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Nonequilibrium entropic temperature and its lower bound for quantum stochastic processes
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In this paper, we have studied the Shannon “entropic” nonequilibrium temperature (NET) of quantum Brownian
systems. The Brownian particle is attached to either a bosonic or fermionic bath. Based on the Fokker-Planck
description of the c-number quantum Langevin equation, we have calculated entropy production, NET, and their
bounds. Entropy production (EP), the upper bound of entropy production (UBEP), and the deviation of the
UBEP from EP monotonically decrease as functions of time to equilibrium value for both of the thermal baths.
The deviation decreases with increase of temperature of the bosonic thermal bath, but it becomes larger as the
temperature of the fermionic bath grows. We also observe that nonequilibrium temperature and its lower bound
monotonically increase to equilibrium value with the progression of time. But their difference as a function
of time shows an optimum behavior in most cases. Finally, we have observed that at long time, the entropic
temperature (for a bosonic thermal bath) first increases nonlinearly as a function of thermodynamic temperature
(TT) and, if the TT is appreciably large, then it grows linearly. But for the fermionic thermal bath, the entropic
temperature decreases monotonically as a nonlinear function of thermodynamic temperature to zero value.
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I. INTRODUCTION

One of the key issues in nonequilibrium statistical me-
chanics is understanding the interaction of a system with its
surroundings during the journey towards the equilibrium state
[1–6]. The evolution of entropy of the system may carry
the signature of the interaction. If it is possible to define
a temperature of the system, then it may also be a good
observable in the present context. Very recently, the Shannon-
entropy-based nonequilibrium temperature (NET) was defined
in Ref. [7]. Here authors show that their definition subsumes
many other attempts at defining entropic temperatures for
nonequilibrium systems and is not restricted to equilibrium
or near equilibrium systems. Based on this definition, we
have studied the NET of quantum Brownian systems. We
are motivated to study this issue from the following point
of view. The diffusion constant for quantum Brownian motion
is a nonlinear function of thermodynamic temperature. This
is in sharp contrast to classical Brownian motion where
the constant is a linear function of temperature. Therefore,
the thermodynamic temperature dependence of the entropic
temperature for a quantum system may be interesting. We
have studied this issue using the Fokker-Planck description of
the Brownian motion corresponding to the c-number quantum
Langevin equation. We have calculated the nonequilibrium
temperature, entropy production, and its upper bound. We
have compared the effect of the quantum thermal baths on
these quantities. Entropy production (EP), the upper bound of
entropy production (UBEP), and the deviation of UBEP from
EP monotonically decrease as functions of time to equilibrium
value. It is true for both of the thermal baths. At a given
time, the deviation becomes smaller as the temperature of
the bosonic bath (BB) grows. But this trend reverses for the
fermionic bath. Our other observation is that the nonequilib-
rium temperature and its lower bound monotonically increase
to equilibrium value with the progression of time. But their
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difference as a function of time shows an optimum behavior
in most cases. This may decrease monotonically, as we
have demonstrated for a fermionic thermal bath. Finally, we
have observed that at equilibrium, the entropic temperature
(for a bosonic thermal bath) first increases nonlinearly as a
function of thermodynamic temperature (TT) and, if the TT is
appreciably large, then it grows linearly. But, for the fermionic
thermal bath, the entropic temperature decreases as a nonlinear
function of thermodynamic temperature to zero value.

The outline of the paper is as follows: In Sec. II, we have cal-
culated the nonequilibrium temperature, entropy production,
and their bound for a quantum stochastic process in which
the Brownian particle is attached to the bosonic thermal bath.
In the next section (i.e. in Sec. III), the same quantities are
calculated for the fermionic thermal bath. In Sec. IV, we have
compared the effect of baths on nonequilibrium properties.
The paper is concluded in Sec. V.

II. CALCULATION OF NONEQUILIBRIUM
TEMPERATURE AND ITS LOWER BOUND

FOR QUANTUM STOCHASTIC DYNAMICS IN THE
PRESENCE OF THE BOSONIC BATH

We consider quantum Brownian motion of a free particle
of unit mass which is coupled to a bosonic thermal bath,
e.g., movement of a dye molecule in a liquid fluid at low
temperature. Here Brownian motion is due to collision of
the dye molecule with the fluid particles. This picture can
be described with the following system-bath Hamiltonian [8]:

Ĥ = p̂2

2
+

∑
j

[
p̂2

j

2
+ 1

2

(
ωj x̂j − cj

ωj

q̂

)2
]

. (1)

Here q̂ and p̂ are the coordinate and momentum operators
of the particle. The {x̂j ,p̂j } are the set of coordinate and
momentum operators for the bath oscillators with unit mass.
ωj is the frequency of the j th bath oscillator. The system
particle is coupled to the bath oscillators linearly through
the general coupling terms cj

ωj
q̂, where cj is the coupling
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strength. The coordinate and momentum operators follow the
usual commutation relations [q̂,p̂] = i� and [x̂j ,p̂k] = i�δjk .
Eliminating the bath degrees of freedom in the usual way, we
obtain the operator Langevin equation [9,10] for the particle
as

˙̂p(t) = −
∫ t

0
γ (t − t ′)p̂(t ′)dt ′ + η̂B(t), (2)

where the noise operator η̂B(t) and the memory kernel γ (t)
are given by

η̂B(t) =
∑

j

{
ω2

j

cj

x̂j (0) − q̂(0)

}
c2
j

ω2
j

cos ωj t

+
∑

j

cj

ωj

p̂j (0) sin ωj t, (3)

and

γ (t) =
∑

j

c2
j

ω2
j

cos ωj t. (4)

In the Markovian limit, the generalized quantum Langevin
equation (2) reduces to the following form:

˙̂p(t) = −γ0p̂(t) + η̂B(t), (5)

where γ0 is the dissipation constant in the Markovian limit.
We now carry out a quantum mechanical average following
Ref. [9] over the product separable bath modes with coherent
states and system mode with an arbitrary state at t = 0 in
Eq. (5) to obtain the Langevin equation as

ṗ = −γ0p + ηB(t), (6)

where the quantum mechanical mean value of the momentum
operator is represented by p. The quantum mechanical mean
Langevin force, ηB(t), is given by

ηB(t) =
∑

j

{
ω2

j

cj

〈x̂j (0)〉 − 〈q̂(0)〉
}

c2
j

ω2
j

cos ωj t

+
∑

j

cj

ωj

〈p̂j (0)〉 sin ωj t. (7)

To have ηB(t) as an effective c-number noise, we now
introduce the ansatz [9,11–15] in which the momentum 〈p̂j (0)〉
and the shifted coordinates {ω2

j

cj
〈x̂j (0)〉 − 〈q̂(0)〉} of the bath

oscillators are distributed according to a Wigner canonical
thermal distribution of Gaussian form as

Pj

[{
ω2

j

cj

〈x̂j (0)〉 − 〈q̂(0)〉
}

,〈p̂j (0)〉
]

= N exp

⎧⎪⎨
⎪⎩−

[〈p̂j (0)〉2 + c2
j

ω2
j

{ω2
j

cj
〈x̂j (0)〉 − 〈q̂(0)〉}2]

2�ωj

[
n̄j (ωj ) + 1

2

]
⎫⎪⎬
⎪⎭ ,

(8)

so that for any quantum mechanical mean value,

Oj [{ω2
j

cj
〈x̂j (0)〉 − 〈q̂(0)〉},〈p̂j (0)〉], which is a function of the

mean value of the bath operators 〈x̂j (0)〉 and 〈p̂j (0)〉, its
statistical average 〈·〉S is

〈Oj 〉S =
∫

OjPj d〈p̂j (0)〉 d

{
ω2

j

cj

〈x̂j (0)〉 − 〈q̂(0)〉
}

. (9)

Here n̄j (ωj ) indicates the average thermal photon number
of the j th oscillator at the temperature T and n̄j (ωj ) =
[exp( �ωj

kBT
) − 1]−1, and N is the normalization constant. For

a detailed discussion about the use of distribution Pj [Eq. (8)],
we refer the reader to Ref. [16].

The above distribution Pj [Eq. (8)] and the definition of
statistical average, given by Eq. (9), imply that c-number noise
η(t) must satisfy

〈ηB(t)〉S = 0, (10)

〈ηB(t)ηB(t ′)〉S = 1

2

∑
j

c2
j

ω2
j

�ωj

(
coth

�ωj

2kBT

)
cos ωj (t − t ′).

(11)
In the Markovian limit, the above noise correlation function
becomes [17,18]

〈ηB(t)ηB(t ′)〉S = 2DBδ(t − t ′), (12a)

DB = 1

2
γ0�ω0 coth

�ω0

2kBT
, (12b)

where ω0 is the average bath frequency and the spectral density
function is considered in the Ohmic limit.

The Fokker-Planck equation corresponding to the Langevin
equation (6) can be written as

∂ρ(p,t)

∂t
= γ0

∂pρ

∂p
+ DB

∂2ρ

∂p2
, (13)

where ρ(p,t) is the probability distribution function. This
distribution function gives the Shannon information measure
[19,20]. For the present problem, it can be written as

SB = −kB

∫
ρ(p,t) ln ρ(p,t)dp, (14)

which typically is not a conserved quantity. S in the above
equation is called information entropy. If one considers the
Boltzmann constant as the information unit and identifies the
Shannon measure with the thermodynamic entropy, then the
whole of statistical mechanics can be elegantly reformulated
by extremization of S, subject to the constraints imposed by the
a priori information one may possess concerning the system
of interest [19,20].

Now we are in a position to calculate the Shannon-entropy-
based nonequilibrium temperature (θB) of a quantum Brow-
nian system coupled to the bosonic thermal bath, following
Ref. [7] and making use of the solution of the Fokker-Planck
equation (13). Using both the statistical or Shannon entropy of
a system and the de Bruijn identity from information theory, the
authors in Ref. [7] have defined the NET. It is the ratio between
the average curvature of the Hamiltonian function associated
with the system and the trace of the Fisher information matrix
of the nonequilibrium probability distribution function. Thus,
for the Brownian motion of a free particle, the phase space
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distribution function can be related to the entropic temperature
as

1

θB

= kB

∫ ∞

−∞
ρ

(
∂lnρ

∂p

)2

dp. (15)

For the one-dimensional Brownian motion, the trace of the
Fisher information matrix of the nonequilibrium probability
distribution function has been replaced by ( ∂lnρ

∂p
)2, which is

a measure of the average curvature of the probability density
function. The average curvature of the Hamiltonian for the
present system with unit mass is one in magnitude. However,
it is apparent in the above relation that the nonequilibrium
temperature increases with a decrease of the average curvature
of the probability density function. In other words, the NET
increases with an increase of width of the distribution function.
Thus the above relation is qualitatively consistent with our
expectation.

To find the explicit value of θB at the nonequilibrium state,
we have solved the Fokker-Planck equation (15) following
Ref. [21]. The nonequilibrium distribution function is given
by

ρ(p,t) = ν exp

{−[p − α(t)]2

σB(t)

}
. (16)

In the above equation, σB(t) measures the width of the
distribution function and α(t) takes care of the time evolution
of 〈p〉 due to deterministic force. The remaining undefined
quantity ν is the normalization factor in the expression of the
distribution function. Their time evolution equations are given
by

σ̇B(t) = −2γ0σB(t) + 4DB, (17)

α̇(t) = −γ0α(t), (18)

and

1

ν(t)
ν̇(t) = − 1

2σB(t)
˙σB(t). (19)

The relevant solutions of σB (t) and α(t) for the present problem
are given by

σB(t) = 2DB

γ0
[1 − exp(−2γ0t)] + σB(0) exp(−2γ0t) (20)

and

α(t) = α(0) exp(−γ0t). (21)

Now using Eq. (16) along with Eqs. (20) and (21) in Eq. (15),
one obtains the following relation:

θB(t) = σB(t)

2kB

. (22)

Thus the nonequilibrium temperature is proportional to
the width of the distribution function. It depends on the
temperature as well as damping induced by the thermal bath.
As the quantum diffusion coefficient is not proportional to
temperature, θB(t) depends on the temperature of the bosonic
thermal bath in a quite different way compared to a classical
bath.

Now we check whether or not the above relation reduces to
the standard result. At equilibrium, the above relation becomes

θB(∞) = �ω0 coth �ω0
2kBT

2kB

. (23)

The above equation suggests that at the thermodynamic low
temperature regime, the “entropic temperature” is different
from the temperature of the bosonic thermal bath. At the high
temperature limit, the above equation further reduces to the
following relation:

θB = T . (24)

Thus, the present calculation is consistent with the expected
limiting result. Now to relate the nonequilibrium temperature
with the Shannon entropy (S), we come back to the Fokker-
Planck equation (13), which can be rearranged into the
following general form of continuity equation:

∂ρ(p,t)

∂t
= − ∂j

∂p
, (25)

where the current j is defined as

j = −γ0pρ − DB

∂ρ

∂p
. (26)

The time evolution equation for S can be written as

ṠB = kB

∫
dp

∂j

∂p
ln ρ. (27)

Performing partial integration on the right-hand side of
the above equation and then putting the natural boundary
conditions j |boundary = 0 and j ln ρ|boundary = 0, we get

ṠB = −kB

∫
dp

1

ρ
j

∂ρ

∂p
. (28)

In the next step, an application of the Schwarz inequality
|∫ dqAB|2 �

∫
dq|A|2 ∫

dq|B|2 to the integral (28), where A

and B can be appropriately identified, yields an upper bound
(UBB) for the rate of entropy change:

ṠB � UBB,

UBB = kB

(∫
dp

j 2

ρ

)1/2
[∫

dp
1

ρ

(
∂ρ

∂p

)2
]1/2

. (29)

Here, it is to be noted that the second integral is the same
as the trace of the Fisher information matrix [22]. Thus the
maximum rate of increase of S for an isolated system is limited
by the Fisher information level. Now, making use of Eq. (16)
in Eqs. (27) and (28), we obtain the explicit time dependence
of the time derivative of entropy and its upper bound as

ṠB = kB

[
−γ0 + 2DB

σB

]
, (30)

and

UBB = kB

[
α2γ 2

0 + γ 2
0 σB

2
+ 2D2

B

σB

− 2γ0DB

] 1
2
[

2

σB

] 1
2

.

(31)

Since the information entropy is the negative of the Shannon
information, the rate of change of entropy can be interpreted
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as the rate of information transmission. So the upper bound
(31) is interesting in the sense that the amount of information
transmitted per unit of time cannot exceed this quantity. The
role of the bath on the deviation of the bound (�UBB) from
dS
dt

can be determined from Eqs. (30) and (31) as

�UBB = UBB − dSB

dt

= kB

[
α2γ 2

0 + γ 2
0 σB

2
+ 2D2

B

σB

− 2γ0DB

] 1
2
[

2

σB

] 1
2

+ kBγ0 − kB

2DB

σB

. (32)

Now, using Eq. (22) in Eq. (30), we have the following
relation between entropy production and nonequilibrium
temperature:

ṠB = DB − kBθBγ0

θB

. (33)

Equation (29) and the above relation suggest a lower bound of
nonequilibrium temperature as

θB � LBB, (34)

where LBB is the lower bound of the nonequilibrium temper-
ature and is given by

LBB = DB

kBγ0 + UBB

. (35)

In the Brownian motion, some events are frequently
possible and some events rarely occur. Here one cannot avoid
a minimum degree of randomness in the experiment. As a
signature of that, one would expect a bound related to an
unavoidable degree of randomness. LBB in the present study
is such a kind of physical quantity. It is an interesting result
from the point of view of the experimentalist. For a given
parameter set, the nonequilibrium temperature associated with
the experimental distribution function cannot be lower than
LBB . In other words, if the NET is lower than the bound,
then the experimentalist would search for a better distribution
function. Thus, with the bound, one can check the validity of
the experimental results.

From Eqs. (22) and (35), one can easily determine the
deviation of the nonequilibrium temperature from its lower
bound as

�θBB = σB(t)

2kB

− DB

kBγ0 + UBB

. (36)

We now check whether the relations (22) and (36) reduce to
the standard results. At high temperature, the above bound (35)
becomes

LBB = γ0kBT

kBγ0 + UBB

. (37)

Using the equilibrium condition, ṠB = UBB = 0, in Eq. (36),
we have the same earlier Eq. (24). Using this condition in
Eq. (35), we also have �θB = 0. These are important checks
of our calculation. In the next section, we shall explore how the
lower bound depends on the characteristics of the fermionic
thermal bath.

III. CALCULATION OF NONEQUILIBRIUM
TEMPERATURE AND ITS LOWER BOUND FOR

QUANTUM STOCHASTIC DYNAMICS IN THE PRESENCE
OF THE FERMIONIC BATH

In this section, we consider the quantum Brownian motion
of a free particle which is coupled to a spin bath, e.g., the
motion of an ion in liquid 3He [23]. The spin state of the He
atom may change during its interaction with the ion. To study
this kind of Brownian motion, we start with a system-reservoir
model described by the following Hamiltonian:

Ĥ = p̂2

2
+ �

∑
k

ωkσ̂
†
k σ̂k + �

∑
k

gkq̂(σ̂ †
k + σ̂k). (38)

Here a particle of unit mass is coupled to a set of spin- 1
2

particles (two-level atoms) with characteristic frequencies ωk .
q̂ and p̂ are coordinate and momentum operators of the
particle. The two-level bath atoms are described by a set
of Pauli operators {σ̂k,σ̂

†
k , and σ̂zk}. σ̂

†
k (σ̂k) is the creation

(annihilation) operator for the kth two-level atom coupled
linearly to the particle through the coupling constant gk .
q̂ and p̂ follow the usual commutation relation [q̂,p̂] =
i�. The kth spin- 1

2 particle or two-level atom obeys the

anticommutation rule {σ̂k,σ̂
†
k } = 1, the associated algebra

σ̂ 2
k = σ̂

†2
k = 0, and the commutation relations are [σ̂ †

k ,n̂k] =
−σ̂

†
k , [σ̂k,n̂k] = σ̂k, and [σ̂ †

k ,σ̂k] = σ̂zk , where n̂k = σ̂
†
k σ̂k is

the number operator for the kth spin bath. These relations
also imply σ̂zk = 2n̂k − 1. Thus the present model is basically
a spin bath analog of the Zwanzig version of the system-
harmonic bath model. Eliminating the bath degrees of freedom
as carried out in [24], we obtain the operator Langevin equation
for the particle,

¨̂q +
∫ t

0
dt ′ ˙̂q(t ′)κ(t − t ′) = f̂ (t), (39)

where the memory kernel and the noise operator are given by

κ(t − t ′) = 2�

∑
k

g2
k

ωk

cos ωk(t − t ′) (40)

and

f̂ (t) = −�

∑
k

gk[Ŝk(0)e−iωkt + Ŝ
†
k(0)eiωkt ], (41)

respectively. Ŝ†
k(0) and Ŝk(0) are shifted bath operators and are

defined by

Ŝ
†
k(0) = σ̂

†
k (0) + gk

ωk

q̂(0),

Ŝk(0) = σ̂k(0) + gk

ωk

q̂(0). (42)

Now, following Ref. [25] and the earlier section, one can
write the c-number Langevin equation for the present problem
in the Markovian limit as

ṗ = −γ0p + ηF (t), (43)

where γ0 is the frictional coefficient at this limit and 〈f̂ (t)〉 =
ηF (t) is given by

〈ηF (t)ηF (t ′)〉s = 2DF δ(t − t ′). (44)
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DF in the above equation is represented as

DF = γ0
�ω0

2
tanh

�ω0

2KBT
, (45)

where ω0 is the average value of the characteristic frequency
of the bath modes. The above equation suggests that the
temperature dependence of the diffusion constant (DC) for
the fermionic bath (FB) is quite different from the bosonic
one. The DC decreases with increase in temperature for the
FB, but it increases in the case of a BB. This can be understood
considering the number of accessible states for the bath modes.
For the bosonic bath, the number of accessible states increases
for each bath mode as the temperature of the bath grows. There
is no upper limit of the number of accessible states. Thus
the distribution of initial conditions for bath modes becomes
wider [Eq. (8)] with an increase in temperature. As a result,
the diffusion constant as well as the degree of randomness in
the Brownian system are enhanced for the bosonic thermal
bath as temperature rises. But in the case of a fermionic bath,
the opposite scenario occurs because of the finite number
(only two) of accessible states for each bath component. With
an increase in temperature, the bath mode is arrested more
strongly at the excited state, with a decreasing probability
of transition to the ground state. As a signature of that, the
distribution of initial conditions in c number for bath modes
becomes narrower as the temperature of the fermionic bath
grows [24]. Therefore, the diffusion behavior of the Brownian
system, which is coupled to the fermionic thermal bath, is
suppressed as the temperature of the bath grows. In other
words, with increase in temperature, the population difference
between the two levels of the bath modes decreases and the
FB becomes inert.

The Langevin equations (6) and (43) are similar in structure
and therefore, following the previous section, one can write the
nonequilibrium temperature [θF (t)] and entropy production
(ṠF ) for the quantum system which is coupled to the fermionic
bath as

θF (t) = σF (t)

2kB

, (46)

and

ṠF = kB

[
−γ0 + 2DF

σF

]
. (47)

In the above equations, σF measures the width of the phase
space distribution function and is given by

σF (t) = 2DF

γ0
[1 − exp(−2γ0t)] + σF (0) exp(−2γ0t). (48)

We now write other relevant quantities, such as the lower
bound of θF (t) and the upper bound of ṠF . The dependence of
these quantities on the characteristics of the thermal bath obey
the following relations:

LBF = DF

kBγ0 + UBF

, (49)

and

UBF = kB

[
α2γ 2

0 + γ 2
0 σF

2
+ 2D2

F

σF

− 2γ0DF

] 1
2
[

2

σF

] 1
2

.

(50)

In the above two equations, LBF and ṠF are the lower bound
of nonequilibrium temperature and upper bound of entropy
production, respectively.

From Eqs. (46) and (49), one can easily determine the
deviation of the nonequilibrium temperature from its lower
bound as

�θBF = σF (t)

2kB

− DF

kBγ0 + UBF

. (51)

Similarly one can also easily determine the difference between
entropy production and its upper bound from Eqs. (47) and (50)
and it is given by the following relation:

�UBF = UBF − dSF

dt

= kB

[
α2γ 2

0 + γ 2
0 σF

2
+ 2D2

F

σF

− 2γ0DF

] 1
2
[

2

σF

] 1
2

+ kBγ0 − kB

2DF

σF

. (52)

In the next section, we will compare the results of the
present section with that of the previous section.

IV. COMPARATIVE STUDY OF THE EFFECT
OF BOSONIC AND FERMIONIC BATHS ON

NONEQUILIBRIUM TEMPERATURE, ENTROPY
PRODUCTION, AND THEIR BOUNDS

To demonstrate the time dependence of the entropy pro-
duction (EP) and its upper bound (UB), we have calculated
these quantities as a function of time and plotted them in
Fig. 1 for the bosonic thermal bath. In the same figure, we
have also demonstrated the time dependence of the deviation
of the bound from the entropy production. Figure 1 shows
that the EP, UB, and the deviation monotonically decrease
(as functions of time) to their equilibrium values. We now
explain the monotonic decrease of entropy production and
its upper bound. At the initial time, phase space volume is
small and noise starts to work to expand the space against
the damping. The signature of noise should be significant
at this regime compared to the long time situation when the
system already has large phase space volume. Thus, at t → 0,
the phase space expansion rate, entropy production, and its
upper bound are maximum. With the progression of time, the
phase space volume increases monotonically. Consequently,
the above-mentioned quantities decrease regularly to their
equilibrium values with the progression of time. This signature
is implied in Eq. (30). As the system approaches the equilib-
rium state, the width of the distribution function increases and,
according to that, the entropy production decreases. Similarly
the entropy production and the other related quantities also
monotonically decrease for the fermionic thermal bath. This
has been demonstrated in Fig. 2. Inspecting Figs. 1 and 2,
one may conclude that the rates of decrease of entropy
production and its upper bound increase as the temperature
of the bosonic bath (BB) grows. This order reverses for the
fermionic bath. One can account for these facts considering
the temperature dependence of the diffusion constant (noise
strength) for both cases. We have already discussed the
temperature dependence of DB and DF in detail after Eq. (45).
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FIG. 1. (Color online) Demonstration of the variation of infor-
mation entropy production, its upper bound, and their difference as a
function of time for the given parameter set σB (0) = 0.1, α(0) = 1.0,
�ω0
kB

= 1.0, and γ0 = 0.1 for bosonic thermal baths. (a) Entropy

production ṠB for the bosonic thermal bath, (b) upper bound (UBB )
of entropy production for the bosonic thermal bath, and (c) deviation
of the bound from the entropy production (�UBB ) for the bosonic
thermal bath (arbitrary units).

FIG. 2. (Color online) Demonstration of the variation of infor-
mation entropy production, its upper bound, and their difference as a
function of time for the given parameter set σF (0) = 0.1, α(0) = 1.0,
�ω0
kB

= 1.0, and γ0 = 0.1 for the fermionic thermal bath. (a) Entropy

production ṠF for the fermionic thermal bath, (b) upper bound (UBF )
of entropy production for the fermionic thermal bath, and (c) deviation
of the bound from the entropy production (�UBF ) for the fermionic
thermal bath (arbitrary units).
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However, for higher noise strength, the equilibrium phase
space volume is greater. It implies that for strong random
force [corresponding to a large diffusion constant (DC)],
the phase space volume varies rapidly and thereby entropy
production as well as its bound change at faster rates with
an increase of the diffusion constant (DC) when damping
strength (relaxation time) is fixed. Therefore, an increase in
temperature results in an enhancement of the DC as well as
the rates of decrease of entropy production and its bound in
the case of a BB. But, in the case of the FB, the rising of
temperature suppresses the diffusion process as the two-level
bath becomes inert as a signature of the decrease of the popula-
tion difference. This accounts for the above-mentioned reverse
order.

We now consider the difference between entropy produc-
tion (EP) and its upper bound. It is apparent in Figs. 1 and 2
that the difference is higher for a lower diffusion constant.
In other words, if the noise is weak against the phase space
contracting damping force, then the deviation is significant. It
is supported by the fact that with the progression of time, noise
becomes more effective in the dynamics, and the deviation of
the upper bound from entropy production decreases as the
system approaches the equilibrium state. It suggests that the
deviation grows as the temperature of the bosonic thermal
bath decreases and the trend reverses for the fermionic bath.
This observation is a clear signature of the amount of relative
fluctuation in phase space volume. It is obvious that if the
relative fluctuation is higher, then the deviation of the bound
from the entropy production is greater. For small phase space
volume, the relative fluctuations in volume are large. Thus the
deviation at the initial time of the dynamics is highest and it
decreases regularly with the progression of time as the phase
space volume grows. Using the same argument, one can easily
explain the temperature dependence of the deviation of the
upper bound from the entropy production.

In the next step, we have demonstrated the time dependence
of the nonequilibrium temperature (NET) and its lower bound
(LB) in Figs. 3 and 4 for the bosonic and the fermionic thermal
baths, respectively. In these figures, we have also demonstrated
the deviation of the NET from the lower bound. Monotonic
increase of the nonequilibrium temperature and its LB is a
signature of regular growth of the phase space volume of
the system. At an early stage of dynamics, rapid growth of
the entropic temperature suggests that the Brownian force
induced phase space expansion rate is high at this regime and
the rate monotonically decreases to zero at equilibrium. One
can account for the temperature-dependent growth rate based
on the earlier discussion.

We now consider the deviation of the NET from its lower
bound. The nonequilibrium temperature is proportional to the
width of the distribution function, and the LB depends on the
upper bound of entropy production, which is also related to
the width in a complex manner. It is apparent in Figs. 3 and 4
that the interplay of the width of the distribution function
and the upper limit of the information entropy production, in
general, produces a maximum in the variation of the deviation
(�θBB , �θBF ) as a function of time. Figure 4(c) suggests that
the interplay may also result in a monotonic decrease of the
deviation, particularly at the regime of very small diffusion
coefficient.

FIG. 3. (Color online) Demonstration of the variation of the
nonequilibrium temperature, its lower bound, and their difference as a
function of time for the parameter set σB (0) = 0.1, α(0) = 1.0, �ω0

kB
=

1.0, and γ0 = 0.1. (a) Nonequilibrium temperature (θBB ) for the
bosonic thermal bath, (b) lower bound (LBB ) of the nonequilibrium
temperature for the bosonic thermal bath, and (c) deviation of the
bound from the nonequilibrium temperature (�θBB ) for the bosonic
thermal bath (arbitrary units).
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FIG. 4. (Color online) Demonstration of the variation of the
nonequilibrium temperature, its lower bound, and their difference
as a function of time for the parameter set σF (0) = 0.1, α(0) = 1.0,
�ω0
kB

= 1.0, and γ0 = 0.1. (a) Nonequilibrium temperature θBF for the
fermionic thermal bath, (b) lower bound (LBF ) of the nonequilibrium
temperature for the fermionic thermal bath, and (c) deviation of the
bound from the nonequilibrium temperature (�θBF ) for the fermionic
thermal bath (arbitrary units).

FIG. 5. (Color online) Demonstration of the variation of the
nonequilibrium temperature as a function of thermodynamic tem-
perature of the thermal bath for the parameter set σB (0) = σF (0) =
0.1, α(0) = 1.0, t = 5.0, �ω0

kB
= 1.0, and γ0 = 0.1 (arbitrary units).

In Fig. 5, we have presented the variation of the nonequi-
librium temperature as a function of temperature of the
thermal bath. It shows that at the low temperature regime
of the bosonic thermal bath, θB increases nonlinearly as the
diffusion coefficient is not proportional to the temperature
of the thermal bath. As the bath approaches the classical
limit, the diffusion coefficient as well as the nonequilibrium
temperature become a linear function of the thermodynamic
temperature. We now consider the case of the fermionic
bath. For this bath, the entropic temperature decreases as a
nonlinear function of temperature. This is a consequence of
the decrease of the population difference between the two
levels of the thermal bath. Thus the bath becomes inert as the
thermodynamic temperature (TT) grows. As a result, both the
diffusion coefficient as well as the nonequilibrium temperature
decrease regularly with an increase of the TT.

V. CONCLUSION

In this paper, we have studied relaxation of nonequilibrium
quantum systems based on the Fokker-Planck description cor-
responding to c-number Langevin equations of motion. Using
the distribution function, we have calculated the Shannon
entropy production, entropic temperature, and their bounds.
Our study includes the following major points.

(i) Entropy production and its upper bound as functions
of time monotonically decrease to their equilibrium values.
The deviation of the bound from the entropy production also
regularly decreases to zero magnitude. At a given time, the
deviation becomes smaller as the temperature of the bosonic
bath grows. But, for the fermionic bath, the trend reverses with
the variation of temperature.

(ii) There is a lower bound of nonequilibrium temperature.
Both the NET and its lower bound monotonically increase to
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their equilibrium values with the progression of time. But their
difference as a function of time shows an optimum behavior
in most cases. It may decrease monotonically as shown for the
fermionic thermal bath.

(iii) At low thermodynamic temperature, the entropic
temperature increases nonlinearly as a function of T for the
bosonic thermal bath. If the temperature is appreciably high,
then it increases linearly. But for the fermionic thermal bath,
the NET decreases as a nonlinear function of thermodynamic
temperature to zero value.

The nonequilibrium temperature is a very important quan-
tity as it is able to give an idea about the degree of randomness
in a Brownian system at the nonstationary state (NSS). There-
fore, one may explain the properties of Brownian particles at

the NSS easily in terms of it. As it is a recently derived quantity
[7], the expression of the properties of stochastic systems as
a function of the NET may open a new branch in the field of
nonequilibrium statistical mechanics. Following the present
method, the study of the NET of a Brownian particle having
charge in the presence of Lorentz force may appear elsewhere.
One may also extend the present study for the non-Markovian
thermal bath.
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