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Jamming by shape in kinetically constrained models
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We derive expressions for the critical density for jamming in a hyper-rhomboid system of arbitrary shape in
any dimension for the Kob-Andersen and Fredrickson-Andersen kinetically constrained models. We find that
changing the system’s shape without altering its total volume or particle density may induce jamming. We also
find a transition between shapes in which the correlation length between jammed particles is infinite and shapes
that have a finite correlation length.
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I. INTRODUCTION

Increasing the density of particles in granular materials
causes them to undergo a transition from an unjammed state,
in which the particles can move relatively freely, to a jammed
state, in which almost none of the particles can move [1–4].
Systems of interest in nature and in industrial applications
typically have complicated geometries which strongly affect
jamming in them [5–8], and it is thus important to understand
how confinement influences the jamming of granular matter.
Here we investigate the effects of confinement on the jamming
transition, and in particular test how the shape of containers,
and not only their volume, determines how they jam. Most
theoretical work so far was done on square and cubic systems,
or even in the infinite system size limit [9–14].

There are numerous laboratory experiments that deal with
nonsquare two-dimensional systems [15–18]. For example,
Daniels and Behringer conducted an experiment on polypropy-
lene spheres in an annulus [19], which is large enough to be
considered a rectangle with infinite length and finite width.
A different experiment by Bi et al. [20] consists of shearing
a square system such that it becomes a rectangle with the
same area and particle density as the original square. Other
experiments, such as [21–24], considered colloids confined
between quasiparallel plates.

In this paper we examine the effects of confinement
on jamming by studying these phenomena in kinetically
constrained models in d-dimensional hyper-rhomboids. The
essence of jamming is captured by the various kinetically
constrained models [25–42]. Such simple models, and other
related models [43–54], have exact solutions, which help us
to obtain deep insights into the physical processes responsible
for the corresponding phenomena in real systems.

A. Models

We consider the Kob-Andersen (KA) [55] and Fredrickson-
Andersen (FA) [56,57] models on hypercubic lattices of
arbitrary dimension d. The system is confined to a hyper-
rhombus of size L1 × · · · × Ld , such that Li � Li+1 for all
1 � i � d − 1. In the KA model each site may be occupied by
at most one particle, and a particle can move to a neighboring
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vacant site if it has at least m neighboring vacancies before and
after the move. In the FA model a site can change its state from
occupied to vacant or vice versa if it has at least m neighboring
vacancies. If m = 1, then even a single vacancy can facilitate
the movement of the entire system, and thus all the particles
can move eventually regardless of the system’s shape or size.
If m is less than or equal to the system’s dimension d, there
are no frozen particles in an infinite system. However, if at
least d − m + 1 of the system’s sides are of finite size, there
is a finite probability that there will be a frozen structure
spanning the system from one edge to the other. If m is
larger than the system’s dimension, consider a completely
occupied d-dimensional small hypercube inside the system.
Each particle in this hypercube has at most d neighboring
vacancies and so will never move. Hence, there is always a
finite fraction of frozen particles even for an infinite system.
Moreover, these frozen particles are not necessarily connected
to the system’s edges and can be “free floating” in the middle,
and we do not refer to this situation as jammed. In general,
there is a finite probability for having frozen particles as long
as at least d − m + 1 of the rhomboid’s sides are finite.

For infinite systems, the critical density is the density at
which the fraction of frozen particles is singular [31–33].
Although no real phase transition occurs in finite systems, there
is a crossover transition between an almost unfrozen regime,
in which almost all of the particles on average are unfrozen, to
a frozen regime, in which almost all the particles are frozen.
We use the average fraction of frozen particles, nF , as the
order parameter, and define the critical density as the density
at which on average half of the particles are frozen, nF = 1/2.
With hard-wall boundary conditions, our order parameter can
be thought of as a point-to-set correlation function [58,59],
because it measures the probability that a particle is frozen
given that the outside edges of the system are blocked.

Balogh et al. showed that for the FA model in a hypercube
with Li = L, the critical vacancy density is [60]

vd,m =
(

λd,m

ln(m−1) L

)d−m+1

, (1)

where ln(k)(x) = ln{ln[· · · ln(x) · · · ]} is the ln function iterated
k times,

λd,m =
∫ ∞

0
gm−1(zd−m+1)dz, (2)
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and

gk(z) = − ln

[
1 − e−kz +

√
(1 + e−kz)2 − 4e−(k+1)z

2

]
. (3)

In particular, for d = 2, the only nontrivial case is m = 2, for
which

v2,2 = λ2,2

ln L
,

(4)

λ2,2 = π2

18
≈ 0.5483 . . . ,

and for d = 3, both m = 2 and m = 3 are nontrivial, with

v3,2 =
(

λ3,2

ln L

)2

, v3,3 = λ3,3

ln ln L
(5)

λ3,2 = 0.9924 . . . , λ3,3 = 0.4039 . . . .

This is correct only asymptotically for very large systems.
For finite systems, there is some effective value of λd,m which
converges to these values for extremely large L [61]. In what
follows, whenever λd,m appears, it should be understood as
this effective λd,m.

Although for m � d the critical vacancy density in the
thermodynamic limit (L → ∞) is vc = 0, it is still important
to know the effects that the size and shape of the system
have on vc, since real and simulated systems are of finite
size and can be of different shapes. It is also interesting to
investigate systems which are infinite or very large in some
directions and finite or small in other directions, such as very
long tunnels that have a finite width. In [62] we investigated
two-dimensional rectangular systems in the m = 2 FA and KA
models, and found that the critical vacancy density in infinitely
long tunnels with a finite width W scales as v2,2 ∝ 1√

W
, which

is qualitatively different from vc ∝ 1/ ln L for square systems
in Eq. (4). Here, we expand our previous work by considering
d-dimensional hyper-rhomboids with any 1 < m � d.

B. Outline

In this work we distinguish between weak confinement
and strong confinement, depending on the number of ef-
fective dimensions of the hyper-rhomboid, deff . A tunnel,
for example, has one effective dimension, deff = 1, while
a three-dimensional (3D) system confined between closely
separated parallel walls has deff = 2. Consider a system in
which deff of its sides are infinite, and the other s = d − deff

sides are finite. If deff � m, then none of the particles in
the system are frozen, while if deff < m a finite fraction of
the particles is frozen. When the system is of finite size, its
critical density is mainly governed by the size of the largest
deff dimensions if deff � m, or by the size of the smallest s

dimensions if deff < m. Hence, we define a weakly confined
system as a system with deff � m (since the confinement in
the s small dimensions has only a weak effect), and a strongly
confined system as a system with deff < m.

A weakly confined system is characterized by long-range
correlations. By making a small, local change in the configu-
ration, the entire system can change from being unjammed
to jammed and vice versa. In a strongly confined system,

the correlations are short ranged. There are clusters of frozen
and unfrozen particles, such that a small local change in the
configuration may change the state of the local cluster, but not
of the entire system.

We also find analytical expressions for the critical density
for different hyper-rhomboids. By changing the system’s
shape, but not its total volume or particle density, the critical
density also changes, such that it may be above the particle
density for some shape but below it for a different shape.
Hence, a system may jam and/or unjam by changing only its
shape.

The remainder of this article is organized as follows. In
Sec. II we analyze the critical densities for hyper-rhomboids.
We present here a derivation of the critical density for three-
dimensional systems, and reserve the derivation for general
dimensions for Appendix C. In Sec. III we show how changing
the shape of a system induces jamming by studying the
m = 2 model in three-dimensional rhomboids. In Sec. IV we
study the correlation between frozen sites in strongly confined
three-dimensional systems in the m = 3 model. Section V
summarizes our work.

II. CRITICAL DENSITY

In this section we show the derivation of the critical
density for d-dimensional rhomboids in any m � d. We first
present a sketch of the derivation, and later show the full
details. Those not interested in the more technical details
can read only the beginning of this section and skip the
subsections. A detailed derivation of the critical density for
general dimensions appears in Appendix C.

Consider first a special case of weakly confined systems,
namely, hypercubes. The system is unfrozen if it contains at
least one critical droplet, which is a small unblocked region
that can cause the entire system to become unblocked [63].
We denote the probability that a site is part of a critical droplet
which unblocks a hypercube of size Ld by P [L × · · · × L].
The average number of sites which seed a critical droplet is thus
LdP [L × · · · × L]. The system is unfrozen when it contains
at least one critical droplet. Therefore, the critical density is
found by solving the equation

1 = LdP [L × · · · × L] . (6)

Holroyd [63] showed that for two-dimensional systems with
m = 2 the probability of seeding a droplet is

P [L × L] = exp[−2λ2,2/ (1 − ρ)], (7)

where λ2,2 is given in Eq. (4) above. Thus Eq. (1) is retrieved
for the two-dimensional square with m = 2. Balogh et al. [60]
used the same idea for d-dimensional hypercubes in any m � d

to derive Eq. (1) for hypercubes in any dimension.
The main idea is to start from a very small unblocked

region and try to expand it isotropically in all directions by
checking if the sites adjacent to the unblocked region satisfy
some condition (which depends on d and m). Therefore,
the most probable shape that a droplet can unblock is a
hypercube. However, other shapes, as long as they are not
too deformed, can also be unblocked by a single droplet,
because the system’s edges do not impede the expansion of
the droplet. We show below (for d = 3) and in Appendix C
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(for d > 3) that for weakly confined systems (deff � m), if
there is a critical droplet, it will unblock the entire system
with high probability. The implication of this is that if a
particle is frozen, there is no critical droplet, and thus the
other particles in the system are highly likely to be frozen as
well. Hence, the correlation between frozen particles spans
the entire system, no matter its size. By calculating the
probability that a particle in a hyper-rhomboid is part of a
critical droplet, P [L1 × · · · × Ld ], and solving the analog to
Eq. (6):

1 = V P [L1 × · · · × Ld ] , (8)

where V is the volume of the system, we find the critical
vacancy density

vweak
c = 1

Vs

(
λdeff ,m

ln(m−1) V 1/deff

)deff−m+1

, (9)

where s = d − deff and

Vs =
s∏

i=1

Li (10)

is the volume associated with the small dimensions. Except for
the prefactor of 1/Vs , the critical density is the same as for a
hypercube with deff dimensions. Note that for weakly confined
systems the critical density depends on the ratios between the
lengths Li only via the number of effective dimensions. This
means that as long as the hyper-rhomboid is not too deformed,
its critical density is equal to the critical density of a hypercube
of equal volume.

As will be explained in Secs. II A and II B, due to the way
the droplet is constructed and expanded, it needs at least m

dimensions in order to expand indefinitely. Therefore, in a
strongly confined system (deff < m), the system’s edges block
the expansion of the critical droplet, and thus each droplet
unblocks only part of the system. These unfrozen clusters have
a characteristic size ξ , and we assume that at the critical density
the frozen and unfrozen clusters have the same characteristic
size. The critical density is found by evaluating the density at
which half of the clusters contain a droplet, i.e., by solving the
equation

1
2 = VclusterP [cluster] , (11)

where Vcluster is the volume of a typical cluster and
P [cluster] is the probability that a site will seed a criti-
cal droplet that unblocks the cluster. The solution to this
equation is

vstrong
c ∼ [ln(m−2)V

1/(d−t)
s

]−d+t+m−1
, (12)

where t is the number of very small dimensions (for example,
a 3D system with L3 � L2 � L1 has s = 2 and t = 1), and
ln(0) x ≡ x. This expression is similar to the critical density
of a weakly confined system with d − t − 1 dimensions in an
m − 1 model. In effect, the strong confinement removes one
degree of freedom.

It is important to note that the value of the parameter λ given
in Eq. (2) is valid only for very large systems. For m = 2 in
d = 2 it is well known that even for the largest systems that
have been simulated (L ≈ 105) λ2,2 is equal to roughly half
of its asymptotic value [61,64]. By considering other ways to
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FIG. 1. (Color online) The effective values of λ3,2 = √
vc ln L for

cubes of size L3 (a) and of λ2,2 = vc ln L for squares of size L2

(b) in the KA (blue squares) and the FA (red circles) models. The
values of λ in the sizes sampled are far from their asymptotic values
of λ3,2 ≈ 0.99 and λ2,2 ≈ 0.54, and they appear to behave as ∼ln L.

expand the droplet, Gravner and Holroyd [61] evaluated the
asymptotic corrections to this value, and estimated that systems
as large as L = 1020 would be needed to observe convergence
in the numerical value of λ2,2. Here we see a similar behavior
for d = 3.

Figure 1 shows the effective value of λ3,2 = √
vc ln L in

cubes of size L3 and of λ2,2 = vc ln L in squares of size
L2. Under our current computational limits (Ld � 109, which
requires 30 Gbytes of memory), the effective λ3,2 has a value
of approximately 0.45 in the KA model and 0.42 in the FA
model, far from its asymptotic value of ≈0.99. However, it is
clear that it grows with L. Theoretically, the value of λ for both
models should be the same. The added constraint in the KA
model reduces the probability of unblocking the entire system,
and thus increases λ, and this effect is non-negligible in small
systems. Figure 2 shows the critical vacancy density and the
effective λ3,3 for cubes of different sizes in the m = 3 model.
Similarly to the m = 2 model, the effective λ is far from its
asymptotic value of 0.4.

In order to find the critical densities numerically, we first
calculated the fraction of frozen particles, nF , for many
densities. The critical density was estimated by a linear
interpolation between the two densities for which nF was the
closest to 0.5. For each density, nF was calculated as an average
over several thousands of random configurations, such that the
relative error in the critical vacancy density δvc/vc is 1% or
lower.
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FIG. 2. (Color online) The critical vacancy density vc (a) and
the effective λ3,3 = vc ln ln L (b) for three-dimensional cubes as a
function of the cube size L in the m = 3 model. The effective λ3,3 is
far from its asymptotic value of 0.4.

A. Derivation of the critical density for the m = 2 model

In this section we first sketch the derivation of Eq. (1) given
in [60] for hypercubes in arbitrary dimensions for the m = 2
model. For simplicity we give it here for three dimensions.
The generalization to higher dimensions is straightforward.
We will then consider three-dimensional rhomboids.

1. Cubes

When m = 2, a cube (L1 = L2 = L3 ≡ L) is either com-
pletely unfrozen or almost completely frozen. The system can
become unfrozen if it contains at least one critical droplet.
We denote the probability that a site is part of a critical
droplet which unblocks a system of size L × L × L by
P [L × L × L]. The average number of sites which seed
a critical droplet is thus L3P [L × L × L]. The system
is unfrozen when it contains at least one critical droplet.
Therefore, the critical density is found by solving the equation

1 = L3P [L × L × L] . (13)

In order for a site to be in a critical droplet, we first consider
a small 2 × 2 × 2 cube and randomly choose one of the eight
3 × 3 × 3 cubes that contain it. We then check whether this
3 × 3 × 3 cube is frozen or not. We want to continue this
process to a 4 × 4 × 4 cube and so on until the entire system
is unfrozen. The original 2 × 2 × 2 cube is a critical droplet
only if it is possible to expand it to the system’s size. Assume
that we now want to check whether a box of size (l + 1) ×
(l + 1) × (l + 1) is frozen or not. The probability that it is not
frozen is P [(l + 1) × (l + 1) × (l + 1)]. We start from a cube

(a) (b) (c) (d) (e)

FIG. 3. (Color online) An example of the expansion of a critical
droplet in d = 2. We start from panel (a) with a 3 × 3 system. The
particles shown in green (gray) are unfrozen, and the black particles
are those that either are blocked at that stage of the expansion or
are newly considered. Now, expand it to the right (b). The rightmost
column is not full, and the 3 × 2 rectangle is unfrozen. This means
that the 3 × 3 square satisfies the second condition, and the 3 × 4
rectangle is unfrozen (c). We now expand it one row upwards (d). The
top row is not full, which means that the first condition is satisfied,
and thus the entire 4 × 4 square is unfrozen (e).

of size l × l × l and expand it in three steps: first to a rhomboid
of size l × l × (l + 1), then to l × (l + 1) × (l + 1), and lastly
to (l + 1) × (l + 1) × (l + 1). In the first step, the rhomboid is
unblocked if one of two disjoint conditions occur: either the
l × l × l box is unblocked and the added side is not full, or the
l × l × (l − 1) rhomboid is unblocked, the sites in the side of
the l × l × l box but not in the l × l × (l − 1) rhomboid are all
occupied, and the added side of the l × l × (l + 1) rhomboid
is not full. See Fig. 3 for an illustration of the expansion
process in two dimensions. Hence P [l × l × (l + 1)] satisfies
the equation

P [l × l × (l + 1)] = P [l × l × l] (1 − ρl2
)

+P [l × l × (l − 1)] ρl2
(1 − ρl2

),

(14)

where ρ is the particle density.
The assumption that these probabilities have the form

P [l1 × l2 × l3] =
l1∏

l=1

β(l2)
l2∏

l=1

β(l2)
l3∏

l=1

β(l2) (15)

yields

P [l × l × (l + 1)] = P [l × l × (l − 1)] β[(l + 1)2]β(l2)

(16)

and

P [l × l × l] = P [l × l × (l − 1)] β(l2). (17)

Using this assumption in Eq. (14) yields

β[(l + 1)2]β(l2) = (β(l2) + ρl2
)(1 − ρl2

). (18)

Further assuming that for large l, β depends weakly on it,
namely, β[(l + 1)2] ≈ β(l2) in Eq. (18), we have a quadratic
equation for β with the solution

β(l2) = 1 − ρl2 +
√

1 + 2ρl2 − 3ρ2l2

2
. (19)

The other two steps of the rhomboid expansion yield similar
equations for β. By assuming that β depends weakly on l for
large l, the solution of these two equations is the same as in
Eq. (19).
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Therefore, the probability that a certain site is part of a
critical droplet, i.e., that it can unblock the entire system, is

P [L × L × L] =
[

L∏
l=1

β(l2)

]3

= exp

[
3

L∑
l=1

ln β(l2)

]
.

(20)

Since the critical density in an infinite system is 1 and
the critical density in finite systems is close to 1 we can
approximate ρl2

by

ρl2 ≈ exp[−vl2], (21)

where v = 1 − ρ is the vacancy density. For large enough
L (L � 10), the value of the probability P [L × L × L],
calculated via Eq. (20), is very close to the probability of
expanding the droplet to infinity, P [∞ × ∞ × ∞] as shown
in Fig. 4, so we can use the latter even for finite systems.

Changing the summation in Eq. (20) to an integration over
z = √

vl yields according to the Euler-Maclaurin formula

P [∞ × ∞ × ∞]

≈ exp

{
3
∫ ∞

√
v

ln

[
β

(
z2

v

)]
dz√

v
+3

2
[ln β(∞) + ln β(1)]

}

= exp

{
3
∫ ∞

√
v

ln

[
β

(
z2

v

)]
dz√

v
+ 3

2
ln β(1)

}
. (22)

Taking the limit v 
 1 yields

P [∞ × ∞ × ∞] = exp

{
−3
[
λ3,2 + √

v
(

ln v
4 − 1

)]
√

v

}
,

(23)

where

λ3,2 = −
∫ ∞

0
ln

(
1 − e−z2 +

√
1 + 2e−z2 − 3e−2z2

2

)

≈ 0.9924. (24)

Using this result in Eq. (13) yields Eq. (2). The transition from
the sum to the integral is valid for very small v and large L as
shown in Fig. 4.

2. Three-dimensional rhomboids: Weak confinement

We now assume that the three length scales L1 � L2 � L3

are not necessarily equal. We repeat the derivation of the
critical droplets, such that the critical density is found from
the relation

1 = L1L2L3P [L1 × L2 × L3] . (25)

We assume that the form of P is

P [L1 × L2 × L3] =
L1∏
l=1

β3(l2)
L2∏

L1+1

β2(L1l)
L3∏

L2+1

β(L1L2).

(26)

The derivation of the expansion of the critical droplets is the
same as in cubes until l = L1. At that point, we can expand the
rhomboid in only two directions and the size of the third side is
fixed to be L1. Then, when l = L2, we can expand in only one
direction and the sizes of the other two sides are L1 and L2.

(a)
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FIG. 4. (Color online) (a) The relative difference between P ′ =
P [1000 × 1000 × 1000] and P = P [L × L × L] for L = 10 (dot-
ted red) and L = 30 (dashed green) as a function of the vacancy den-
sity v, and (b) a comparison between the sum −√

v
∑L

l=1 ln β(l2) =
−(

√
v/3) ln P [L × L × L] and the integral in Eq. (24), λ3,2 +√

v[(ln v)/4 − 1], as a function of the vacancy density v for different
sizes. The black continuous line is λ3,2 + √

v[(ln v)/4 − 1]. The
symbols mark the critical density for L = 10 (red circle, vc ≈ 0.029),
L = 30 (green square, vc ≈ 9,912), and L = 100 (blue triangle,
vc ≈ 0.007). The relative difference is very small at the critical va-
cancy density (vc ≈ 0.029 for L = 10 at which the relative difference
is 0.0003 and vc ≈ 0.012 for L = 30 at which the relative difference is
3 × 10−10). For a given L, λeff is very close to λ3,2 + √

v[(ln v)4 − 1]
until a certain value of the density where it drops rapidly. It is clear
that for each L, around vc the approximation is valid.

Therefore, when l � L1, P satisfies the same equation as in a
cube, Eq. (14), and the function β is given by Eq. (19). When
L1 < l � L2 and L2 � l � L3, the probability P satisfies
similar recursion relations, such that in all three cases

β(x) = 1 − ρx +
√

1 + 2ρx − 3ρ2x

2
. (27)

In order to find the critical density we use Eqs. (26) and (27)
in Eq. (25),

0 = ln V + 3
L1∑
l=1

ln β(l2) + 2
L2∑

l=L1+1

ln β(L1l)

+
L3∑

l=L2+1

ln β(L1L2), (28)
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where V = L1L2L3 is the volume of the system. We now
change the first two sums to integrals over z = √

vl and
z = vL1l, respectively, and calculate the third sum explicitly,

0 = ln V − 3√
v

∫ √
vL1

√
v

g1(z2)dz − 2

vL1

∫ vL1L2

vL1(L1+1)
g1(z)dz

+ (L3 − L2) ln β(L1L2). (29)

We assume that v is sufficiently small such that the lower
limit of the first integral can be taken to zero. If L3 is not too
large compared to L1 and L2, we can neglect the third term.
Assuming again that L1 and L2 are large enough this last
condition can be written as

L3 
 ln−1 β(L1L2) ≈ exp [2vL1L2] . (30)

For now, we assume that it is satisfied, and thus implicitly
assume that L2 ≈ L3, i.e., that the system has at least
deff � 2 = m and so is weakly confined. The case when this
condition is not satisfied, and thus the system is strongly
confined, is dealt with in the next section.

We now look at vL2
1 and vL1L2. If L1 is large enough that

vL2
1 � 1, the system behaves as a cubic system, since L1 is

large enough to be considered similar to L2. If vL2
1 is small

but vL1L2 is large, then the system behaves as a quasiplanar
system. The third option, that vL1L2 
 1, cannot exist near
the critical density under the assumption that L2 ≈ L3.

If
√

vL1 � 1, the upper limit of the first integral can be
taken to be ∞ and the second integral can be neglected. Thus,
the equation for the critical density is

0 = ln V − 3λ3,2√
v

, (31)

and the solution is

vbulk
c =

(
3λ3,2

ln V

)2

. (32)

Note that in a cube V = L3, and so we retrieve Eq. (1) for
m = 2 in three-dimensional systems. This result means that in
the bulk regime, the ratio between the different length scales
is unimportant, and the only relevant quantity is the system’s
volume.

If
√

vL1 
 1, the first integral can be neglected and the
limits of the second integral can be taken to be 0 and ∞

0 = ln V − 2λ2,2

vL1
, (33)

such that the critical density is

vQP
c = 2λ2,2

L1 ln V
, (34)

which is similar to the behavior of a bulk two-dimensional
system,

v2D
c = 2λ2,2

ln V
. (35)

We will now consider what happens when L3 is very large,
such that L3 � exp [2vL1L2].

3. Strong confinement

When L3 � exp [2vL1L2], we cannot use the notion of
critical droplets as is, but must first note that the tunnel is di-
vided into independent sections, similarly to two-dimensional
systems [62]. We note that if two or more adjacent planes lying
in the short directions are completely occupied, then they are
permanently frozen. We call w (w � 2) adjacent full planes a
wall of width w. Between each two walls there are a number of
planes, which do not contain two or more adjacent occupied
planes, and we call these planes a section of length l. Each
section is independent of the others, i.e., its state (whether it
is frozen or not) is independent of the configuration of the
other sections. We assume that each section behaves as a bulk
system of size L1 × L2 × l, and take the average value of l

as a representative for the whole system. Using combinatorial
calculations very similar to those detailed in [62], we find that
the relative probability of finding a section of length l is

Q(l) = 1 − ρL1L2√
1 + 2ρL1L2 − 3ρ2L1L2

[βl
+ − βl

−], (36)

with

β± = 1 − ρL1L2 ±
√

1 + 2ρL1L2 − 3ρ2L1L2

2
. (37)

The average section length in the L3 direction is

〈l3〉 =
∑∞

l=1 Q(l)l∑∞
l=1 Q(l)

= ρ−2L1L2 + ρ−L1L2 − 1

≈ ρ−2L1L2 ≈ exp [2vL1L2] . (38)

Hence, the division into sections is valid if L3 > 〈l3〉.
We can now consider a system of size L1 × L2 × 〈l3〉,

which behaves as either a bulk system or a quasiplanar system.
If it behaves as a bulk system, i.e.,

√
vL1 � 1, the critical

density satisfies the equation

vtunnel
c =

(
3λ3,2

ln (L1L2 〈l3〉)
)2

, (39)

which is equivalent to the following cubic equation on
√

vc:

ln (L1L2)
√

vc + 2L1L2v
3/2
c − 3λ3,2 = 0. (40)

In the limit L1L2 � [ln (L1L2)]3, the solution to this equation
is

vtunnel
c =

(
3λ3,2

2L1L2

)2/3

. (41)

If the section behaves as a quasiplane, i.e.,
√

vL1 
 1, the
system is a quasitunnel (QT), the critical density satisfies the
equation

vQT
c = 2λ2,2

L1 ln (L1L2 〈l3〉) , (42)

and the solution is

vQT
c =

√
16L2

1L2λ2,2 + L2
1 ln2 (L1L2) − L1 ln (L1L2)

4L2
1L2

≈
√

λ2,2

L2
1L2

. (43)
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If 〈l3〉 > L2 then there are no more divisions, since the
section is built such that it is not divided further. However,
if 〈l3〉 < L2, then a priori it may be that L2 is so large
that the section is again divided into subsections in the L2

direction similarly to what was done before. In Appendix A
we show that in fact the section is not divided into smaller
subsections.

B. Critical density in the m = 3 model

We now turn to the m = 3 model, which is always jammed
for d = 2 but not for d � 3. We first rederive the critical density
for 3D cubes of size L × L × L [60], again using the notion
of critical droplets.

Consider an unblocked cube of size L × L × L. The cube
can be expanded if the layers adjacent to its sides satisfy some
condition which allows them to be unblocked. To construct
these conditions, consider a system composed of two 2D
layers, each layer of size L × L. These layers correspond to
the layers adjacent to one side of the cube. A particle on the
bottom layer (the one closer to the original cube) can become
unblocked if it has at least two neighboring vacancies in the two
layers, and a particle on the top layer can become unblocked
if it has at least three neighboring vacancies. This is similar
to the 2D case with m = 2, so we again use the notion of a
critical droplet inside the two layers. An empty rhombus of
size l × l × 2 can be expanded in one direction if one of two
conditions is satisfied, similarly to the m = 2 case: (1) At least
one site in the two rows (the one on the top and the one on the
bottom) adjacent to the square is empty, or (2) at least one site
in the next-to-nearest bottom row is empty. Figure 5 illustrates
these conditions.

(a)Top layer

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y

(b)Bottom layer

FIG. 5. An example for the two layers above the empty cube.
Black squares are occupied and white squares are empty. The 3 ×
3 × 2 rhombus depicted here can be expanded in three of the four
possible directions. The rhombus can be expanded in the positive
y direction, because its top layer has an adjacent vacancy in that
direction in site (4,6). It can be expanded in the positive x direction,
because its bottom layer has a vacancy in the next-to-nearest column
in site (7,3). It can be expanded in the negative x direction, because
its bottom layer has a vacancy adjacent to it in site (2,5). It cannot be
expanded in the negative y direction, because its top layer does not
have an adjacent vacancy, it only has a vacancy in the next-nearest
row at site (4,1), which is not enough.

Therefore, assuming that the probability of a rhombus of
size L × L × 2 to be emptyable is

P2(L × L) =
L∏

l=1

β2
3 (l), (44)

we find that the function β3(l) satisfies the recursion relation

β2
3 (l) = (1 − ρ2l)β3(l) + ρ2l(1 − ρl), (45)

and is thus equal to

β3(l) = 1 − ρ2l +
√

(1 + ρ2l)2 − 4ρ3l

2
. (46)

The face of the cube can be expanded if at least one of the
sites on the two layers adjacent to it is a critical droplet. The
entire cube can be expanded if it can be expanded in all three
directions. Hence, the probability that a cube can be expanded
to size L × L × L is

P3(L × L × L)

=
L∏

l=1

⎡
⎣1 −

(
1 −

l∏
k=1

β2
3 (k)

)2l2⎤
⎦

3

= exp

(
3

L∑
l=1

ln

{
1 −

[
1 − exp

(
2

l∑
k=1

ln β3(k)

)]2l2} )
.

(47)

Changing the sums to integrals and taking the upper limit to
∞ yields

P3(L × L × L) ≈ exp

[
−3μ exp

(
λ3,3

v

)]
, (48)

where

μ = −
∫ ∞

0
ln[1 − exp(−2z2)]dz ≈ 1.6. (49)

See Appendix B for the full details.
The critical density is found from the equation

1 = L3P3(L × L × L) ⇒ vc ≈ λ3,3

ln ln L
. (50)

Strong confinement in 3D rhomboids

In order to estimate the critical density in quasiplanes
we consider the typical size of the unfrozen clusters. We
consider only square clusters and assume that averaging over
all possible shapes is the same as averaging over squares.
Similarly to the m = 2 case in 2D, we assume that the relative
probability of clusters of size l2 is the probability of expanding
a critical droplet to size L1 × l × l. We now fix L1 and
take L2 and L3 to infinity, and expand a droplet. Up to size
L1 × L1 × L1, the expansion is the same as in a bulk system.
After that, the droplet can be expanded in only two directions,
and each side of the rhomboid is of size L1 × l. The probability
that each side is unblocked is βl

3(L1), where β3 was defined in
Eq. (46). However, the side of the rhomboid may be divided
into subsections, similarly to the division of subsections in
the m = 2 model in two dimensions, by walls consisting of
two or more adjacent full walls of size L1 × 2. The average
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length of these subsections is ≈ρ−4L1 , and above that length
some of the sites in the rhomboid’s side are very likely to
be frozen. Therefore, the characteristic size of the sections is
L1 × ρ−4L1 × ρ−4L1 . Note that this characteristic size does not
depend on λ3,3. The critical density is found from the equation

vQP
c ≈ λ3,3

ln ln L1ρ
−8L1
c

≈ λ3,3

ln (ln L1 + 8L1vc)
. (51)

In the limit of 8L1vc � ln L1, the solution is

vQP
c = 1

W0(8λ3,3L1)
≈ 1

ln(8λ3,3L1)
, (52)

where W0 (x) is the product-log function [65].
When the system is confined to a tunnel, the side of the

rhomboid is not divided into subsections, because it is of
constant size L1 × L2. In that case, the tunnel is divided into
sections by walls, which are one or more adjacent planes
of size L1 × L2 that are frozen. Assuming that L1 and L2

are large enough, the probability that a plane is frozen is
1 − exp[−L1L2 exp(−2λ3,3/v)]. This is very similar to a
tunnel in the m = 2 model in which the probability that a
plane is frozen is 1 − ρL1L2 ≈ 1 − exp(−vL1L2). Therefore,
we can use the known results for tunnels in m = 2 and replace
v with exp(−λ3,3/v). The average section length is

〈l〉 ≈ exp[L1L2 exp(−2λ3,3/v)]. (53)

The critical density is found from the equation

vtunnel
c ≈ λ3,3

ln ln (L1L2 〈l〉) , (54)

and thus

vtunnel
c ≈ 3λ3,3

ln (L1L2)
. (55)

III. JAMMING BY SHAPE IN 3D RHOMBOIDS
IN THE m = 2 MODEL

In this section we show how changing only the shape of the
system can change its behavior and induce jamming. Although
we show this only for three-dimensional systems in the m = 2
model, the conclusions are valid for any dimension and any m.

We focus on four possible relations between the three length
scales L1,L2, and L3. If L1 ≈ L2 ≈ L3 the system behaves as
a cubic (bulk) system. If L1 
 L2 ≈ L3 we call the system
a quasiplanar (QP) system. If L1 ≈ L2 
 L3 the system is
a tunnel. If L1 
 L2 
 L3 we call the system a quasitunnel
(QT). The critical vacancy densities in the four regimes are
given by (see Sec. II A)

vbulk
c =

(
3λ3,2

ln V

)2

, vQP
c = 2λ2,2

L1 ln V
,

(56)

vtunnel
c =

(
3λ3,2

2L1L2

)2/3

, vQT
c =

√
λ2,2

L2
1L2

.

Bulk (deff = 3) and QP (deff = 2) systems are weakly
confined, while tunnels (deff = 1,t = 0) and QT (deff = 1,

t = 1) systems are strongly confined. As noted before, a
strongly confined system is divided into clusters. In the
m = 2 model, we call these clusters sections, as they behave

somewhat differently than do clusters in the m > 2 models.
Only in the m = 2 model are the sections independent of each
other, in the manner that the state of a section (whether it is
frozen or not) is completely independent of the state of the
neighboring sections. These sections are separated by at least
two adjacent fully occupied planes perpendicular to the long
direction.

By changing the different length scales L1,L2,L3 for fixed
volume V = L1L2L3, the system crosses over between the
different regimes. For example, by changing the value of L1,
the system will cross over from bulk behavior to quasiplanar
behavior. This transition occurs when the critical density
satisfies both the bulk equation and the QP equation. Equating
the two yields the crossover length for L1:

L
bulk-QP
1 = 2λ2,2

9λ2
3,2

ln V. (57)

Similarly, by decreasing L3, the system will change from
a tunnel into a bulk system or from a quasitunnel into a
quasiplane. By equating the relevant expressions for the critical
density we find that the crossover length is

Lbulk-tunnel
3 = exp

[(
18λ2

3,2L1L2
)1/3]

L1L2
. (58)

In Sec. II A, we showed that the average section size is equal
to Lbulk-tunnel

3 . Hence, the transition between bulk and tunnel
occurs at the point where the system contains on average one
section. The third crossover length is between tunnels and
quasitunnels,

L
QT-tunnel
1 =

(
2λ

3/2
2,2

3λ3,2

)2√
L2. (59)

To show this behavior graphically, we define the three
following parameters describing the shape of the system:

q1 =
(

9λ2
3,2

2λ2,2

)3
L3

1

ln3 V
,

q2 =
(

9λ2
3,2

4λ3
2,2

)2
L2

1

L2
, (60)

q3 = 18λ2
3,2

L1L2

ln3 V
,

such that q1 > 1 implies L1 > L
bulk-QP
1 , q2 > 1 implies

L1 > L
QT-tunnel
1 , and q3 > 1 implies L3 < Lbulk-tunnel

3 . Also, we
note that q2q3 = q1/λ

3
2,2. Therefore, the state of the system

can be determined by any two of the three parameters q1,q2,
and q3, as shown in Fig. 6.

As each regime has a different critical density, by changing
the system’s shape but not its volume or density, a system
may become jammed if the density was lower than the critical
density at the original shape, but higher than the critical density
at the new shape. Consider a system of size W × L × L and
define the aspect ratio r = L/W . The system has constant
volume V = WL2 and constant density, ρ. By changing the
aspect ratio between 0 and ∞ the system changes from a tunnel
(r 
 1) to a bulk system (r ≈ 1) and to a quasiplane (r � 1).
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QT Tunnel

QP Bulk
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q 3

FIG. 6. (Color online) Phase diagram of the four possible states
of a 3D system (bulk, QP, tunnel, and QT), as a function of
the two shape parameters q2 = (9λ2

3,2/4λ3
2,2)2(L2

1/L2) and q3 =
18λ2

3,2L1L2/ln3 V .

These transitions can be seen in Fig. 7, where the aspect ratio is
changed in a system of volume V = 106 and density ρ = 0.99.
This density was chosen so that the bulk system is unjammed,
but the tunnel and quasiplanar systems are jammed. In the
KA model in the bulk, the chosen density is very close to the
critical density ρ ≈ ρc and so nF ≈ 0.2 and not 0 or 1. Even
near ρc, nF does not change much with r and depends only on
V as long as the system is in the bulk regime. Fluctuations in
nF appear since V is not exactly the same for all aspect ratios,
but varies from V = 994 194 at L = 171 to V = 1 011 240 at
L = 159, since the system must be a rhomboid.

In general, for a given volume V and density ρ there are four
possible behaviors: (1) neither a tunnel, nor a 2D plane, nor a
cube is jammed; (2) a tunnel is jammed, but not a plane or a
cube; (3) a tunnel and a plane are jammed, but not a cube; (4) all

q2

q1

q3
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n F q

FIG. 7. (Color online) Average fraction of frozen particles nF

and the three q parameters vs aspect ratio r = L/W for a system
of constant volume V = WL2 = 106 and particle density ρ = 0.99.
The thick lines are nF for the KA (blue solid line) and FA (purple
dashed line) models, while the thin lines are the q1 (red dashed), q2

(green solid), and q3 (blue dotted) parameters. The system changes
from tunnel to bulk at r ≈ 0.01 (W ≈ 2100, L ≈ 21, q3 = 1) and
from bulk to quasiplanar at r ≈ 70 (W ≈ 6, L ≈ 420, q1 ≈ 10). The
value of q1 at the transition from bulk to quasiplanar is not 1 but larger,
because the values of the λ parameters are far from their asymptotic
values.
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FIG. 8. (Color online) The behavior of a 3D system in the m = 2
models as a function of its volume and vacancy density. This plot was
drawn using the asymptotic values of λ2,2 and λ3,2. If we knew their
values for any volume and density, the plot would be more accurate.
Hence, the values chosen in Fig. 7 (V = 106,v = 0.01) appear here
in the “Always jammed” region, while they should be in the “Only
cube unjammed” region.

possible shapes are jammed. The first behavior, that a tunnel
is unjammed, occurs only for very low densities, since the
critical density of an infinite tunnel is approximately 0.3 [62],
and the critical densities for large planes and cubes are much
higher. Therefore, we disregard that possibility. By varying
either the system’s volume or the particle density, the behavior
of the system changes among the other three possibilities. The
crossover occurs along the lines in which the density is equal to
the critical density for 2D planes of that volume and for cubes
of that volume. Note that for each combination of volume
and density, the transition between bulk and quasiplanes
occurs at a different aspect ratio. Figure 8 shows the behavior
of the system as a function of its volume and vacancy
density.

The crossover from QP behavior to bulk behavior is
illustrated in Fig. 9(a), which shows

√
vc ln V as a function

of W for systems of size W × 103 × 103. When W � 15, the
value of

√
vc ln V is approximately constant, which fits the

behavior of bulk systems; see Eq. (56). In QP systems, we see
from Eq. (56) that

√
vc ln V ∼ √

ln(V )/W which qualitatively
agrees with the results for W � 15. However, for small values
of W the simulation results do not scale as expected, because in
these relatively small systems the effective value of λ depends
strongly on the system’s size.

Figure 9(b) shows the critical vacancy density of tunnels
of size W × W × L, where L is large enough so that the
system is practically infinitely long. We see that the results
from the simulations agree with the exact solution of Eq. (40).
In order to see the scaling of vtunnel

c ∼ W−4/3, the condition
W 2 � 8 (ln W )3 should be satisfied. Our results are only up
to W = 29, for which W 2 = 841 and 8 (ln W )3 ≈ 300, and
so the asymptotic scaling is not satisfactory. In order to
get, say, W 2 = 10 × 8 (ln W )3, we need to go to W = 83,
which requires a system of length L ≈ 109 to be considered
infinite, and thus approximately 1 Pbyte (106 Gbytes) of
memory.
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FIG. 9. (Color online) (a) The value of 3λ3,2 = √
vc ln V as a

function of W for systems of size W × 103 × 103 for the KA and
FA models. Above W � 15, λ3,2 does not depends on W , which
fits the behavior of a bulk system. Below W � 15, the system is
a quasiplane so it does not correspond to the bulk behavior. (b)
The critical vacancy density vc for tunnels of size W × W × L

as a function of the width W for the KA and FA models. The
length L is long enough for the tunnel to be considered infinite
(L = 103 for W � 9, L = 2 × 103 for W � 16, L = 4 × 103 for
W = 18, L = 2 × 104 for W = 20,23, L = 5 × 104 for W = 26,
and L = 2 × 105 for W = 29). The continuous line is the value of vc

according to Eq. (40) with λ3,2 = 0.4.

IV. STRONGLY CONFINED 3D RHOMBOIDS
IN THE m = 3 MODEL

A. The correlation length

In the m = 3 model, a strongly confined system is divided
into frozen clusters which are not independent. Consider a
“view from above” on a three-dimensional system, such that
it appears to be a two-dimensional system, say in the x-y
plane. Each “site” in this effectively 2D system represents a
column which is either completely full or not. Any closed
shape formed by full columns is frozen, and the sites confined
by this wall are independent of the sites outside the wall. The
most probable closed shape is a 2 × 2 square. If two such
vertical pillars are close to each other, there is a possibility
that they are connected by a horizontal scaffold, which is
also frozen if it is at least two sites wide. These scaffolds
can also connect between themselves, and thus form frozen
clusters. The clusters are not completely independent, but
their correlation decreases with the distance between them.
Figure 10 shows an example of a configuration and the frozen
sections in it. The 2D projection of the frozen clusters is very
similar to the results of continuous models in 2D [66], in which
particles form dense regions reminiscent of our frozen clusters.

FIG. 10. (Color online) Two-dimensional projection of the
frozen particles in a system of size 1000 × 1000 × 8 in the FA
model with m = 3 with periodic boundary conditions. The density
is ρ = 0.881 and the fraction of frozen particles is nF = 0.46. The
colors represent the number of frozen particles in each column, as
shown in the lower panel. The full columns do not create closed
sections, but when they are close they create a frozen cluster by
scaffolding. The second panel is a zoom-in on a portion 200 × 200
of the projection.

Moreover, with hard-wall boundary conditions both the frozen
clusters in the KA and FA models and the dense regions in the
continuous model form near the edges of the system.

As an approximation, we consider the frozen areas as
adjacent frozen clusters of typical size ξ , and similarly for
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the unfrozen areas. We assume that at the critical density, the
typical size of the frozen and unfrozen clusters is the same.
We further assume that the typical cluster size is equal to the
correlation length between frozen sites. In order to obtain the
correlation length, we assume that the correlation between
sites �i and �j being frozen decreases exponentially with their
distance:

c�i, �j = ρnF (1 − ρnF ) exp

[
−|�i − �j |

ξ

]
. (61)

The numerical results, shown in Fig. 11(a), support this
assumption. Finding the correlation length numerically using
Eq. (61) is very costly. Instead, we find it using a related
quantity which is easier to evaluate numerically, namely, the
average correlation in the system,

Cav = 1

V 2

∑
�i, �j

c�i, �j = c0

V

∑
x,y,z

exp[−
√

x2 + y2 + z2/ξ ], (62)

where c0 = ρnF (1 − ρnF ), x,y,z are the distances along
the three directions between two sites, and when using
periodic boundary conditions, the three sums are from
−�(Li + 1)/2� + 1 to �Li/2�, with �q� being the integer part
of q.
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FIG. 11. (Color online) (a) The correlation c�i, �j as a function of

the distance r = |�i − �j | for a quasiplane of size 3 × 100 × 100
in the FA model near the critical density ρ = 0.81. The straight
line is ρnF (1 − ρnF ) exp [−r/ξ ], with ξ ≈ 1.66 calculated by the
fluctuations in nF . The deviation from the line is due to the large
weight of the few nearby points whose correlation requires corrections
to the exponential decay. (b) The estimated correlation length ξ as a
function of the width W for quasiplanes of size W × ∞ × ∞ (blue
squares) and tunnels of size W × W × ∞ (red circles) at the critical
density. The continuous lines are a fit to ξ = γ1 exp [γ2W

γ3 ].

Appendix D shows that Cav is related to the fluctuations
in the fraction of frozen particles nF between different
configurations by

Cav = σ 2 = 1

A

∑
α

(
ρnα

F

)2 −
(

1

A

∑
α

ρnα
F

)2

, (63)

where the summation is over A different realizations α of
the system, and nα

F is the fraction of frozen particles in
configuration α.

In quasiplanes, we assume that L2,L3 � ξ , such that the
sums of y and z in Eq. (62) may be changed to integrals with
the limits of the integrals taken to infinity. We now change
the integration variables from y and z to r =

√
y2 + z2 and

θ = tan−1 z/y, such that

CQP
av = c0

V

∑
x

∫ ∞

0

∫ 2π

0
rdrdθ exp[−

√
x2 + r2/ξ ]

= 2πc0

V

�L1/2�∑
x=−�(L1+1)/2�+1

ξ (ξ + |x|) exp[−|x|/ξ ]

= πξc0

V sinh2(1/2ξ )

{
1 + ξ sinh(1/ξ )

− exp

[
−�L1/2�

ξ

]
[1 + (ξ + �L1/2�)

× (sinh (1/ξ ) − 2δL1,odd sinh2 (1/2ξ ))]

}
. (64)

For wide quasiplanes we find that ξ � L1, such that

CQP
av ≈ 2πξ 2L1c0

V
. (65)

In tunnels we assume that L3 � ξ , such that the sum of z

in Eq. (62) may be changed to an integral with the limits of
the integral taken to infinity. Hence

Ctun
av = c0

V

∑
x,y

∫ ∞

−∞
exp[−

√
x2 + y2 + z2/ξ ]dz

= 2c0

V

∑
x,y

∫ ∞

0
exp[−

√
x2 + y2 + z2/ξ ]dz. (66)

Changing the integration variable to r =
√

x2 + y2 + z2 yields

Ctun
av = 2c0

V

∑
x,y

∫ ∞
√

x2+y2
exp [−r/ξ ]

rdr√
r2 − x2 − y2

= 2c0

V

∑
x,y

√
x2 + y2K1

(√
x2 + y2

ξ

)
, (67)

where K1 is the modified Bessel function of the second
kind [67]. The sums over x and y are done numerically. In wide
tunnels, we also find that ξ � L1,L2, such that rK1(r/ξ ) ≈ ξ ,
and thus

Ctun
av ≈ 2c0ξ

V

∑
x,y

1 = 2ξL1L2c0

V
. (68)
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TABLE I. The values of the γ parameters obtained by the
numerical fit to ξ = γ1 exp [γ2W

γ3 ] at the critical density.

γ1 γ2 γ3

Quasiplane 0.923 0.0948 1.55
Tunnel 0.861 0.0861 1.49

By calculating σ 2 numerically, and using Eq. (63) and either
Eq. (64) (for quasiplanes) or (67) (for tunnels), we found the
correlation length ξ . We fitted the value of ξ to a function of
the form

ξ = γ1 exp[γ2W
γ3 ], (69)

where W is the width of the system for either a quasiplane of
size W × ∞ × ∞ or a tunnel of size W × W × ∞. The result
is shown in Fig. 11(b). As shown in Table I, the values of the γ

parameters for quasiplanes and tunnels are similar. Note that
the correlation length in Eq. (69) has a similar functional form
as the average section length in tunnels in the m = 2 model
(see Sec. II A)

〈l〉 = exp[2−1/d (dλd,2)1−1/dW 1−1/d ], (70)

such that for d = 3, γ1 = 1, γ2 ≈ 1.64, and γ3 = 2/3.
As an approximation, we assume that a cluster of size ξ is

unfrozen if it contains a critical droplet, such that the critical
density may be obtained for large W from the relation

1 = ξ 2WP [ξ × ξ × W ] (71)

for quasiplanes, and

1 = ξW 2P [ξ × W × W ] (72)

for tunnels. Solving these equations for large W yields in both
cases

vc = λ3,3

γ3 ln W
, (73)

which is of the same functional form as the critical density
for two-dimensional systems in the m = 2 model but with
a different prefactor, and agrees qualitatively with Eqs. (52)
and (55). Interestingly, we obtain the same expression for
quasiplanes and for tunnels. We cannot compare Eq. (73),
which is valid for very large systems, to our numerical results,
because our simulations are done on relatively small systems
(W = 13 for QPs and W = 20 for tunnels) in which the
effective value of λ3,3 varies significantly and is very far from
its asymptotic value.

B. Transition from bulk to quasiplanar behavior

Since the critical density changes very slightly in the
system sizes we investigated, another technique was used to
see the crossover between bulk and quasiplanar behavior. In
the bulk, the system is either almost completely unfrozen or
almost completely frozen, and thus its probability of being
frozen can be approximated by a binary distribution. In this
case, the variance σ 2 of the fraction of frozen particles over
many configurations is approximately σ 2 ≈ nF (1 − nF ), or
1/4 at the critical density. In a two-dimensional system,
however, the frozen structures are very local, and thus a
large enough system can in itself be considered an average

(a)
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W0.00
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0.10
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0.2 0.4 0.6 0.8 1.0
nF

0.1

0.2

0.3

0.4

0.5
p nF

(b)

W=6

W=11W=13W=14

W=15

FIG. 12. (Color online) (a) The variance σ 2 in the fraction of
frozen particles and (b) the distribution p(nF ) at the critical density
for a system of size W × 1000 × 1000 in the m = 3 FA model. At
small width (W = 6,ρc = 0.8536, blue dotted curve) there is a sharp
peak around 0.5. Near the crossover region (W = 11,ρc = 0.888 06,
green dashed curve) the peak is still visible, but is much broader.
During the crossover (W = 13,ρc = 0.896 61, red dash-dotted curve)
the distribution almost flattens, but the emergence of the peak at 1 can
be seen. At W = 14 (ρc = 0.900 06, orange solid curve) the peak at
1 is clearly seen, and a broad peak centered around 0.1 is also visible.
As the width is further increased (W = 15,ρc = 0.902 05, black solid
curve) the system shows almost bulk behavior and the two peaks at
1 and near 0 are obvious. At that point (W = 15) there is a crossover
from quasiplanar behavior, in which σ 2 ≈ 0, to a bulk behavior, in
which σ 2 ≈ 1/4.

over many small systems. In this case, the distribution of nF

over the different configurations is almost constant and thus
the variance is almost zero. The distribution of nF and its
variance at the critical density are plotted in Fig. 12 for a
system of size W × 1000 × 1000. At that size, the crossover
occurs at W ≈ 15, which means that for systems of width 15,
the characteristic size of the sections is of the same order of
magnitude as the system size. The characteristic cluster size,
calculated by Eq. (69) is approximately ξ ≈ 500, which is
expected given the system size (L = 1000). For small widths
(W � 11), there is a pronounced peak in the distribution at
0.5, which becomes broader as the width increases. At larger
widths, the emergence of the two peaks at 0 and 1 is visible.
Note also that the distribution is not symmetric: while the
peak at 1 is very large, the peak near 0 is broad and is centered
around a small positive value, which nears 0 as the width
increases. This means that the number of frozen particles
in the almost unfrozen configurations vary, while those that
are almost completely frozen have very small and negligible
unfrozen regions.

032204-12



JAMMING BY SHAPE IN KINETICALLY CONSTRAINED . . . PHYSICAL REVIEW E 89, 032204 (2014)

V. SUMMARY

In this paper we investigated the effects of the system’s
shape on the jamming transition. We derived an analytical ap-
proximation for the critical density in a d-dimensional hyper-
rhomboid system in both the Kob-Andersen and Fredrickson-
Andersen kinetically constrained models, and showed that it
scales differently with the system’s length scales depending
on the relation between them. We distinguished between two
general classes of systems depending on the model’s parameter
m and the number of effective dimensions in the systems, deff :
a weakly confined system (deff � m) and a strongly confined
system (deff < m). In the weakly confined regime, the system
is either completely unfrozen or almost completely frozen, and
the correlation length between frozen sites is the entire system
size. The critical density in a weakly confined system depends
on the volume of the system V and the volume associated
with the s small dimensions Vs , but not on the ratios between
the small dimensions or the large dimensions. In the strongly
confined regime, the system is divided into frozen and unfrozen
clusters, such that the correlation length between frozen sites
is the size of the clusters, not of the system. The critical density
in a strongly confined system depends on Vs , but not on the
large dimensions or the ratios between the small dimensions.

We also showed how changing the system’s shape without
altering its total volume or the particle density can induce
jamming. This was done by utilizing our result that the critical
density depends on the system’s shape, such that a certain
density may be below the critical density at a particular shape
but above it for a different shape. We emphasize that this is
derived by averaging over ensembles of different realizations,
not by exerting forces on the system. Although we considered
only the Kob-Andersen and the Fredrickson-Andersen models,
this conclusion may be applicable to other models as well,
including continuous models. It may be interesting to inves-
tigate this phenomenon in other, more physical, kinetically
constrained models such as the Jäckle-Krönig model [27]
on the triangular lattice, the east model [41], the north-east
model [42], or the spiral model [32].

The results presented in this paper regarding the effect of
the shape on the static properties of the models will be the
groundwork for an investigation of the effect of the shape on
the dynamic properties of these models.
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APPENDIX A: PROOF THAT SECTIONS IN THE m = 2
MODELS IN d = 3 CANNOT BE FURTHER DIVIDED

In order for a section to be divided into subsections, it needs
to satisfy the condition

L2 > exp [2vL1 〈l3〉] , (A1)

or equivalently

vL1 <
W0 (L2 ln L2)

2L2
, (A2)

where W0(z) is the product-log function [65] defined as the
solution to

z = W0(z) exp [W0(z)] . (A3)

For large L2 we can approximate this by

vL1 <
ln L2

2L2
. (A4)

The critical vacancy density in this case is larger than or equal
to that of a tunnel (because the subsection is smaller and thus
easier to jam), and so the condition can be written as(

3λ3,2

2L1L2

)2/3

L1 < vL1 <
ln L2

2L2
, (A5)

or equivalently

L1 <
ln3 L2

9λ2
3,2L2

. (A6)

The right-hand side is bounded by 3/(e3λ2
3,2) ≈ 0.15. This

means that L1 cannot possibly satisfy the condition, and
therefore no further partitions are possible.

APPENDIX B: CALCULATION OF P3

In this section we show that

P3(L × L × L) ≈ exp

[
−3μ exp

(
λ3,3

v

)]
. (B1)

In Eq. (47), the contribution to the main sum from small l

is negligible, so we can take the upper limit of the inner sum
on k to be ∞ and approximate it by an integral over z = kv,
using the approximation ρk ≈ e−vk ,

P3(L × L × L)

= exp
(

3
L∑

l=1

ln

{
1 −

[
1 − exp

(
−2

v

∫ ∞

0
g2(z)dz

)]2l2})

= exp
(

3
L∑

l=1

ln

{
1 −

[
1 − exp

(
−2λ3,3

v

)]2l2})

≈ exp
(

3
L∑

l=1

ln

{
1 − exp

[
−2l2 exp

(
−2λ3,3

v

)]})
.

(B2)

We now change the sum over l to an integral over z = l

exp[− λ3,3

v
] and take the upper limit to be ∞,

P3(L × L × L)

≈ exp

{
3 exp

(
λ3,3

v

)∫ ∞

0
ln[1 − exp(−2z2)]dz

}

= exp

[
−3μ exp

(
λ3,3

v

)]
, (B3)

where

μ = −
∫ ∞

0
ln[1 − exp(−2z2)]dz ≈ 1.6. (B4)
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APPENDIX C: DERIVATION OF THE CRITICAL
DENSITY IN HYPER-RHOMBOIDS

1. Hyper-rhomboids in the m = 2 model

We consider a hyper-rhombus of size L1 × · · · × Ld , such
that Li+1 � Li for all i. The treatment here is very similar to
that in the three-dimensional case. For brevity we define

Vk =
k∏

i=1

Li. (C1)

The expansion of the critical droplet is done analogously
to the three-dimensional case such that the probability of the
hyper-rhomboid to be unfrozen is

P =
d∏

i=1

Li∏
l=Li−1+1

βd−i+1(ld−iVi−1), (C2)

where L0 = 0 and V0 = 1. Setting this in the recursion relation
on P yields

β(x) = 1 − ρx +
√

1 + 2ρx − 3ρ2x

2
. (C3)

The equation for the critical density is then

0 = ln Vd +
d∑

i=1

(d − i + 1)
Li∑

l=Li−1+1

ln β(ld−iVi−1)

≈ ln Vd −
d∑

i=1

d − i + 1

(vVi−1)1/(d−i)

∫ (vVi−1)1/(d−i)Li

(vVi−1)1/(d−i)(Li−1+1)
g1(zd−i)dz.

(C4)

We now check whether the system is divided into sections
or not. It is not divided if Ld < 〈ld〉, for which

〈ld〉 = exp (2vVd−1) . (C5)

Assuming that it is not divided, we further assume that
there is a 0 � s < d − 1 such that (vVs−1)1/(d−s) Ls 
 1 and

(vVs)1/(d−s−1) Ls+1 � 1. Then we can approximate Eq. (C4)
by

0 = ln Vd − d − s

(vVs)1/(d−s−1)

∫ ∞

0
g1(zd−s−1)dz

= ln Vd − (d − s)λd−s,2

(vVs)1/(d−s−1) . (C6)

The critical density in this case is

vc = 1

Vs

(
(d − s)λd−s,2

ln Vd

)d−s−1

, (C7)

which is similar to the behavior of a hypercube in deff = d − s

dimensions with a single length scale, Eq. (1).
If the system is divided into sections, i.e., Ld > 〈ld〉, it is

not further divided into smaller subsections for the exact same
reasons as in three-dimensional systems. We can again assume
that there is a 0 � t < d − 1 that satisfies the above conditions,
such that the critical density satisfies the equation

vc = 1

Vt

(
(d − t)λd−t,2

ln (Vd−1 〈ld〉)
)d−t−1

. (C8)

If Vd−1 is large enough such that ln Vd−1 
 2vcVd−1, the
solution to Eq. (C8) can be approximated by

vc = 1

Vt

(
(d − t)λd−t,2

2Vd−1

)1−1/(d−t)

. (C9)

2. Hyper-rhomboids in the m = 3 model

We consider a hyper-rhomboid of arbitrary size and repeat
the derivation of the critical droplet. In a hyper-rhomboid, each
hyperside consists of two layers which must be unblocked. Up
to size L1, the derivation is the same as in the bulk. Above
that size and up to size L2, there are only d − 1 directions to
consider, and one of the sides of the hyperside is set to L1.
Above L2, there are only d − 2 sides, etc. In analogy to the
derivation of critical droplets in cubes, Eq. (47), and in hyper-
rhomboids in the m = 2 models, Eq. (C2), the probability that
a site is part of a critical droplet is

P3 =
L1∏
l=1

[
1 −

(
1 −

l∏
k=1

βd−1
3 (kd−2)

)2ld−1]d L2∏
l=L1+1

[
1 −

(
1 −

l∏
k=1

βd−2
3 (kd−3L1)

)2ld−2L1]d−1

× · · · ×
Ld−1∏

l=Ld−2+1

[
1 −

(
1 −

l∏
k=1

β3(Vd−2)

)2lVd−2]2

=
d−1∏
i=1

Li∏
l=Li−1+1

[
1 −

(
1 −

l∏
k=1

βd−i
3 (kd−1−iVi−1)

)2ld−iVi−1]d+1−i

. (C10)

The equation for the critical density is

0 = ln Vd +
d−1∑
i=1

(d − i + 1)
Li∑

l=Li−1+1

ln

{
1 −

[
1 − exp

(
(d − i)

l∑
k=1

ln β3(kd−i−1Vi−1)

)]2ld−iVi−1}

≈ ln Vd +
d−1∑
i=1

(d − i + 1)
Li∑

l=Li−1+1

ln

{
1 −

[
1 − exp

(
(i − d)

(vVi−1)1/(d−i−1)

∫ (vVi−1)1/(d−i−1)l

(vVi−1)1/(d−i−1)
g2(zd−i−1)

)]2ld−iVi−1
}

, (C11)
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where we changed the sum over k to an integral over z = k (vVi−1)1/(d−i−1). We now assume that the system is not strongly
confined and that there are s small sides such that (vVs−1)1/(d−s−1) Ls 
 1 and (vVs)1/(d−s−2) Ls+1 � 1. The equation for the
critical density can then be further approximated by

0 = ln Vd + (d − s)
Ls+1∑
l=1

ln

{
1 −

[
1 − exp

(
(s + 1 − d)

(vVs)1/(d−s−2)

∫ ∞

0
g2(zd−s−2)dz

)]2ld−s−1Vs

}

0 = ln Vd + (d − s)
Ls+1∑
l=1

ln

{
1 −

[
1 − exp

(
λd−s,3(s + 1 − d)

(vVs)1/(d−s−2)

)]2ld−s−1Vs

}

≈ ln Vd + (d − s)
Ls+1∑
l=1

ln

{
1 − exp

[
−2ld−s−1Vs exp

(
λd−s,3(s + 1 − d)

(vVs)1/(d−s−2)

)]}
. (C12)

Changing the sum over l to an integral over z = lV
1/(d−s−1)
s

exp[−λd−s,3/ (vVs)1/(d−s−2)] yields

0 = ln Vd + (d − s) exp[λd−s,3/ (vVs)1/(d−s−2)]

V
1/(d−s−1)
s

×
∫ ∞

0
ln{1 − exp[−2zd−s−1]}dz. (C13)

Solving this equation yields

vc ≈ 1

Vs

(
λd−s,3

ln ln Vd

)d−s−2

. (C14)

If the two largest sides Ld and Ld−1 are much larger than
the other sides, i.e., deff = 2, the system is quasi-2D. In this
case, since the expansion of the droplet in m = 3 requires at
least three dimensions, the droplet can unblock only a finite
region. Hence, the system is divided into clusters, each of
which either contains a droplet or not. At the critical density
we assume that the size of the frozen and unfrozen clusters is
the same and equal to ρ−4Vd−2 , such that the critical density
satisfies the equation

vc ≈ 1

Vt

(
λd−t,3

ln ln (Vd−2 exp [8vcVd−2])

)d−t−2

≈ 1

Vt

(
λd−t,3

ln 8vcVd−2

)d−t−2

. (C15)

If there is one large side, deff = 1, the system behaves as a
tunnel. Similarly to tunnels in three dimensions, the average
section length is

〈l〉 = exp

{
2Vd−1 exp

[
− (d − t − 1)λd−t,3

(vVt )1/(d−t−2)

]}
, (C16)

and thus the critical density satisfies the equation

vc ≈ 1

Vt

(
λd−t,3

ln ln (Vd−1 〈l〉)
)d−t−2

⇒ vc = 1

Vt

(
(d − t)λd−t,3

ln [2Vd−1]

)d−t−2

, (C17)

which is similar to that for a (d − t − 1)-dimensional system
in the m = 2 model.

3. Critical density in general hyper-rhomboids

Since the full derivation of the critical density in m > 3 is
very cumbersome, we provide here only a sketch, which is
very similar to the derivation of the critical density in m = 3.
Consider a hypercube in d � m dimensions. This hypercube
can be expanded if each of its sides has two hyperlayers of
d − 1 dimensions which can be emptied in a manner similar
to a m − 1 model. Now look at the (d − 2)-dimensional
sides of these layers. They must be emptied in a manner
similar to that in an m − 2 model, etc. At the end, there
is a (d − m + 2)-dimensional hypersurface which must be
emptied as in an m = 2 model. Each such iteration of surfaces
of lower dimensions adds another exponent to the probability
of a site belonging to a critical droplet, and therefore the critical
density Eq. (1) depends on m − 1 iterations of the ln function.
More specifically, we can write the probability of expanding a
hypercube up to linear size L as

Pm =
L∏

l=1

f d
m−2,m(l), (C18)

where fn,m(l) is defined by the recursion relation

fn+1,m(l) = 1 −
(

1 −
l∏

k=1

fn,m(k)

)(m−1)ld+n−1

,

f0,m(l) = βm(l)

= 1 − ρ(m−1)l +
√

(1 + ρ(m−1)l)2 − 4ρml

2
. (C19)

Approximating Pm as was done before (changing the products
to integrals of ln functions, etc.) and solving the equation
1 = LdPm yields Eq. (1).

If the number of effective dimensions of the hyper-
rhomboid is at least m, the system is either almost completely
frozen or almost completely unfrozen and there is no division
into sections or clusters. Assuming that there are s small sides,
then in the integrals of gm−1 [as in Eqs. (C4) and (C11)]
the upper limits of the first s integrals can be taken to zero
and the lower limits of the last d − s − 1 integrals can be
taken to infinity, such that only one integral remains, which
yields λd−s,m/ (vVs)1/(d−s−m+1). The other outer integrals yield
unimportant constants (similarly to μ in the m = 3 case), and
each iteration of the f function gives another exponent, such
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that in the end the critical density is

vc = 1

Vs

(
λd−s,m

ln(m−1) V 1/(d−s)

)d−s−m+1

, (C20)

which is similar to the behavior of a (d − s)-dimensional
system.

If deff < m, the hyper-rhomboid is divided into clusters.
If deff = m − 1, the characteristic size of the clusters is
determined by the characteristic size of the clusters on the
d − 1 dimensional hypersurfaces, which ultimately depends
on the size of the subsection on the hypersurface unblocked via
the m = 2 process, which is now a tunnel. The characteristic
cluster size is thus ρ−cVd−m+1 in this case, where c is some
constant which depends on d and m. If deff = m − 2, the
characteristic size of the clusters is ultimately determined
by the size of the subsections on the hypersurface (which
is a tunnel) unblocked via the m = 3 process, which is
∼ exp[Vd−m+2 exp(−2λd,m/v)]. In general, the characteristic
cluster size is determined by the size of the subsections
on the hypersurface (which is a tunnel) unblocked via the
m − deff + 1 process, which is ∼ expdeff−1[Vt exp(−2λd,m/v)],
with expn being an exponential iterated n times. Due to the
combination of the iterated ln functions and the exponents, the
critical vacancy density in all cases scales as

vc ∼ [ln(m−2)V
1/(d−t)
s

]−d+t+m−1
, (C21)

which is similar to the result in a (d − t − 1)-dimensional
system in an m − 1 model.

APPENDIX D: THE RELATION BETWEEN THE
CORRELATION BETWEEN FROZEN SITES

AND THE FLUCTUATIONS OF nF

Consider the correlation between sites �i and �j ,

c�i, �j = 1

A

∑
α

(
nα

�i − ρnF

)(
nα

�j − ρnF

)
, (D1)

where the sum is over all configurations α, the total number
of configurations is A, for each site nα

�i is equal to 1 if the
site contains a frozen particle in configuration α and is equal
to zero in all other cases, and ρnF is the average fraction of
frozen sites,

ρnF = 1

AV

∑
�i,α

nα
�i . (D2)

The average correlation is

Cav = 1

V 2

∑
�i, �j

c�i, �j , (D3)

where V is the volume of the system. Using the definition of
c�i, �j , Eq. (D1), in Eq. (D3) yields

Cav = 1

AV 2

∑
�i, �j,α

(
nα

�i − ρnF

)(
nα

�j − ρnF

)

= 1

AV 2

∑
�i, �j,α

[
nα

�i nα
�j − nα

�i ρnF − nα
�j ρnF + ρ2n2

F

]
. (D4)

In the second term we sum over �j , in the third term we sum
over �i, and in the fourth term we sum over �i, �j , and α, such
that

Cav = 1

AV 2

∑
�i, �j,α

nα
�i nα

�j − 1

AV

∑
�i,α

nα
i ρnF

− 1

AV

∑
�j,α

nα
j ρnF + ρ2n2

F . (D5)

Using Eq. (D2) in the second and third terms yields

Cav = 1

AV 2

∑
�i, �j,α

nα
�i nα

�j − ρ2n2
F . (D6)

Now consider the fluctuations in ρnF

σ 2 = 1

A

∑
α

(
ρnα

F

)2 − ρ2n2
F , (D7)

where ρnα
F is the fraction of frozen sites in configuration α,

ρnα
F = 1

V

∑
�i

nα
�i . (D8)

Using Eq. (D8) in Eq. (D7) yields

σ 2 = 1

A

∑
α

⎛
⎝ 1

V

∑
�i

nα
�i

⎞
⎠
⎛
⎝ 1

V

∑
�j

nα
�j

⎞
⎠− ρ2n2

F , (D9)

which is equal to Eq. (D6), and thus σ 2 = Cav .
Note that this result is valid in more general conditions:

nα
�i can receive values other than zero or 1, the different

configurations can have different weights, and the system can
be continuous.
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