, a grain taken from the CP system as
shown in Fig. 3. Across a strain interval of size �t deformation
leads to a change in its local cycle topology. At the start of the
strain interval the local cycle topology of the identified grain

FIG. 3. (Color online) Quantifying the change in the local cycle
topology of a grain across a strain interval �t in the CP system.
Cycles are colored by their size. At time t the grain is surrounded
locally by one 3-cycle, one 6-cycle, and one 7-cycle. This local cycle
topology changes to one 5-cycle, one 6-cycle, and one 10-cycle. The
cosine distance between cycle vectors formed using these topologies
is dC = 0.667.

can be represented by Ct = [
010011000

]
if we count up to

n = 10 cycles. As we load the material further, grain rear-
rangements occur in response to the loading and a new strain
will reveal a new fabric or contact topology. We can identify
the same grain and construct a new vector summarizing its new
cycle topology Ct+�t . In Fig. 3 the new cycle vector is given
by Ct+�t = [

000110001
]
, where again we count up to n = 10

cycles. We note that one local cycle, the 6-cycle, has remained
intact over the interval, and the constituent grains of the 7-cycle
have collapsed to form a 5-cycle but the largest change sees a
3-cycle cleaving to open a large dilatative region manifest as a
10-cycle.

We can quantify this change by calculating the distance
between these two vectors. Any distance norm will do but one
which we have found revealing of the changing rheology is
the cosine distance, i.e., the angle between the two vectors Ct

and Ct+�t . The cosine distance between two vectors x and y

is

dC(x,y) = 1 − x · yT

‖x‖‖y‖ . (3)

For a given node in the contact network this distance quantifies
the evolving cycle topology over a strain interval. The local
rearrangements in Fig. 3 return a dC value of 0.6667. A
measure of the average deformation of the entire assembly of
Np grains across a �t increment of strain can also be obtained
by

ECD(�t) = 1

Np

Np∑
i=1

dC

(
Ci

t ,C
i
t+�t

)
. (4)

We will show that when �t = 1 this measure is a proxy
for macroscopic fluctuating kinetic energy and qualitatively
matches its evolution postpeak stress ratio in computer
simulation tests. Furthermore, each individual dC(Ci

t ,C
i
t+�t )

also spatially correlates with localized areas of energy release.
That is, nodes with high (relative) values of dC(Ci

t ,C
i
t+�t )

correspond to grains residing in the shear band and also to
neighborhoods of force chain failure events. We thus argue
that identifying the nodes with a high value of dC(Ci

t ,C
i
t+�t )

in the evolving contact topology of dense granular assemblies
reliably locates the zones of failure, deformation, and energy
release postpeak without the need for additional force infor-
mation.

A. Subgraph centrality

The framework described above relies on the determination
of the minimal cycle basis of the network [43,44]. The
information used for each node is the local minimal cycle
topology, i.e., higher length cycles are not included if they
consist of combinations of lower length cycles. For example,
consider a 4-cycle which is made up of two 3-cycles sharing a
link. Such a cycle would not be a part of a minimal cycle basis
and so would not be considered in the local mesoscopic cycle
evolution framework described above. It is useful, however,
to consider a measure of cycle topology whose extent goes
beyond the mesoscopic scale. For example, consider a grain
that resides in a densely packed area of the assembly, strongly
supported by contacting first ring of neighbors; however,

032205-4



MESOSCALE AND MACROSCALE KINETIC ENERGY . . . PHYSICAL REVIEW E 89, 032205 (2014)

these neighbors due to (possible) dilatative rearrangements
are poorly supported on the other side. The cycle vector
construction described above would “not see” these areas
of dilatation at this mesoscopic scale of the second ring
of neighbors. A measure which (implicitly) includes this
additional level of information by accounting for cycles at
larger scales and also nonminimal cycles such as the 4-cycle
described above is subgraph centrality [45–47].

Subgraph centrality is a network node property which
quantifies the number of closed walks within the network
that a node is involved in. This includes all minimal n-
cycles as well as larger cycles which are not minimal. The
property is weighted with shorter length cycles given the most
weight. This means the essential local mesoscopic scale
cycle topologies are given importance but larger-scale dilative
configurations are also included. A node with a local cycle
topology consisting of many short cycles—a densely packed
or jammed region of the material—has a larger subgraph
centrality index than a node in a less densely packed area
of the material.

The calculation of subgraph centrality depends on the
spectral properties of the adjacency matrix [45]. Mathemat-
ically, the diagonal entries of An (nth power of an adjacency
matrix) gives the number of closed paths of length n starting
and ending at a particular node. This count includes all
of the minimal n-cycles involving a node. The measure of
subgraph centrality quantifies this by considering for node i the
following:

Si =
∞∑

k=0

μk(i)

k!
, (5)

where μk(i) = (Ak)ii . Each Si can be expressed in terms of
the spectral structure of the adjacency matrix A [45],

Si =
Np∑
j=1

(
vi

j

)2
eλj (6)

for Np nodes and eigenvalues λj and with vi
j being the ith

component of the j th (orthonormal) eigenvector.
We can build an equivalent proxy for fluctuating kinetic

energy (say, ESCD miming Eq. (4)) by following the same
framework above for local minimal cycles but instead using
changes in subgraph centrality. That is, we replace Ci

t and
Ci

t+�t in Eq. (4) with Si
t and Si

t+�t respectively to define

ESCD(�t) = 1

Np

Np∑
i=1

dE

(
Si

t ,S
i
t+�t

)
, (7)

where using a Euclidean norm seems more appropriate in
this case. This new measure not only contains information of
local mesoscopic cycle rearrangements but also information
of global cycle changes and their relevance to particular
nodes.

B. Energy measures in granular assemblies

We test our claim that the score given in Eq. (4) and the
version using subgraph centrality in Eq. (7) can be considered
a proxy for energy loss in a network by comparing our scores

to two measures of energy dissipation in the assembly. This
is possible for our systems as additional knowledge beyond
network structure is available in computer simulations. In other
applications and systems where these more standard measures
of energy are unavailable we hope our network quantity can be
a useful proxy. The first corroboration is to compare our scores
to the strain evolution of the macroscopic energy, in particular,
the fluctuating kinetic energy of the whole assembly [26–28].
That is,

Ef =
Np∑
i=1

(
m(|vi | − 〈|vi |〉)2

2

)
, (8)

where, as before, Np is the number of grains in the assembly
and vi is the velocity (effectively displacement) of each grain
(mass m) across an interval of strain [9]. The brackets indicate
the average fluctuating velocity across the entire assembly.

A second comparison is to the nonaffine strain which is
a measure of the observed deviation of a grain cluster from
that expected if the deformation was solely attributable to
the affine strain tensor [9,29–32,48]. A scalar measure of the
nonaffine deformation for each grain cluster can be calculated
and averaged over the whole assembly to obtain a macroscopic
measure [9,30]. Specifically, consider a reference grain and
its set B of neighboring grains as determined by Delauney
polygons of total volume V emanating from the reference
grain. The edges of these polygons define branch vectors lc

with components lcj from the reference grain to each c ∈ B.
If u denotes the displacement of the reference grain and uc

denotes the displacements of each grain c ∈ B, then the relative
displacement of the cth neighbor in relation to the reference
grain is given in components by

pc
i = uc

i − ui + eij3l
c
jω, (9)

where ω is the angle of rotation of the reference grain, eijk

is the Levi-Civita symbol, and repeated indices are summed
over. The pc

i are used to define an approximation to the affine
strain tensor based on the observed grain motion, i.e.,

εij = 1

2V

∑
c∈B

(
pc

i − pc+1
i

)
ejk3

(
lc+1
k − lck

)
. (10)

A scalar measure for the nonaffine deformation associated with
the deformation of a grain cluster with respect to a reference
grain is

�ε = 1

2V

∑
c∈B

|�pc|(|Ic+1 − Ic| + |Ic − Ic−1|), (11)

where �pc = pc − ε · Ic is the difference between the actual
relative displacement in Eq. (9) and that implied by the affine
strain tensor from Eq. (10). Equation (11) can be averaged over
each grain in the assembly to obtain a macroscopic measure
of the nonaffine deformation we denote with ENA. It has been
shown that these measures temporally and spatially correlate
with energy loss in the system as well as known dissipative
mechanisms such as microbands and force chain buckling [9].

III. RESULTS

In this section we will first show that the measure defined
in Eq. (4), and its subgraph centrality alternative Eq. (7),
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TABLE I. Pearson coefficient of the temporal correlation of
ECD and ESCD dissipation measures with fluctuating kinetic energy
(Ef ) and nonaffine deformation (ENA) values postpeak stress
ratio.

ECD ESCD

Test Ef ENA Ef ENA

CP 0.85 0.96 0.83 0.95
CV 0.88 0.95 0.88 0.95

exhibits strong temporal correlation with a more standard
measure of fluctuating kinetic energy Eq. (8) and the nonaffine
deformation measure in the postpeak stress ratio failure regime
of both samples. We measure the strength of correlation using
the Pearson correlation coefficient given for two sets of data
{xi}ni=1 and {yi}ni=1 by

r =
∑n

i=1(xi − μx)(yi − μy)√∑n
i=1(xi − μx)2

√∑n
i=1(yi − μy)2

, (12)

where μx and μy are the sample means of {xi}ni=1 and {yi}ni=1,
respectively. The strength of the correlation between ECD or
ESCD with these more standard measures is high for both test
systems with different boundary conditions as seen in Table I.
The temporal traces in Fig. 4 highlight the strength of these
correlations with both measures capturing the spiking nature
of both the kinetic energy and nonaffine deformation measures
during drops in stress ratio. Our proxy for energy loss using
all of the local cycles, i.e., ECD , shows a slightly stronger
correlation than the proxy calculated using subgraph centrality
(ESCD). The drop in performance does not appear to be too
great considering the benefit of a less-demanding subgraph
centrality calculation.

We note that prepeak stress ratio our proxies ECD and ESCD

exhibit a poor performance when compared to Ef and ENA.
Prepeak we observe fluctuations of ECD and ESCD around
residual values. These residual values are higher than observed
in the more standard energy measures. This discrepancy can
partially be attributed to the nondirectionality of our cycle
topology measures. That is, topological changes which lead
to a loading-up of stored energy at contacts, e.g., a 4-cycle
compressing to become two 3-cycles, is indistinguishable from
two 3-cycles cleaving to form one 4-cycle in an energy off-
loading mechanism. Both sets of rearrangements contribute
the same to our energy proxy, thus the prepeak behavior of
the compressed assembly is being captured. Standard energy
measures based on grain motion would only register if these
“loading-up” rearrangements were accompanied by a large
movement of grains which is not typical during the early
stages of compression. A second contributing factor during this
prepeak regime are dilatative rearrangments. We know from
earlier studies [39,42] that 3-cycles in particular are degrading
during strain hardening. Our energy proxy is also capturing
these changes, regardless of whether they are accompanied by
greater movement of grains, thus contributing to the higher
residual value before failure. Postpeak stress ratio the large
bursts in kinetic energy are well captured, and these bursts
accompany a drop in stress ratio, attributable to the failure
mechanism of force chain buckling.

In addition to strong temporal correlations our proxies
also exhibit a degree of spatial correlation with known zones
of deformation in the sample over strain intervals where
major grain rearrangements have occurred. For example, in
Figs. 5(a) and 5(c) we present the constant confining pressure
test assembly, with grains colored according to low and
high values of the individual terms in ECD and ESCD , i.e.,
dC(Ci

t ,C
i
t+�t ) and dE(Si

t ,S
i
t+�t ), respectively. These values

are calculated across a strain interval during the drop from
peak stress ratio and are typical for strain intervals spanning
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FIG. 4. (Color online) Temporal correlation between fluctuating kinetic energy (Ef ) and nonaffine deformation (ENA) with our proposed
proxies for energy dissipation ECD and ESCD . All energy measures have been rescaled independently to lie in the range [0,1] for better
visualization of the simultaneous spiking. Traces are plotted for the postpeak stress ratio regime in both samples with the upper plots displaying
the first half of these regimes and the lower plots the second half for improved clarity. (a) Constant confining pressure test. (b) Constant volume
test.
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FIG. 5. (Color online) Constant confining pressure test (a) spatial visualization of dC(Ci
t ,C

i
t+�t ) over a strain interval corresponding to

a drop in stress ratio following peak stress ratio. (b) Across the same interval a plot of the strong force chain network (color 2), the weak
network (color 1), and those chains which fail by buckling across the interval (color 3). (c) As in (a) but showing a spatial visualization
of dE(Si

t ,S
i
t+�t ). Constant volume test (d) spatial visualization of dC(Ci

t ,C
i
t+�t ) over a strain interval corresponding to a large drop in

stress ratio well into the high-strain regime. (e) Across the same interval a plot of the strong force chain network (color 2), the weak
network (color 1), and those chains which fail by buckling across the interval (color 3). (f) As in (d) but showing a spatial visualization of
dE(Si

t ,S
i
t+�t ). Values of dC(Ci

t ,C
i
t+�t ) and dE(Si

t ,S
i
t+�t ) in (a), (c), (d), and (f) are scaled to lie in the range [1,64] to better contrast low and

high values.

a drop in stress ratio postpeak. One can see that high values
of both dC(Ci

t ,C
i
t+�t ) and dE(Si

t ,S
i
t+�t ) localize in what is

the shear band region (lightly colored particles). In Fig. 5(b)
the weak network, strong force chain network and those force
chains that have failed by the energy releasing mechanism of
buckling across the same interval are plotted. Force chains
and those which buckle across a strain interval are identified
using established algorithms [49]. Grains in force chains have
above-average particle load vector magnitude determined by
Eq. (1). A sequence of three or more of these grains in contact
and quasilinear alignment with respect to the associated
eigenvector of Eq. (1) identifies a force chain. Grains not
in force chains are classified here as members of the weak
network. A buckled force chain can be identified as a force
chain at the beginning of a strain interval experiencing a drop
in particle load vector magnitude of its constituent grains by
the end of the strain interval and also a loss of quasilinear
alignment in any contiguous three-grain segments of the chain.
A visual inspection confirms that in the vicinity of buckling
force chains our energy proxies register high values. The
situation for the constant volume test is similar as shown
in Figs. 5(d), 5(e), and 5(f). In this CV test the shear band
forms a V shape with the right wing particularly active during
the presented strain interval. In Fig. 6 we show [Fig. 6(a)]
the observed displacement field, Fig. 6(c)] the nonaffine
displacement field, and [Fig. 6(b)] the nonaffine deformation
measure for the constant confining pressure test. Comparing

with the panels in Fig. 5 we see that our cycle energy
measure obtained solely from the evolution of the contact
network cycle topology spatially coincides with measures
dependent on particulate displacements and also local cluster
topology changes. The constant volume test exhibits analogous
correspondence in features as shown in Figs. 6(d), 6(e),
and 6(f).

These results and observations are consistent with current
thinking on the dynamics of shear bands. Mechanisms that
act counter to the macroscopic trend, i.e., grains that load up
(off-load) when stress ratio drops (increase), must always be
confined to the shear band. Our methods are nondirectional as
changes due to processes which load up (e.g., local compaction
or jamming associated with higher length cycles collapsing
to lower length cycles) or off-load (e.g., local dilatation
or unjamming where lower length cycles cleave to become
higher length cycles) are not distinguished. Since the highest
changes in our measures are predominently confined to the
shear band, we are seeing confirmation of current opinion.
The regions outside the shear band simply reflect the physics
of the dominant mechanism in the shear band. Sometimes
there is a clear dominant mechanism (clear rise or drop in
stress ratio) and sometimes not (competing events are almost
balanced), and so any method that can hone in on the zone
where such activity is occurring using information currently
available from real experiments—as our method does—is of
value.
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FIG. 6. (Color online) Constant confining pressure test. (a) The observed grain displacement field over the same interval in (Fig. 5). (b)
Spatial visualization of the incremental nonaffine measure. (c) The nonaffine grain displacement field, i.e., the displacement field obtained by
subtracting the motion of the boundary walls from the observed displacement field. Constant volume test [(d), (e), and (f) as (a), (b), and (c)].
Values of the incremental nonaffine measure are scaled to lie in the range [1,64] to better observe the contrast of low and high values. The
vectors of the displacement field are scaled by a constant factor to better show the regions of activity.

IV. CONCLUSION

Understanding how failure propagates spatially and tem-
porally in granular materials is key to our ability to control
a broad gamut of natural and human-made processes. To
achieve this, tools must be developed that can track energy
storage and dissipation at the particulate level and relate these
local processes to macroscopic behavior. Here we take steps
in developing such tools, spurred by the recent progress in
high-resolution measurements, which enable individual grain
contacts to be identified and tracked for many stages of the
loading history. We developed a surrogate measure for the
fluctuating kinetic energy based on contact information alone.
This surrogate measure is simple and quantifies the evolving
local cycle topology of a network node—using the exact local
cycle basis topology [44] or the network spectral property of
subgraph centrality [45]. We demonstrated that the temporal
and spatial evolution of failure zones and possible sites of force
chain buckling can be identified using this surrogate measure,
leading to the possibility of the same phenomena being
pinpointed in sand samples without the need for measurements
on contact forces.

Ongoing efforts are focused on the application of this
method to characterize the propagation of failure in both
2D and 3D systems for a range of real materials (e.g.,
sand, synthetic materials comprising photoelastic disks, and
hydrogel spheres), as well as in grain simulations. More
accurate methods to prise the essential processes governing
the spatial and temporal propagation of energy calls for
directionality (i.e., the capability to distinguish loading-up
verses off-loading of stored energy at contacts). This suggests

an approach along the lines of a Perron-Frobenius eigenvalue
calculation using different cycle vectors and matrices which
capture the evolution of probabilities. This is beyond the scope
of the present formalism but is currently under investigation.

Finally, it is interesting to compare the systems studied
here comprising spherical particles (confined to move in a
plane) with the assemblies in Azema et al. [50] comprising
polyhedral particles. In the latter, the influence of contact
topology or fabric is more subdued. This is due to the
faceted particles forming highly stable, edge-to-edge contacts.
These contacts can build up much higher forces and, in turn,
store larger amounts of potential elastic energy than would
otherwise be possible for near-point contacts in assemblies of
spherical particles or circular disks. We therefore expect the
current metric which solely focuses on contact topology to
be less effective for systems comprising irregularly shaped
or elongated faceted particles that can form highly stable
contacts. For these systems, we envisage a different network
and possibly a new network metric, which takes into account
both contact topology and contact shape. One way to do this
is to consider a weighted contact network, where the weight
assigned to each link depends on the associated area of contact,
keeping in mind that the links in the network represent the
contacts between the particles in the granular sample.
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