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Critical behavior of a quantum chain with four-spin interactions
in the presence of longitudinal and transverse magnetic fields
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We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions
in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size
scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of
phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and
antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins
followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated
by either first- or second-order transition lines.
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I. INTRODUCTION

There has recently been considerable effort to understand
magnetic phase transitions in quantum systems described by
Hamiltonians with multispin interactions. Ultracold atoms
trapped in optical lattices under idealized laboratory condi-
tions, in particular, are suitable to simulate these systems [1–7].
A variety of spin Hamiltonians have been physically realized
on optical lattices, making possible the experimental study of
the zero-temperature phase diagrams of those systems.

Recently, Simon et al. [1] presented a detailed procedure
for the experimental realization of Ising antiferromagnetic
spin chains in the presence of longitudinal and transverse
magnetic fields. Their work opened new possibilities for the
investigation of quantum magnetism and criticality in these
systems.

Besides the usual competition between various magnetic-
ordered ground states, such as ferromagnets, antiferromagnets,
and paramagnets, the advent of optical lattices has allowed
the study of more complex interactions that give rise to
novel ground-state properties in magnetic systems [7,8]. The
presence of higher order spin interactions usually induces
unusual properties not found in regular spin systems, bringing
out a richer criticality.

Theoretical investigations of quantum phase transitions
in magnetic spin chains with three- and four-spin exchange
interactions have revealed novel phases and ground states
with multiple periodic structures and unique entanglement
properties [8–11]. In particular, the influence of magnetic
fields on low-dimensional quantum spin systems with complex
interactions is a subject of great interest that may lead to
the observation of re-entrant behaviors and high-field-driven
transitions [12,13].
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The remarkable success of the experimental work in
optical lattices simulating these spin systems has contributed
significantly to the renewed interest in the theoretical study
of these quantum models. To our knowledge, the effect of
an additional longitudinal magnetic field on the ground-state
properties of the four-spin quantum chain in a transverse
magnetic field has never been investigated, and it is the subject
of this paper. Our aim is to obtain the phase diagrams and to
understand the nature of the phase transitions and ground-state
properties of the model.

II. THE MODEL

Consider a spin-1/2 magnetic chain with periodic boundary
conditions. The spins are subjected to a magnetic field with
components in the longitudinal and transverse directions. The
interaction among the spins is dictated by a four-spin Ising-like
term. The Hamiltonian of the system may be written as

H = −J4

∑
i

σ z
i σ z

i+1σ
z
i+2σ

z
i+3 − Hx

∑
i

σ x
i − Hz

∑
i

σ z
i .

(1)

Here, σα
i (α = x,y,z) are the components of the Pauli operator,

located at site i. The parameter J4 is the Ising-like four-
spin interaction strength. The uniform magnetic field has
components Hx and Hz along the transverse and longitudinal
directions, respectively.

For Hx = 0 quantum fluctuations are absent, however,
depending on the values of fields and couplings,the model may
show a variety of phases. For instance, when the four-spin
coupling J4 > 0.0, the sign of the longitudinal field Hz

determines the direction of the magnetization. For Hz > 0,
the system shows a classical ferromagnetic phase with all the
spins aligned in the +z direction, the F(+z) phase. On the other
hand, if Hz < 0, the ensuing phase has net magnetization along
the −z direction, the F(z) phase.

The case where J4 < 0 shows four phases, namely, the
ferromagnetic F(±z) and 〈3,1〉(±) phases. The latter are
formed by three consecutive up (down) spins followed by
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one down (up) spin. There is a transition point at (Hz,Hx) =
(0.0,0.0) between the 〈3,1〉(+) and the 〈3,1〉(−) phases, as
well as at (Hz,Hx) = (±4.0,0.0), separating the 〈3,1〉(+) from
the F(+z) and the 〈3,1〉(−) from the F(−z) phases. The
particular case of the transverse four-spin Ising model (Hx �= 0
and Hz = 0) was shown to be self-dual, with critical points at
J4/Hx = ±1 [14,15].

In this paper we investigate the ground-state properties of
the Hamiltonian model [Eq. (1)] using two numerical methods:
entanglement entropy and finite-size scaling. The first method
is based on the behavior of von Neumann entanglement
entropy, which is mostly used in information theory. That
method enables one to calculate the location of the quantum
critical points with a relatively high degree of accuracy, as well
as providing a way to identify the nature of the transitions.
In addition, the method makes it possible to determine the
central charge of the associated conformal field theory with a
low computational cost, by using small lattice sizes [16,17].
The second method is based on finite-size scaling arguments,
which can be used to determine the transition lines and global
properties of the various ground states [18].

III. METHODS

A. Entropy entanglement

In this section we describe the entropy entanglement
method and show how to use it to locate the boundary between
quantum phases and how to find the central charge of the
associated conformal field theory. Consider a spin chain of
length L that can be partitioned into two subsystems A and B
of sizes LA = l and LB = L − l, respectively. When the entire
system is in a pure state |ψ〉, its entropy is 0. However, the
entropy of each subsystem is finite and can be quantified by
the von Neumann entropy, defined as

S(L,l) = −Tr(ρA ln ρA) = −Tr(ρB ln ρB), (2)

where ρA(B) = TrB(A)ρ denotes the reduced density matrix of
A(B) and ρ = |ψ〉〈ψ | is the density matrix of the pure state.
The von Neumann entropy S(L,l) gives a reliable measure of
the entanglement between subsystem A and the rest of the
system B.

For finite systems, Calabrese and Cardy [19] showed
that conformal invariance implies a diverging logarithmic
scaling for the entanglement entropy. In particular, for a
one-dimensional system of size L with imposed periodic
boundary conditions, it assumes the form

S(L,l) = c

3
ln

[
L

π
sin

(
πl

L

)]
+ β, (3)

where c is the central charge of the underlying conformal field
theory and β is a nonuniversal constant which depends on the
model being used.

To locate the boundary between possible quantum phases,
we first calculate the entanglement entropy difference between
two subsystems of sizes l and l′ [16,17],

�S = S(L,l) − S(L,l′), (4)

where L is the size of the spin system. Consider initially a
system that undergoes a second-order phase transition when

a parameter λ of its Hamiltonian reaches a critical value λc.
If the system is finite, the entanglement entropy difference
remains finite for all values of λ, reaching a maximum at λc.
As the size of the system L is increased, the peak of �S at
λc becomes progressively narrower. Its value at the transition
tends to a finite value, whereas its value elsewhere tends to 0.

Next consider the case of a system that undergoes a first-
order transition. Although �S still shows a maximum at the
transition point, it diminishes everywhere as L → ∞. Such
behavior of the entanglement entropy difference is used as an
indicator of the boundary between two phases and to identify
the nature of the transition at that point.

In the scaling regime, where Eq. (3) is valid, we have 1 �
l,l′ � L. As a practical matter, to fulfill these conditions and
minimize finite-size effects, we choose l = L/2 and l′ = L/4
in our calculations [16]. Using these values for the subsystems
sizes and Eqs. (3) and (4), we obtain

c = 6 �S/ ln(2) . (5)

A systematic increase in the system size L and subsequent ex-
trapolation to the infinite-size limit will provide an estimation
of the value of the central charge.

B. Finite-size scaling

The finite-size scaling method is another way to locate the
boundaries between different quantum phases. This method
requires knowledge of the first two lowest energy states of the
Hamiltonian, E0 and E1.

Consider, again, a Hamiltonian model that depends on a
parameter λ that becomes critical at λc. It has been pointed
out [20] that for a system undergoing a second-order phase
transition, the energy gap between the two lowest energy
states of the system, G(λ) = E1(λ) − E0(λ), vanishes at the
infinite-size limit. For a finite system, at criticality it obeys
the following power-law dependence with the size L of the
system:

G(L,λc) ≡ [E1(L,λc) − E0(L,λc)] ∝ L−z. (6)

Here z represents the dynamical critical exponent of the system
[20], which, for one-dimensional systems that are conformal
invariant, equals 1. For simplicity, from now on we set z = 1
in all expressions in which it appears.

The finite-size estimation of the critical parameter λc(L,L′)
is dependent on the choice of the two system sizes L and
L′. The critical point is then found as a solution of the
phenomenological renormalization equation:

LG(L,λc) = L′G(L′,λc). (7)

The infinite-size value of the critical parameter is calculated
by extrapolating the values obtained from Eq. (7) using
increasingly larger system sizes L and L′.

The ground-state and the first excited-state energies and
their corresponding eigenstates are calculated as a function of
λ by using a modified Lanczos method [21]. To speed up the
calculations we use trial initial vectors which are as close as
possible to the actual ground-state vectors. The eigenvectors
and eigenvalues for the ground states are determined with a
precision of between 10−10 and 10−12. The same quantities for
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the first excited states are obtained with a precision of between
10−5 to 10−6.

To identify the nature of each phase we need to examine
the corresponding ground-state eigenvectors. We start by
writing the Hamiltonian on a basis that consists of the product
of the eigenstates |s >i (s = 0,1) of the spin operator Sz

i ,
i = 1, . . . ,L. Here the labels s = 0 and s = 1 correspond to
the z component of the spin state at site i, pointing down
and up, respectively. Now, an arbitrary basis state of the full
Hamiltonian can be written as |n >= ∏L

i |s >i , with the basis
state labels n = 0,1, . . . ,N − 1, where N = 2L determines the
dimension of the Hilbert space for a given system size L. An
arbitrary state of the system can now be written as

|ψα〉 =
N−1∑
n=0

bα(n)|n〉, (8)

where α = 0 labels the ground state, and α = 1 the first excited
state. The coefficients bα(n) are the amplitudes of each of the
basis states |n〉 of the linear combination forming the arbitrary
state |ψα〉. Those coefficients are all real, since the Hamiltonian
matrix is real and symmetric.

The basis state labels n can be written in binary notation
with L digits. The ith position and the value of these digits
coincide with the eigenstate of Sz

i at that site. By plotting the
coefficients bα(n) as a function of the basis label n, we obtain
a representation of the quantum state in a single graph and a
full characterization of the nature of that state [10].

IV. RESULTS

We have carried out numerical calculations to investigate
the quantum phase transitions of the Hamiltonian, Eq. (1),
using the methods of entanglement entropy and finite-size
scaling. We considered chains containing up to 24 spins and
used periodic boundary conditions.

First, we set J4 = 1.0 and search for phase transitions
by varying the magnetic field components Hz and Hx . Our
numerical results for the phase diagram in the (Hz-Hx) plane
are shown in Fig. 1. The transition lines (with triangles)
separate a ferromagnetic phase with net magnetization in the x

direction, F(+x), from two ferromagnetic phases, F(+z) and
F(−z), with spins aligned along the +z and −z directions,
respectively.

In the absence of the four-spin interaction, the phase
transition lines in Fig. 1 would be along the lines Hx = ±Hz.
Under the present conditions however, the field Hz reinforces
the ferromagnetic order caused by the four-spin interaction.
Therefore, it takes a larger transverse field Hx to change
the direction of the net magnetization from the ±z to the x

direction as Hz increases.
Note that at Hz = 0.0, the critical transverse field is

given by Hx = J4 = 1.0, a known result [14,15]. For Hz = 0
and 0.0 < Hx < 1.0, there is a transition line (with crosses)
separating the ferromagnetic phases, F(+z) and F(−z). Along
that line the quantum state is predominantly formed by states
with ferromagnetic, antiferromagnetic, and 〈2,2〉 orderings.
The latter is a modulated ordering formed by two up spins
followed by two down spins, or vice versa.

-4 -2 0 2 4
Hz

0

2

4

6

Hx

J4 = 1.0

F (+z)

F (+x)

F (−z)

FIG. 1. Phase diagram in the (Hz-Hx) plane for J4 = 1.0. Tri-
angles separate a field-induced ferromagnetic phase with net mag-
netization in the x direction, F(+x), from two induced phases with
magnetizations along the ±z directions, F(+z) and F(−z). Crosses
separate the ferromagnetic phases along ±z. All transition lines are of
first order. Data shown were obtained with the entanglement entropy
method.

The nature of the phase transitions is inferred from the
dependence of the maximum of the entanglement entropy
difference �Smax as a function of the system size L.
Figure 2 shows the results for the case J4 = 1.0 and critical
fields (Hz,Hx) = (0.10,1.20) and (0.50,1.76). Data points
were obtained along the transition line between the ferromag-
netic phases in the +x and +z directions, which is shown in
Fig. 1. �Smax decreases with L, suggesting that the transition
is of first order. The other transition lines in Fig. 1 produce
similar behavior for �Smax, indicating that the transitions are
all of first order.

By reversing the sign of the four-spin interaction to J4 =
−1.0, the model shows a richer phase diagram in the (Hz-Hx)
plane, which is shown in Fig. 3. For low fields, the phases are
the 〈3,1〉 ground states, together with background noise-like
components caused by the transverse field. For Hz > 0.0, the
ground states are dominated by the sequence of three spins up

10 12 14 16 18 20 22 24 26
L

0.00

0.01

0.02

0.03

ΔS
m

ax

(Hz, Hx) = (0.10, 1.20)
(Hz, Hx) = (0.50, 1.76)

J4= 1.0

FIG. 2. Peak values of the entanglement entropy difference
�Smax, as a function of the size of the system L, for J4 = 1.0
and critical fields (Hz,Hx) = (0.10,1.20) and (0.50,1.76), along the
transition line between the ferromagnetic phases in the +x and +z

directions, which is shown in Fig. 1. In the two cases depicted,
�Smax decreases with L, indicating that the transition between the
field-induced phases is of first order.
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FIG. 3. Phase diagram in the (Hz-Hx) plane for the case J4 =
−1.0. Squares and circles lie on a second-order transition line which
separates a ferromagnetic phase with net magnetization in the x

direction, F(+x), from the phases 〈3,1〉(+) for Hz > 0 and 〈3,1〉(−)
for Hz < 0. For Hz = 0 and 0 � Hx � 1.0, there is a first-order
transition line (with asterisks) between the 〈3,1〉 phases. For |Hz| > 4
there are two first-order transition lines (with triangles), separating
the ferromagnetic phase F(+x) from the ferromagnetic phases F(+z)
and F(−z). Squares were obtained using finite-size scaling, while
other data points were determined by entanglement entropy.

followed by one spin down, the 〈3,1〉(+) phase. Conversely,
for Hz < 0.0 the ground state consists of the sequence of three
spins down followed by one spin up, the 〈3,1〉(−) phase. There
is a first-order transition line (with asterisks) between these
two phases along the line segment 0.0 � Hx � 1.0 located
at Hz = 0.0. There, the quantum state with most dominant
components exhibit both 〈3,1〉(+) and 〈3,1〉(−) orderings. In
the region |Hz| < 4.0, there are two second-order transition
lines (with squares and circles) separating the F(+x) phase
from the 〈3,1〉 phases. These lines merge at the multicritical
point (Hz, Hx = (0.0,1.0). There are two other multicritical
points, located at (Hz,Hx) = (±4.0,0.0), where first- and
second-order transition lines meet. For |Hz| � 4.0, there are
two regions of ferromagnetic phases, F(+z) and F(−z), where
the spins are mostly aligned along the +z or −z direction.
As Hx increases, the competition between these phases and
the F(+x) phase produces phase transition lines of first order
(with triangles).

The numerical analysis leading to the nature of the
transitions is, again, based on the behavior of the maximum
of the entanglement entropy difference versus the system size.
The entropy differences along the transition lines between
the F(+x) and the F(±z) phase show a behavior similar
to that of the differences shown in Fig. 2, therefore they
can be viewed as first-order transition lines. On the other
hand, the transition lines between the 〈3,1〉(±) and the F(±z)
phases can only be analyzed in lattices with periodicity-of-four
site spacings. That is, the size L must be a multiple of 4,
so as to make the lattice commensurate with the 〈3,1〉(±)
orderings. Figure 4 shows the behavior of the maximum
of the entanglement entropy difference �Smax for L = 12,
16, 20, and 24. The data were obtained along the transition
line in the region 0.0 � Hz � 4.0 in Fig. 3 for two values
of the critical fields, (Hz,Hx) = (0.50,1.16) and (2.00,1.03).
At first, �Smax decreases with L. Then it passes through a

10 12 14 16 18 20 22 24 26
L

0.12

0.13

0.14

0.15

ΔS
m

ax

(Hz, Hx) = (0.50, 1.16)
(Hz, Hx) = (2.00, 1.03)

J4 = −1.0

FIG. 4. Maximum of the entanglement entropy difference �Smax

vs system size L for two values of the critical fields, (Hz,Hx) =
(0.50,1.16) and (2.00,1.03), along the transition line in the region
0 � Hz � 4 in Fig. 3. The increase in �Smax with L indicates that the
phase transition is of second order.

minimum and rises between L = 20 and L = 24. We believe
this trend will continue, so that the transition is of second
order. Unfortunately, at present, it is numerically prohibitive
to tackle larger lattices, considering that the next relevant size
would be L = 28.

For completeness we also perform calculations for Hx =
1.0 to investigate the occurrence of phase transitions when
the transverse field is kept constant, so that the system is
always in the quantum regime. The phase diagram in the
(J4-Hz) plane is shown in Fig. 5. The ferromagnetic phase
with net magnetization in the x direction F(+x) appears as
an island surrounded by the 〈3,1〉(+), 〈3,1〉(−), F(+z), and
F(−z) phases.

The transition lines separating the 〈3,1〉 from the F phases
are of second order. The other transition lines are all of
first order. Along the boundary line separating the 〈3,1〉
phases, the ground states are quantum states containing equal

-1 0 1
J4

-2

-1

0

1

2

Hz

Hx = 1.0

F (−z)

F (+z)

F (+x) 

<3,1> (−)

<3,1> (+)

FIG. 5. Phase diagram in the (J4-Hz)plane for the case Hx =
1.0. Triangles separate a field-induced ferromagnetic phase with
net magnetization in the +x direction, F(+x), from two other
ferromagnetic phases with magnetizations along the ±z directions,
F(+z) and F(−z). The phases 〈3,1〉(+) and 〈3,1〉(−) are separated by
a first-order transition line (with asterisks). For J4 > 1, there is a first-
order transition line (with crosses) separating the two field-induced
ferromagnetic phases F(+z) and F(−z). Squares are results from
finite-size scaling, while other data are from entanglement entropy.
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contributions from 〈3,1〉(+) and 〈3,1〉(−) configurations, as
well as from a background of states induced by the transverse
field. On the other side of the diagram for J4 > 1.0, along the
transition line between the two F phases, the ground states
are formed by the coexistence of ferromagnetic, antiferro-
magnetic, and 〈2,2〉 orderings, with additional background
states caused by the presence of the transverse magnetic field.
Finally, there are four multicritical points, which are located
at (J4,Hz) = (−0.84 ± 0.01, ±0.74 ± 0.01) and (±1.0, 0.0).

V. CONCLUSIONS

We have studied the competing effects of a magnetic field
with components in the longitudinal and transverse directions
on the quantum behavior of an Ising-like chain with four-spin
interactions. The entanglement entropy and finite-size scaling
methods have been used to obtain the phase diagrams of the

system. A rich variety of quantum phases and multicritical
points have been shown to be present in the model. Both first-
and second-order transitions are observed among the phases.
Under certain conditions the physics of atoms interacting
in a one-dimensional lattice may be captured by the model
Hamiltonian analyzed here. It would be interesting to see how
optical lattice techniques could be implemented to simulate
the present model.
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