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Stochastic resonance in the two-dimensional q-state clock models
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We numerically study stochastic resonance in the two-dimensional q-state clock models from q = 2 to 7 under
a weak oscillating magnetic field. As in the mean-field case, we observe double resonance peaks, but the detailed
response strongly depends on the direction of the field modulation for q � 5 where the quasiliquid phase emerges.
We explain this behavior in terms of free-energy landscapes on the two-dimensional magnetization plane.
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I. INTRODUCTION

A weak input signal can be amplified by noise. This is called
stochastic resonance (SR) and there has been a vast amount of
theoretical and experimental studies about this phenomenon
[1]. For a system with a single degree of freedom, SR can
be illustrated by a particle trapped in a double-well potential
but constantly hit by random noise: The particle inside one
minimum moves to the other due to the noise, and this happens
with a characteristic time scale τ denoted by the relaxation
time. If we apply weak force that oscillates with frequency
f ∼ τ−1, which is termed the time-scale matching condition,
the particle can jump over the potential barrier back and forth
in a periodic manner, amplifying the input force.

In many practical situations, the noise is given by thermal
contact with a heat bath, and τ thus depends on temperature
T [2,3]. For a system with a single degree of freedom, τ

is described by the simple Kramer rate [4], which diverges
exponentially at T = 0. As a result, if we consider the response
as a function of T , the time-scale matching condition is usually
fulfilled at a single point, and multiple resonance peaks are
observable only when the dynamics has certain symmetry
[5]. For a system with many degrees of freedom, on the
other hand, τ is not necessarily explained in that way: If the
system undergoes a continuous phase transition at T = Tc, for
example, τ diverges at this critical point. In other words, τ−1

has a nonzero value over the whole temperature region except
at Tc. Therefore, as long as f is low enough, the matching
condition can be satisfied once above Tc and once below Tc,
so the resonance will take place twice as T varies from zero
to infinity. The prediction of double peaks has been confirmed
in various many-body systems under periodic perturbations,
including classical spin systems [2,6,7] as well as a quantum-
mechanical case [8]. However, most of these systems share
one common feature that they undergo spontaneous symmetry
breaking in the absence of external perturbations. Our question
in this study is how the response changes if a system possesses
the quasi-long-range order without spontaneous symmetry
breaking, and the two-dimensional (2D) q-state clock model
[9] can be the best candidate to systematically investigate this
problem. This model has played an important role in a 2D
melting scenario [10], and some experimental studies suggest
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a connection of this model to the domain pattern in ferroelectric
materials [11].

Let us review some equilibrium properties of this model.
The Hamiltonian of the q-state clock model in the L × L

square lattice is written as

H = −J
∑
〈j,k〉

Sj · Sk − h ·
∑

j

Sj , (1)

where J is a coupling constant,
∑

〈j,k〉 runs over the nearest
neighbor pairs, and h is an external magnetic field. Each
spin Sj at site j has a discrete angle θj = 2πnj/q with
nj = 0,1,2, . . . ,q − 1. If q = 2, the model reduces to the
Ising model, and it approaches the XY model as q → ∞.
The magnetization is given as a 2D vector m = N−1 ∑

j Sj ,
where N ≡ L2 is the total number of spins, and it can also
be written as a complex number meiφ = N−1 ∑

j eiθj with
m ≡ |m|. Suppose that the field h is absent. For q < 5,
the system undergoes a single order-disorder transition and
we may well expect double resonance peaks [2,6,7]. On
the other hand, if q � 5, there appear two infinite-order phase
transitions, one at Tc1 and the other at Tc2(>Tc1) [14,15]. In the
disordered phase at T > Tc2, the spins are randomly rotated
by thermal fluctuations to one of the q possible directions
so that two spins are not much correlated if placed just a
few lattice spacings apart. It is obvious that m vanishes in
this phase. When T < Tc1, on the other hand, almost all the
spins point in the same direction, yielding nonzero m. In
this ordered phase, thermal fluctuations are so weak that a
spin can only individually deviate from the preferred direction
every once in a while. It implies that there is no appreciable
collective mode and we again find short-ranged correlation in
spin fluctuations. The intermediate phase between Tc1 and Tc2

is actually more interesting than the other two surrounding
it because the spin-spin correlation decays algebraically with
a diverging correlation length ξ → ∞. The spin relaxation
time τ also diverges because τ ∼ ξz with a dynamic critical
exponent z > 0. This intermediate phase is sometimes dubbed
quasiliquid due to the nontrivial correlations in space and time.
Since τ−1 is zero in the quasiliquid phase (Fig. 1), we deduce
that the time-scale matching condition can be satisfied below
Tc1 and above Tc2, but not in between.

It is instructive to see the free-energy landscape f (m) in the
2D magnetization plane (Fig. 2). It can be estimated as f (m) ∝
−kBT ln p(m), where kB is the Boltzmann constant and p(m)
means the probability to observe m in Monte Carlo (MC)
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FIG. 1. (Color online) Relaxation time τ of the five-state clock
model in equilibrium at h = 0, obtained from the normalized
autocorrelation function of m (see Ref. [12]). The temperature T

is given in units of J/kB , where kB is the Boltzmann constant, and
the vertical lines indicate Tc1 and Tc2 in the thermodynamic limit,
respectively, estimated in Ref. [13]. As the system size increases,
τ−1 vanishes in the quasiliquid phase between Tc1 and Tc2, where
m = meiφ may freely wander around in the angular direction.

simulations. We have obtained Fig. 2 by simulating the model
on a 80 × 80 square lattice, where both J and kB are set to
unity. For better visualization, the landscapes are drawn upside
down so that a free-energy minimum appears as a peak. In the
disordered phase at T > Tc2, the free-energy landscape has a
global minimum at the center [Fig. 2(a)], which implies m = 0
in the thermodynamic limit as explained above. One should
note that the nonzero m in the disordered and the quasiliquid
phases is a finite-size effect which eventually vanishes as
N → ∞. In the disordered phase, m can take any angle φ

between zero and 2π , and the minimum gets broader as T

decreases [Fig. 2(b)]. It is important that the transition at Tc2 is
not involved with spontaneous symmetry breaking [Figs. 2(c)
and 2(d)], and the breaking happens only when T is lowered
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FIG. 3. Comparison between the inverse relaxation time, mea-
sured from the autocorrelation of m, and the curvature of the
free-energy landscape (see Fig. 2) near its minimum with varying
T . Each data point represents a different T in the high-temperature
phase (1.1 � T � 1.2) for the system of the size L = 80. The error
bar is smaller than the symbol size.

further down to Tc1 [Figs. 2(e) and 2(f)]. When the system
is perturbed slightly from a minimum of this free-energy
landscape f (m), we expect dm/dt ∝ −∂f/∂m [7]. In other
words, if the minimum is approximated as f (m) ≈ 1

2κ|m|2 in
the high-temperature phase, our guess is that the coefficient
κ will be inversely proportional to the relaxation time τ since
dm/dt ∝ −κm. Such a relation is well substantiated in Fig. 3.
If we further extend this observation to lower temperatures, the
shapes of the landscapes immediately suggest the existence of
two different time scales, i.e., one in the radial direction and the
other in the angular direction, which we denote by τ‖ and τ⊥,
respectively. Even if a time-dependent external field is applied,
as long as it is weak enough, the free-energy picture can still
provide us with qualitative understanding. We therefore expect
from Fig. 2 that the SR behavior will depend on the modulating
direction of h when q � 5 and T < Tc2.

This speculation is readily confirmed by our numerical
calculations. By measuring correlation between m and h as
will be detailed below, we observe the followings: When a
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FIG. 2. (Color online) Free-energy landscapes on the magnetization plane, drawn upside down for the five-state clock model with size
N = 80 × 80 (see text for details).
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time-varying field h is applied in the direction of m, we find that
the transition point Tc2 is sandwiched between two SR peaks as
in the Ising case [2,6,7], though the one below Tc2 is broadened
all the way down to Tc1. If the driving field h is orthogonal
to m, the behavior becomes radically different because it is
the whole quasiliquid phase rather than a single point that is
surrounded by two SR peaks. We first begin by explaining
our numerical method in the next section and then present the
results in Sec. III. By discussing the physical implications of
our results, we conclude this work in Sec. IV.

II. NUMERICAL METHOD

In the case of the Ising model (q = 2), it is a common
practice to use the kinetic Glauber-Ising dynamics [16] when
one studies its behavior slightly out of equilibrium [3,6]. It
is worth noting that this approach has achieved qualitative
agreements with experimental observations such as dynamic
hysteresis [17]. We need to generalize the Glauber dynamics
for simulating the q-state clock model [7], the result of which
essentially corresponds to the heat-bath algorithm among MC
methods [18]. Although MC algorithms are not meant to
simulate dynamic properties, it has been widely accepted that
they can effectively describe real dynamics as long as it is
equipped with a local update rule and a small acceptance
ratio [19]. So our algorithm works as follows: We randomly
choose a spin, say, Sj with θj = 2πnj/q, and calculate how
much the energy would change if the angle was switched to
θ ′
j = 2πn′

j /q. Denoting this amount of change by 	E(n′
j ),

the probability to choose n′
j as its next value is given as

p(n′
j ) ∝ exp[−	E(n′

j )/T ] with a normalization condition∑
n′

j
p(n′

j ) = 1.
The underlying geometry is the L × L square lattice with

periodic boundary conditions, the size of which varies between
L = 40 and 160. The time t in MC simulations is measured
in units of one MC time step, which corresponds to N

MC tries for spin update. We will fix the field amplitude
h0 = 10−2 and frequency f = 10−3, respectively, throughout
this work. As mentioned above, we may consider two
different field directions: Since the angle of m is denoted
as φ, the field in the parallel direction is written as h‖(t) =
h0 cos 2πf t(cos φ, sin φ), while in the perpendicular direction
it is written as h⊥(t) = h0 cos 2πf t(− sin φ, cos φ). Since
φ is also time dependent, we need to measure it at the
beginning of each period to adjust the field direction, but
it should be kept fixed within the period. We are going
to apply either h‖ or h⊥ to the system and compare the

responses. We point out that an external field h in a fixed
direction can be decomposed into two components (parallel
and perpendicular to m) and the system’s response contains
contributions from both components. We drive the system
either by h‖ or by h⊥ only to identify the physical mechanism
of the resonance behavior more clearly in comparison to the
temperature-dependent free-energy landscape in Fig. 2. Our
main observable is defined as

D ≡
〈

1

h0


∫ (n+1)


n


m · hdt

〉
, (2)

where the integral is over one period 
 ≡ f −1 and the bracket
means the average over n ∈ [101,900] with the transient
behavior in early times (n ∈ [0,100]) neglected. In one limiting
case where T → ∞, D should be identically zero since m

vanishes there. In the other limiting case where T → 0, m is
frozen regardless of the small perturbation h so that the integral
of the cosine over one period yields zero again. Only when m
runs closely after h, the integrand gives positive contribution
on average, and we interpret a large value of D as signaling the
stochastic resonance behavior. At the same time, one should
note that m ⊥ h may also induce vanishingly small D even if
m does vary in time.

III. RESULTS

In this section, we present MC results obtained only for L =
80 because the qualitative features remain unaltered for larger
systems and there is little size dependence in peak heights as
well.

If q < 5, the system undergoes a single continuous phase
transition. Therefore, the observable D shows the expected
double-peak structure, one below and the other above Tc

when h‖ is applied (Fig. 4). Even though h⊥ has no physical
meaning in the Ising case (q = 2), it induces qualitatively
the same responses as h‖ does when q = 3 or q = 4. It is
notable that the two peaks are highly asymmetric in each
plot, which means that the system amplifies the signal better
at the second peak above Tc (Fig. 5). This asymmetry is
characteristic of a low-dimensional system, in contrast to the
mean-field (MF) case [7]: In the MF case with a given field
frequency f , the response is fully specified by τ . Since each
of the double peaks is characterized by the same condition
that τ ∼ f −1, the peak height is accordingly the same as well.
Returning back to the 2D case, we see that the asymmetry
is actually plausible because the system is more susceptible
in the disordered phase. It is well known that the static
susceptibility χ around Tc behaves as χ± ∼ �±|T − Tc|−γ ,
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FIG. 4. (Color online) Responses for q < 5, where the solid (red) and dashed (green) curves show results under h‖ and h⊥, respectively.
(a) When q = 2, the system can respond only to h‖. (b) When q = 3 or (c) q = 4, double SR peaks appear in any of the field directions. The
vertical dotted lines indicate the equilibrium critical points in the thermodynamic limit when the field is absent.
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FIG. 5. (Color online) The solid (red) lines represent m for
q = 2, and the sinusoidal dashed (green) lines show the normalized
external field, cos 2πf t . (a) When T is low, the system is frozen at a
symmetry-broken state. (b) As T increases, m begins to fluctuate but
the amplitude is small because it is trapped in a narrow free-energy
minimum. (c) The strongest response is found around the resonance
peak above Tc where m(t) moves between the positive and negative
sides. (d) If T increases further, the free-energy minimum at the origin
(m = 0) gets narrow and the resonance is thus suppressed.

where the subscript means the sign of the reduced temperature
(T − Tc)/Tc, and γ is a critical exponent of the model. A
prediction from the renormalization-group theory is that the
amplitude ratio between �+ and �− is universal, whereas they
are not individually. The universal amplitude ratio is exactly
calculated as �+/�− = 37.6936520 . . . for q = 2 and q = 4
[20], and estimated as �+/�− ≈ 13.86(12) for q = 3 [21].
It is reasonable to guess that a relevant factor to the peak
height will be 〈	m〉 =

√
〈m2〉 − 〈m〉2 ∝ χ1/2. In other words,

our guess is that the ratio between the peak heights D∗
+/D∗

−
is roughly proportional to (χ+/χ−)1/2 ∼ (�+/�−)1/2 so that
ζ ≡ (D∗

+/D∗
−)−1(�+/�−)1/2 yields similar values when q

varies between 2 and 4. Although this argument is not meant
to be exact and the estimates of D∗

+/D∗
− are not precise

either, this explains some part of the observation because we
indeed find ζ = 1.32(12), 1.31(7), and 1.44(4) for q = 2, 3,
and 4, respectively. Moreover, these values are comparable to
the MF result ζMF = √

2 = 1.414 . . . since we already know
D∗

+/D∗
− = 1 and the Landau theory predicts �+/�− = 2.

It is straightforward to perform the same simulations for
q � 5, but the behavior is rather different depending on
the field direction as expected (Fig. 6). The response is

insensitive to the direction in the disordered phase since m has
no meaningful direction with vanishingly small magnitude.
Below Tc2, however, the dependence on the field direction
is clearly visible, which can be understood by using the
free-energy landscape (Fig. 2), provided that the field is so
weak that the system remains close to equilibrium. According
to this picture, in the quasiliquid phase, there is no significant
free-energy barrier in the angular direction: This implies
very large τ⊥, whereas τ‖ remains always finite because the
system is effectively confined in a free-energy well in the
radial direction. This explains why the SR peak is observed
only under h‖ in this phase. It is below Tc1 that the system
experiences free-energy barriers in the angular direction. This
barrier regulates the divergence of τ⊥, and a clear resonance
peak is thereby developed under h⊥. For an arbitrary field
direction, the response of the system is described as a
combination of the results under h‖ and h⊥ because we are
working in the linear-response regime. We have also measured
peak height ratios when q � 5 for the sake of completeness:
Under h‖, we estimate D∗

+/D∗
− as 3.55(11), 3.4(2), and 3.2(1)

for q = 5, 6, and 7, respectively. If we apply h⊥ instead, the
estimates of D∗

+/D∗
− now read 2.91(7), 2.6(1), and 2.5(1),

respectively. It is interesting that q = 6 and 7 are so similar
in this respect that the values in either direction are on top of
each other within the error bars.

IV. CONCLUSION

We have investigated responses of the 2D q-state clock
system under external oscillating fields. Double resonance
peaks are found below and above the unique critical point
Tc for q < 5, and the peak positions are not sensitive to
the field direction. For q � 5, however, the emergence of
the quasiliquid phase in two dimensions makes the situation
more complicated than the MF analysis in that the resonance
behavior crucially depends on the field direction, especially
when T < Tc2. We have qualitatively explained this difference
by using the free-energy landscape. Of course, the free-energy
argument implies that we have restricted ourselves to the
linear-response regime, which loses validity as the applied
field becomes stronger.

We may also interpret the directional dependence in the
quasiliquid phase in the context of the liquid crystal (LC) [22]:
Suppose that each LC molecule carries a small electric dipole
moment and can be described as an XY -typed spin variable.
If a thin LC film is exposed to linearly polarized light, the
oscillating electric field interacts with each electric dipole, and
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FIG. 6. (Color online) Double SR peaks for q � 5, where the solid (red) and dashed (green) lines mean the results under h‖ and h⊥,
respectively. The equilibrium critical points in the thermodynamic limit are represented as the vertical dotted lines. While strong responses are
found below and above Tc2 under h‖, the quasiliquid phase shows little D under h⊥ so the left peak is located below Tc1. Note that Tc1 (Tc2)
tends to be underestimated (overestimated) for finite N .
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FIG. 7. Spin configuration of the 2D clock model in the large-q
limit quenched from T = ∞ to T = 0. Each spin direction θj is
expressed as brightness proportional to sin2 2θj .

the periodically driven dipole, in turn, emits electromagnetic
waves as a response. Our observation in this work suggests how
the response will depend on the relative orientation between
the dipole moment and the polarization of the incident light:
If they are perpendicular to each other, for example, the

molecule will respond to the input with a large phase delay
due to the continuous symmetry, as indicated by small D. As a
consequence, secondary wave will interfere destructively with
the primary one. In addition, when the LC is placed between
two crossed polarizers, the so-called Schlieren texture [22]
captures spatial variations in orientations of the LC molecules.
In a simple thought experiment where these polarizers are
taken into account, as the direction φ of LC rotates from zero to
2π , the final intensity of light through the second polarizer will
have four minima at φ = 0, π/2, π , and 3π/2. By numerically
simulating the quasiliquid phase of a 2D clock model with
very large q, we illustrate a possible optical image in Fig. 7,
which precisely reproduces a typical Schlieren texture in real
experiments.
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