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Pros and cons of swimming in a noisy environment
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The problem of optimal microscopic swimming in a noisy environment is analyzed. A simplified model in
which propulsion is generated by the relative motion of three spheres connected by immaterial links has been
considered. We show that an optimized noisy microswimmer requires less power for propulsion (on average)
than an optimal noiseless counterpart migrating with identical mean velocity and swimming stroke amplitude.
We also show that noise can be used to overcome some of the limitations of the scallop theorem and have a
swimmer that is able to propel itself with control over just one degree of freedom.
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I. INTRODUCTION

Microorganisms, such as bacteria and protozoa, live in a
world governed by low Reynolds number hydrodynamics. The
strategies for locomotion in such an environment strongly
differ from those valid at macroscopic scales [1]. This is
exemplified by the content of the so-called scallop theorem:
a sequence of deformations in the body of a microswimmer
will lead to the same displacement, irrespective of the speed at
which each deformation is carried on. A “microscopic scallop”
could not propel itself by quickly closing its valves and then
slowly opening them up to recover its initial configuration [2].
In order for propulsion to be achieved, the microswimmer must
carry on a deformation sequence that does not trace itself back
in time [3].

Progress in the field of nanotechnology has opened the way
to the possible realization of artificial microswimmers [4–7].
One of the issues that will have to be solved is clearly that
of the energy supply. This entails the optimization problem of
finding the minimum energy strategy to propel the swimmer
at the given velocity. Over the years, much attention has been
given to this problem [8,9]. Most of the effort has been directed
to the study of “deterministic” microswimmers [9–13]. If
the microswimmer is sufficiently small, however, thermal
fluctuations will start to play a role, and the optimization
problem will turn from deterministic to stochastic [14–18].

This aspect is of relevance to the new field of nanometer-
scale swimming, in which propulsion is achieved by chemical
unbalance in the environment or on the surface of the
nanodevice [19–21]. On the other hand, noise is expected
to play a role also at larger scales, as the molecular motors
responsible for propulsion, in a microswimmer, work in and
out of equilibrium condition and are likely to be charac-
terized by fluctuations of larger amplitude than in thermal
equilibrium [22].

The presence of noise will affect the swimmer performance
in several ways. Noise will induce a random component in
the swimming strokes and, therefore, also in the migration
velocity [16,18]. To this, global diffusion induced by thermal
noise in the fluid must be added. An optimal design is likely to
require some minimization of these effects. At the same time,
noise is likely to contribute to the energetics of the process.
Here, things become less clear: it is well known that there are
situations in which noise can play a constructive role. Most

molecular motors, indeed, exploit thermal noise in some way
or another to improve their efficiency [23].

This is precisely the question we want to ask: Can thermal
noise can be exploited to improve the swimmer efficiency
and perform part of the job of pushing the device along
its desired path? The answer is yes, and we shall see that
minimal dissipation, for given values of the mean swimming
velocity and of the swimming stroke amplitude, is achieved
in correspondence to a minimum of the swimming velocity
fluctuation. This does not correspond to a minimum of the
random component in the swimming strokes, rather it is
realized through optimal control of their correlations. We shall
discuss the nature of the internal forces in the swimmer that
can produce this result.

To study the problem, we shall consider a swimmer design
that has received much attention recently, namely, an ensemble
of three identical spherical beads connected by extendable
links that do not interact with the fluid [12,24]. Models
in this class have been utilized to elucidate the properties
both of individual swimmers [25,26] and an ensemble of
swimmers [27,28], and have found experimental realization,
with optical tweezers used to drive the beads [7].

In order to proceed, we shall make a number of simplifying
assumption on the structure of the swimmer, the stroke ampli-
tude, and the nature of the fluctuations. We shall assume that
the swimmer moving parts and the stroke amplitude are small
on the scale of the swimmer body, and that the dynamics of the
system is slow. The first two assumptions allow a quasilinear
description of the dynamics, in which the feedback of the
fluid perturbation on the swimmer dynamics is disregarded.
This corresponds to the lowest order in the description based
on the Kirkwood-Smoluchowski equation, utilized in [18,29].
The last assumption of slow dynamics guarantees that the
response of the system to the deformation forces obeys
standard steady-state fluctuation-dissipation relations.

The paper is organized as follows. In Sec. II, the main results
on the optimization of the deterministic three-bead swimmer
are presented. In Sec. III, the modification of the problem
in the presence of a noisy component in the swimmer internal
dynamics is discussed. In Sec. IV, the optimization of the noisy
swimmer in the weak noise limit is carried out. In Sec. V, an
example is provided of how noise can be exploited to simplify
the problem of internal control by overcoming some of the
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limitation of the scallop theorem. Section VI is devoted to
conclusions.

II. DETERMINISTIC CASE

The microswimmer design that we are going to consider
is a variation on the three-sphere model of Najafi and
Golestanian [12,30]. In the original swimmer, the three spheres
were put on the line, but in the present one, they lie (at rest)
at the vertices of an equilateral triangle. A similar model was
used in [25,31] to study passive swimming in an external flow.
As in [12], the beads are supposedly identical. We imagine that
the device (called a trimer) is constrained to remain with its
axis of symmetry along x1 (see Fig. 1), but that it is otherwise
free to translate. Consistent with this hypothesis, we assume
that the trimer can undergo only axisymmetric deformations,
as illustrated in Fig. 1. Let us indicate by xi , i = 1,2,3, the
bead coordinates in the comoving frame, and separate the rest
component x(0)

i :

x(0)

1 = R(1/
√

3,0,0),

x(0)

2 = R( − 1/(2
√

3), − 1/2,0), (1)

x(0)

3 = R( − 1/(2
√

3),1/2,0),

from the deformation component x(1)

i = xi − x(0)

i :

x(1)

1 = R(z1/2,0,0),

x(1)

2 = (R/4)(−z1, −
√

3z2,0), (2)

x(1)

3 = (R/4)(−z1,
√

3z2,0).

The parametrization for x(1)

i has been chosen in such a way that
dissipation is diagonal [see Eq. (13) below]. We shall assume
small deformations,

R−1
∣∣x(1)

i

∣∣ ∼ z � 1,

and seek an expression for the migration velocity of the trimer
to lowest order in z.

In creeping flow conditions, forces and particle velocities
are related through the equation

ẋi = ũi(t) + fi(t)/�, (3)

x1

x2 x2

x1
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FIG. 1. Trimer deformations corresponding to (z1 > 0,z2 = 0)
(left) and (z1 = 0,z2 > 0) (right). Empty circles indicate the rest
shape.

where � is the Stokes drag coefficient for the beads and ũi

is the flow perturbation generated by movement of the trimer,
calculated at xi (the fluid is considered quiescent in the absence
of the trimer). For spherical beads, the drag � can be expressed
in terms of the solvent kinematic viscosity νs and density ρs by
means of the formula � = 6πaνsρs [32]. The flow perturbation
is determined by the instantaneous velocity of the spheres
through solution of the Stokes equations.

We assume that the spheres are small compared with the
size of the trimer. This is basically a smallness assumption
on the ũi(t) in Eq. (3), which scales indeed with a/R, with a

the size of the beads. This allows the forces and the particle
velocities to be connected by the linear relation (summation
over repeated indices understood),

ũi(t) = Tij fj , Tij ≡ T(xi − xj ), (4)

T(x) = 3a

4�

(
1
|x| + xx

|x|3
)

, (5)

where T is called the Oseen tensor [32]. Notice that although
we are assuming planar deformations, the equations leading
to Eqs. (4) and (5) are those of three-dimensional (3D)
hydrodynamics.

We define a swimming cycle as a closed trajectory in
deformation space: z(t + nT ) = z(t) ∀n, which results in
a finite displacement of the device center of mass, xCM =
1
3 (x1 + x2 + x3): �xCM = xCM(t + T ) − xCM(t) �= 0. The mi-
gration velocity is defined naturally as umigr = �xCM/T . In the
absence of external forces,

∑
i fi = 0, we find, from Eq. (3),

umigr = (1/3)
∑

i

〈ũi〉T = 〈ũ1〉T , (6)

where 〈·〉T indicates the time average over the stroke time T .
The deformation sequence responsible for migration, in the

case of the trimer, is illustrated in Fig. 2. The flow perturbations
ũi in Eq. (6) are expressed in terms of the forces fi by means
of the Oseen tensor, given by Eqs. (4) and (5). These, in turn,
can be expressed back in terms of the deformations, working
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FIG. 2. Swimming strategy of the microswimmer. The length of
23 is varied periodically, by π/2 out of phase with the the two lengths
of 12 and 13. In this way, when the contraction (extension) speed of
23 is maximum, the horizontal extension of the triangle is minimum
(maximum). Field lines S2,3 describe the resulting perturbation in the
fluid velocity. The asymmetry between the ũ1 component experienced
in the two cases causes migration in the negative x1 direction.
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to lowest order in a/R,

fi = �ẋi = �
dxi(z1,z2)

dt
= sij żj , (7)

where the constant matrix sij is obtained from Eq. (2). From
Eq. (4), we obtain the expression, valid to O(a/R),

umigr = 1

3T
∑

i

∮
γ

Tij sjkdzk, (8)

where γ indicates the closed path in z space.
Equation (8) illustrates that migration cannot be achieved

with a sequence of deformations that traces back in time. In
particular, this implies that at least two degrees of freedom are
necessary for microscopic swimming (scallop theorem [2,3]).
In order for the integral along γ to give a nonzero result, it
is necessary that the integrand is not an exact differential. We
can Taylor expand the Oseen tensor in z,

Tij = T(0)

ij + T(1)

ijkzk + · · · ,

and we see that in order to obtain a nonzero migration velocity,
we must keep terms up to O(z) in the expansion for T,

umigr =
∮

Ajdzj ≡ �ij

∮
γ

zidzj ,

(9)

�ij = 1

3T
∑

l

(
T(1)

lmismj

)
1.

From here, simple algebra gives us (see Appendix A)

umigr = −3
√

3a

16T

∫ T

0
[z1ż2 − z2ż1]dt. (10)

As discussed in [3,13], the expression umigr can be inter-
preted as the flux of the magnetic field,

B = ε3jk∂zj
Ak = −3

√
3a

8
, (11)

across the surface S in z space, having γ for a boundary. Thus,
the swimming velocity is purely controlled by the area S and
by the time T necessary to go through the cycle.

The work that the trimer must execute to carry out a
complete swimming cycle coincides with the heat dissipated,

Q =
∫ T

0
fi(τ ) · ẋi(τ )dτ, (12)

which, from Eqs. (2) and (7), can be rewritten in terms of the
deformation,

Q = 3�R2

8

∫ T

0
[(ż1)2 + (ż2)2]dτ. (13)

We note at once, by comparison of Eqs. (10) and (13), that the
migration velocity and the heat produced in one cycle scale,
together with respect to z and T : Q ∼ umigr ∼ z2/T , and we
have, for the dissipated power Q̇ ∼ Q/T ,

Q̇ ∼ (umigr)2/z2,

in which smaller strokes produce less efficient swimming.
Thus, in principle, dissipation could be sent to zero at finite
swimming velocity (forgetting that we are working in a
perturbative regime for z) by sending the swimming stroke

amplitude and the stroke time T to infinity; this is a situation
resembling the adiabatic ratchet described in [33].

Once the stroke amplitude is fixed, it remains to optimize
stroke geometry. From umigr ∼ z2/T , we see that minimizing
expended power at fixed umigr and fixed stroke amplitude is
equivalent to minimizing the heat dissipated in a swimming
stroke at fixed umigr. Formally, we need to minimize the
functional A = Q[z] + qumigr[z], with respect to z, with
boundary conditions z(T ) = z(0). The constant q is the
Lagrange multiplier required to implement the condition on
umigr.

Using Eqs. (9) and (13), reabsorbing constants, and rescal-
ing time in units of T , the functional A takes the explicit
form

A =
∫ T

0
[|ż|2/2 + qA · ż]dt. (14)

This is the action for a unit mass—charge q particle moving
in a uniform magnetic field B = ∇z × A. The optimal strategy
for the microswimmer corresponds to the trajectory in defor-
mation space that solves the variational problem δA = 0. We
thus recover the result in [13] that the optimization of the
microswimmer can be mapped to the problem of a charged
particle in a uniform magnetic field. The fact that B can
be approximated as uniform (which is a consequence of the
smallness of z) implies that any trajectory z(t), obtained from
translation of an extremal trajectory for A, will be extremal as
well. The degeneracy can be removed, imposing the condition
that the undeformed state z = 0 is really the rest shape for the
swimmer. This can be expressed as a condition on the time
average of the deformation,

〈z〉T = 0. (15)

The end result is uniform circular motion in deformation space,
with angular frequency qB and center in z = 0,

z(t) = z̄0[cos(α + qBt), sin(α + qBt)]. (16)

We notice that this solution is characterized by constant
dissipated power. The boundary condition z(t + T ) = z(t)
fixes the value of the Lagrange multiplier: q = ±2π/(BT ).
Using Eq. (16) in Eqs. (13) and (10), we obtain the optimal
values,

Q̄ = 3π2�R2z̄2
0

2T , ūmigr = 3
√

3πaz̄2
0

8T , (17)

where we have taken q < 0 to have positive umigr. Notice that
Q̄ and ūmigr scale together with respect to z and T , which
is a consequence of Eqs. (10) and (13), i.e., of the small
stroke amplitude assumption. This suggests to us to adopt
the definition of efficiency given in [34]:

η = umigr/Q, (18)

and η will be independent of z in the small stroke amplitude
regime considered. Notice that for fixed umigr and T , the
definition becomes equivalent to the one in [8], which was
basically η′ = (umigr)2/Q̇. From Eq. (17), we obtain the
optimal efficiency,

η̄ = ūmigr/Q̄ =
√

3

4π

a

�R2
. (19)
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III. CASE WITH THERMAL NOISE

In the presence of noise, quantities entering the optimization
procedure, such as Q and umigr, acquire a fluctuating com-
ponent. This forces us to work with averages, rather than
with instantaneous quantities. [For instance, Eq. (15) will now
be understood in a statistical sense: 〈z〉 = 0. Likewise, the
swimming efficiency given by Eq. (18) will generalize to η =
〈umigr〉/〈Q〉]. At the same time, the swimming stroke will no
longer be associated with a closed orbit in deformation space,
and the stroke time T must be interpreted as a characteristic
deformation time of the device.

The choice of the statistical quantities to minimize, and
of the constraints to impose in the optimization procedure,
strongly rests on the specific problem in which one is
interested. A swimmer that wants to hit a target in the shortest
possible time may have uncertainty (the variance of umigr)
among the quantities to minimize or to use as constraints. For
the long time, steady-state regime, which we are interested in,
the most natural choice is that of minimizing expended power.
We thus impose minimization of the mean expended power
〈Q̇〉 at fixed mean migration velocity 〈umigr〉. Supported by
the observation that optimal noiseless swimming is achieved
at constant Q̇ [and at constant value of the rate z1ż2 − z2ż1 in
Eq. (10)], we shall restrict our analysis to a stationary statistics
condition.

We focus on a situation in which the internal forces vary
slowly on the scale of the relaxation time of the system. This
condition appeared to be crucial in stochastic optimization
problems involving a finite time horizon [35], due to the
occurrence of singularities in the solution [36]. In [37], the
problem was avoided by regularization (see also [38,39]).
This is not an issue for the stationary regime considered here,
and the main advantage of an overdamped regime is that the
dynamics is described by a simple Langevin equation, and that
steady-state fluctuation-dissipation relations do apply.

The relaxation time can be estimated, in the case of the
trimer, by the Stokes time of the beads τS = m/�, where m is
the bead mass [32]. For spherical beads of radius a and density
ρb = λρs : τS = (2/9)λa2/νs , with νs and ρs the kinematic
viscosity and the density of the solvent, respectively. Under
the condition τS � T , the dynamics will be described by a
Langevin equation,

ż + g = ξ , 〈ξi(t)ξj (0)〉 = 2Kδij δ(t), (20)

where, imposing validity of the equilibrium fluctuation rela-
tions and making use of Eq. (13), we have

K = 8kBT

3�R2
, (21)

with kB the Boltzmann constant and T the temperature [40].
The mean dissipation is obtained from generalization of
Eq. (12),

〈Q̇〉 = (3�R2/8)〈ż(t) ◦ g(t)〉, (22)

where the ◦ in the scalar product indicates Stratonovich
prescription [41,42]. Similarly for the mean migration velocity,
which is obtained by generalizing Eq. (10),

〈umigr〉 = −3
√

3a

16
〈[z1ż2 − z2ż1]〉, (23)

and it is easy to see, from Eq. (20), that the term in the average
does not depend on the choice of the stochastic prescription.

The presence of noise induces a diffusive component in
migration, which receives a contribution both from thermal
noise in the fluid and random swimming. The first contribution
to diffusivity can be estimated as

Dext ∼ KR2. (24)

The second can be obtained from

Dint =
∫

dt〈û(t)û(0)〉,

where

û = −3
√

3a

16
[z1ż2 − z2ż1] − 〈umigr〉

is the fluctuating component of the migration velocity. Work-
ing in polar coordinates (z,φ), we can write z1ż2 − z2ż1 = z2φ̇,
and, using Eq. (20),

Dint = 27a2

256

[
2K +

∫
dt〈z(t)gφ(t)z(0)gφ(0)〉c

]
. (25)

In the present situation, in which noise results from equi-
librium fluctuations in the fluid and the moving parts in
the swimmer are small, global diffusion, given by Eq. (24),
will dominate over random swimming, given by Eq. (25). In
realistic situations, internal noise acquires a nonequilibrium
component [22], and one should make a substitution K →
K int � K in both Eqs. (20) and (25). (At that point, the
possibility of a finite noise correlation time should probably
be taken into account.) Furthermore, an optimal swimmer
should have a ∼ R [see Eqs. (17) and (23)]. Thus, in realistic
situations, random swimming is expected to dominate over
global diffusion, Dint � Dext, and it becomes meaningful to
minimize Dint along with 〈Q〉.

IV. WEAK NOISE

For sufficiently weak noise, we expect that the swimming
strategy of the optimal noisy swimmer will be sufficiently
close to the one in the noiseless case. With this, we intend
that the orbits in deformation space will remain close to the
circular orbit of the optimal noiseless swimmer. This imposes
the condition on the noise amplitude,

K̃ = K

ωz̄2
0

� 1, (26)

where ω ≡ 2π/T is defined here as the mean circulation
frequency in deformation space; in polar coordinates: 〈φ̇〉 = ω.

Working in polar coordinates, the equation of motion (20)
will read

ż = gz + K

z
+ ξz, φ̇ = 1

z
gφ + 1

z
ξφ,

(27)
〈ξi(t)ξj (0)〉 = 2Kδij δ(t).

In view of a small-noise expansion of Eq. (27), we introduce
rescaled variables s = (z − z̄0)/z̄0, ψ = φ − ωt , t̃ = ωt , giv-
ing the deviation of the phase point of the noisy swimmer from
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z1

z2 t+ψωsz0

z0

FIG. 3. Sketch of a K̃ � 1 optimal trajectory in deformation
space. The phase point is expected to depart little from the noiseless
optimal orbit (the dashed circle). The coordinates ψ and z̄0s give the
separation between the phase point of the noisy and the deterministic
optimal trimer.

its optimized noiseless counterpart (see Fig. 3). The forces are
rescaled in consequence,

g̃s = gz

z̄0ω
, g̃ψ = −1 + gφ

zω
. (28)

Notice that in rescaled variables, the definition 〈φ̇〉 = ω

translates in the constraint 〈ψ̇〉 = 0, i.e., 〈g̃ψ 〉 = 0. Consistent
with the assumption of small deviation from circular orbit, we
impose linear dependence of the forces on s:

g̃i = −αis(ψ,t̃)s + hi(ψ,t̃), i = s,ψ, (29)

and assume αis = O(1).
Substituting Eq. (28) into Eq. (27), and keeping terms up

to O(K̃), we obtain the equation of motion,

ṡ = g̃s + K̃ + ξs, ψ̇ = g̃ψ + ξψ,
(30)

〈ξi(0)ξj (t̃)〉 = 2K̃δij δ(t̃).

The migration velocity is obtained, substituting Eqs. (27)
and (28) into Eq. (23),

〈umigr〉 = ūmigr〈(1 + s)2[1 + g̃ψ (s,ψ)]〉, (31)

and we recover, for K̃ = 0, Eq. (17). In analogy with Sec. II,
we choose to minimize 〈Q̇〉 at fixed 〈z〉 = z̄0 and 〈umigr〉, which
is equivalent, from Eqs. (17) and (31), to minimizing 〈Q〉 =
T 〈Q̇〉 at fixed 〈umigr〉. Substituting Eqs. (27) and (28) into
Eq. (22), we obtain

〈Q〉 = Q̄
〈{

g̃2
s + [(1 + s)(1 + g̃ψ )]2

+K̃∇ · g̃
}〉

, (32)

where the term K̃∇ · g̃ accounts for the correction from the
Stratonovich prescription [42]. Again, we recover, for K̃ = 0,
the expression for dissipation provided in Eq. (17).

To determine the difference between minimum dissipation
with and without noise, we fix 〈umigr〉 = −ūmigr, and study
the behavior of A = 〈Q〉/Q̄, under the combined constraints
〈umigr〉/ūmigr = 1 and 〈g̃ψ 〉 = 0. Notice that we can also write
A = η̄/η, with η = 〈umigr〉/〈Q〉 and η̄ is the optimal efficiency
of the deterministic swimmer, given by Eq. (19).

Using Eqs. (30) and (31), the two constraints give, including
terms up to O(K̃),

〈g̃ψ 〉 = 0, 2〈s〉 + 〈s2〉 + 2〈sg̃ψ 〉 = 0. (33)

Substituting into Eq. (32) and keeping terms up to O(K̃), we
finally get

A = 〈{
1 + 2sg̃ψ + g̃2

s + g̃2
ψ

+K̃(∂sg̃s + ∂ψ g̃ψ )
}〉

, (34)

where the 1 comes from dissipation in the deterministic case.
We see that contrary to the noiseless case of Eq. (14), the forces
now enter explicitly the normalized dissipationA. This reflects
the fact that while in the noiseless case one had a single optimal
trajectory, in the presence of noise we have a distribution of
trajectories whose shape is determined by the force g̃. If we
restrict the analysis to the case of a stationary swimmer, the
coefficients αis and hi will be independent of time as well. We
shall consider below two specific driving mechanisms:

(i) A uniform tangential force pushing the phase point,
while some constant radial force keeps it close to the
unperturbed orbit z = z̄0.

(ii) A potential well confining the phase points both
tangentially and radially. The potential well circulates along
the optimal noiseless orbit r = z̄0 with angular frequency ω.

In the first case, the stationary distribution of the phase
points will be localized in a uniform thickness annulus around
the optimal noiseless orbit z = z̄0. In the second case, the
stationary distribution will be localized both in z and in φ, and
will circulate with frequency ω along the orbit z = z̄0.

In a realistic swimmer, the driving mechanism may be
provided, e.g., by a molecular motor undergoing some cyclic
transformation. The two driving mechanisms outlined above
may correspond, therefore, to the two regimes of a fluctuating
and a fluctuation-free motor, respectively. In the first case, the
fluctuations in the motor configuration would sum to those in
the interaction with the swimmer moving parts, causing global
diffusion of z along the deterministic orbit. In the second case,
the only fluctuations present would be those in the interaction
between molecular motor and swimmer moving parts, while
the molecular motor dynamics is deterministic.

A. Uniform tangential drive

In this case, the coefficients αis and hi in Eq. (29) are
independent of ψ . The linear Langevin equations (30) are
presently solved. At stationary state, the phase points are
localized radially,

〈s2〉 = K̃

αss

, 〈s〉 = hs + K̃

αss

, (35)

and uniformly distributed in ψ . Imposing the conditions (33),
we find, from Eqs. (29) and (30),

hs = (αψs − 3)K̃/2,
(36)

hψ = (αψs − 1)αψsK̃/(2αss),

and αis , i = s,ψ , remain the only free parameters. Substituting
Eqs. (35) and (36), together with Eq. (29), into Eq. (34), and
keeping terms up to O(K̃), we obtain

A = 1 + K̃αψs

αss

(αψs − 2). (37)

For 0 < αψs < 2, dissipation is reduced with respect to the
noiseless case, with the effect being maximum at αψs = 1. In
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this range, efficiency is increased with respect to the optimal
noiseless case of Eq. (19): η > η̄. Dissipation reduction is
associated with the decrease of the tangential drive for larger
deformations.

B. Circulating potential well

In this case, the phase points are confined both radially
and tangentially in a potential well that rotates uniformly
with frequency ω. If the confinement length is small and
also tangentially, we can linearize the forces also with respect
to ψ :

g̃s = −αss(s − s̄s) − αsψψ,
(38)

g̃ψ = −αψs(s − s̄ψ ) − αψψψ,

where again we assume αij = O(1). The equations of motion
are still those in Eq. (30), and the constraints in Eq. (33)
continue to apply. As in the case of the coefficients hi of
Eq. (36), it is possible to see that s̄i = O(K̃), and therefore
also 〈s〉 = 〈ψ〉 = O(K̃). Substituting Eq. (38) into Eq. (34),
we obtain, keeping terms up to O(K̃),

A = 1 + (
α2

ss + α2
ψs − 2αψs

)〈s2〉
+ (

α2
ψψ + α2

sψ

)〈ψ2〉
+ 2[αssαsψ + (αψs − 1)αψψ ]〈sψ〉
− (αss + αψψ )K̃. (39)

The equation for the correlations entering Eq. (39) are obtained
from Eqs. (30) and (38). At the stationary state,

αss〈s2〉 + αsψ 〈sψ〉 = K̃,

αψs〈s2〉 + (αss + αψψ )〈sψ〉 + αsψ 〈ψ2〉 = 0, (40)

αψs〈sψ〉 + αψψ 〈ψ2〉 = K̃.

The solutions of Eq. (40) have, in general, a rather complicated
form. We can solve the system explicitly in some special
situation.

In the case of a purely potential g̃, which implies αsψ = αψs ,
Eq. (40) gives

〈s2〉 = αψψK̃

αssαψψ − α2
sψ

,

〈sψ〉 = −αsψK̃

αssαψψ − α2
sψ

,

〈ψ2〉 = αssK̃

αssαψψ − α2
sψ

.

Substituting into Eq. (39), it is possible to see that A = 1,
which is the expected result from a purely potential force.

Things change if we consider a dissipative force. Let us
take for simplicity αss = αψψ and αψs = −αsψ . We obtain

〈s2〉 = 〈ψ2〉 = K̃/αss, 〈sψ〉 = 0,

which, upon substitution into Eq. (39), gives

A = 1 + 2
αψsK̃

αss

(αψs − 1). (41)

Dissipation reduction occurs in this case for 0 < αψs < 1,
corresponding to an increase of efficiency with respect to the
optimal noiseless case η > η̄. Maximum reduction occurs at
αψs = 1/2 [compare with Eq. (37)].

C. Randomness minimization

An optimal microswimmer should have the property of
“arriving at the target on time,” if required. Thus, another
quantity that one may wish to minimize is the migration
velocity fluctuation. For simplicity, we keep considering the
situation of a stationary swimmer, although the appropriate
setting for such a constraint is that of a device swimming over
a finite distance (or over a finite time interval).

One way to minimize swimming randomness, of course,
is to make the deterministic part of the forces, controlling
the trimer deformation, more intense. For fixed strength
of the deformation forces, some swimming strategies will
nevertheless lead to a smaller migration velocity fluctuation
than others. We see that in both cases of forcing by a uniform
drive and by a circulating potential well, minimization of the
random migration velocity component is achieved, in good
approximation, together with that of dissipation.

We parametrize the degree of randomness in swimming
through the coefficient D̃ = [ω/(ūmigr)2]Dint, where Dint is
defined in Eq. (25). Substituting Eq. (28) into Eq. (25), we
obtain, keeping terms up to O(K̃),

D̃ = 2K̃ +
∫

dt̃ [4〈s(0)s(t̃)〉

+4〈s(0)g̃(t̃)〉 + 〈g̃ψ (0)g̃ψ (t̃)〉]. (42)

In the uniform tangential drive case, we have g̃ψ = −αψs +
O(K̃). From Eqs. (28) and (30), we find 〈s(0)s(t̃)〉 =
(K̃/αss) exp(−αss |t̃ |), and, substituting into Eq. (42),

D̃ = 2K̃

α2
ss

[
4 + α2

ss + 2αψs(αψs − 2)
]
. (43)

Comparing with Eq. (37), we see that minimal contribution to
diffusion from random swimming is achieved, together with
minimal dissipation, for αψs = 1.

In the case of a forcing by a circulating potential well,
with αψψ = αss and αsψ = αψs , we proceed in the same
fashion. We have, to lowest order in K̃ , g̃s = −αsss −
αψψψ and g̃ψ = −αssψ + αψψs, which gives, from Eqs. (28)
and (30), 〈s(0)s(t̃)〉 = 〈ψ(0)ψ(t̃)〉 = (K̃/αss) exp(−αss |t̃ |)
and 〈s(0)ψ(t̃)〉 = 0. Substituting into Eq. (42), we find

D̃ = 2K̃

α2
ss

[
4 + α2

ss + αψs(αψs − 4)
]
. (44)

Comparing with Eq. (41), we find that dissipation reduction
implies random swimming reduction, but not vice versa. In this
case, minimum random swimming occurs for αψs = 2, which
is out of the domain in which there is dissipation reduction.

V. STRONG NOISE

We consider now the situation in which the random
component of the deformations cannot be considered as a
perturbation. In [31], it was suggested that noise could be used
to circumvent some of the limitations of the scallop theorem,
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namely, the need of control over at least two degrees of freedom
to achieve locomotion. We are going to provide an example
of this effect, assuming that the only degree of freedom acted
upon in the trimer by a driving force is the transversal one
z2 (see Fig. 1), while the longitudinal one z1 is bound by a
constant elastic force.

We put, in Eq. (20), g1 = −ωz1 and g2 = ωg̃(z), where
ω fixes the deformation time scale of the problem and g̃(z)
contains the drive. The equations of motion thus become,
rescaling time t → t̃ = ωt ,

ż1 + z1 = ξ1, ż2 − g̃(z) = ξ2,
(45)

〈ξi(0)ξj (t̃)〉 = 2K̃δij δ(t̃),

where now K̃ = K/ω. Proceeding from Eqs. (22) and (23),
we find, for the mean expended power,

〈Q̇〉 = 3�ω2R2

8
〈[g̃2 + K̃∂z2 g̃]〉, (46)

where the K̃∂z2 g̃ is the correction from the Stratonovich
prescription [42]. Similarly for the mean migration velocity,

〈umigr〉 = −3
√

3aω

16
〈[z1(z2 + g̃)]〉. (47)

We determine the form of the drive g̃, minimizing 〈Q̇〉 at fixed
〈umigr〉. The stationary Fokker-Planck equation associated with
Eq. (45) will be

L+ρ = ∂z1 (z1ρ) − ∂z2 (g̃ρ) + K̃∇2
z ρ = 0, (48)

where ρ = ρ(z) is the stationary probability density function
(PDF) for z. As we do not know in advance the form of ρ(z), we
must minimize heat production under the two constraints, i.e.,
that 〈umigr〉 is given and that ρ obeys Eq. (48). We cannot
disregard this last constraint, as the averages in Eqs. (46)
and (47) are carried out precisely with ρ(z). Our cost function
will be, therefore, in the form

A = 〈Q̇〉 − q〈umigr〉
+

∫
dz1dz2 J (z)L+ρ(z),

with J (z) the new Lagrange multiplier, required to guarantee
satisfaction locally of Eq. (48). Reabsorbing constants in A,
q, and J , and integrating by parts where necessary, we obtain

A =
∫

dz1dz2 ρ
{
g̃2 − K̃g̃∂z2 ln ρ + qz1(z2 + g̃)

+[
K̃∇2

z − z1∂z1 + g̃∂z2

]
J
}
. (49)

Our optimal g is obtained taking the variation ofAwith respect
to g and ρ, and equating to zero,

δA
δg̃

= ρ[−2g̃ + K̃∂z2 ln ρ − qz1 − ∂z2J ] = 0,

δA
δρ

= g̃2 + K̃∂z2 g̃ + qz1(z2 + g̃)

+ [
K̃∇2

z − z1∂z1 + g̃∂z2

]
J = 0. (50)

We see that Eq. (50) has a solution in the form g̃ = −αz1 −
βz2, with quadratic ln ρ and J . The optimal dynamics is thus

linear,

ż1 + z1 = ξ1, ż2 + αz1 + βz2 = ξ2. (51)

The correlation equations associated with Eq. (51) are
〈z2

1〉 = K̃ , (1 + β)〈z1z2〉 + α〈z2
1〉 = 0, and α〈z1z2〉 + β〈z2

2〉 =
K̃ , which give us

〈
z2

1

〉 = K̃, 〈z1z2〉 = − αK̃

1 + β
,

〈
z2

2

〉 = α2 + β + 1

β(1 + β)
K̃. (52)

Substituting into Eqs. (46) and (47), we obtain

〈Q̇〉 = 3�ω2R2

8

α2K̃

1 + β
, (53)

and

〈umigr〉 = −3
√

3ωa

8

αK̃

1 + β
, (54)

so that 〈Q̇〉 ∼ αω〈umigr〉.
From Eq. (51), it appears that αω plays the role of

circulation frequency for the trimer. Its inverse fixes the scale
for the stroke time T . We see that as in the deterministic case,
expended power can be made smaller by increasing T . For
fixed 〈umigr〉, this will correspond to larger swimming strokes.
From Eq. (54), 〈umigr〉 fixes, in fact, α/(1 + β), so that smaller
α will require smaller β. This, in turn, corresponds to larger
swimming strokes [see Eq. (52)]. Similarly, making ω small
will lead to larger K̃ , and therefore to larger swimming strokes
[see again Eq. (52)].

The efficiency of the swimmer η = 〈umigr〉/〈Q〉 can be
determined from Eqs. (53) and (54), once the stroke time
T is known: 〈Q〉 = T 〈Q̇〉. Unfortunately, contrary to the
weak noise case, the circulation frequency distribution in
deformation space is not peaked around a well-defined value
that could uniquely define the stroke frequency. (Similarly for
the stroke amplitude z, which is not peaked around the deter-
ministic value z̄0.) We can nevertheless define a stroke time
in terms of the mean circulation frequency, ωT = 2π/〈φ̇〉,
φ = tan−1 z2/z1, and compare with the optimal deterministic
case. A calculation, detailed in Appendix B, shows that the
efficiency of a swimmer whose internal dynamics is governed
by a linear Langevin equation, such as Eq. (51), is always
smaller than that of an optimal deterministic swimmer with
identical T . This seems to confirm the result, in the weak
noise regime, that dissipation reduction must involve some
kind of drive reduction at large deformations. This is, in fact,
the opposite of the situation described in Eq. (51) (or in any
dynamics described by a Langevin dynamics with center at
z = 0).

VI. CONCLUSION

We have discussed the possibility of dissipation reduction
by thermal noise in a simple microswimmer model. We have
shown that an optimal noisy microswimmer will need, for
propulsion at given average swimming velocity and swimming
stroke amplitude, less energy than its noiseless optimal
counterpart, and that the process goes together with reduction
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in randomness of the swimming velocity. Another effect of
noise is that some of the constraints of the scallop theorem
can be bypassed, as the swimmer can propel itself with control
over just one degree of freedom.

The optimal design of a noisy microswimmer imposes
constraints on the functional form of the deformation forces
driving its dynamics, which are not present in the deterministic
case [13]. The need to optimize a distribution of deformation
sequences, rather than a single deformation sequence, stands
at the basis of these constraints. We have determined the
optimal deformation force profiles in both strong and weak
noise conditions.

We stress that the results obtained are valid only for a regime
of small moving parts and small swimming strokes. A detailed
numerical analysis would be required to confirm our results in
the case of an optimal microswimmer with moving parts and
swimming strokes comparable in size with the swimmer body.

Another issue that should probably be addressed is the
robustness of the results with respect to modification in
the form of the noise [e.g., as regards possible finiteness of
the correlation time in Eq. (20)].

Throughout this paper, we have considered the case of a
stationary swimmer, which is consistent with the focus on
average quantities such as the mean expended power 〈Q̇〉 and
the mean migration velocity 〈umigr〉. In a general finite time
horizon situation, the statistics will be time dependent, and
other quantities beyond 〈Q̇〉 and 〈umigr〉 are expected to play a
role in the optimization process.

We must remember that even in the case of an infinite time
horizon, stationarity is an assumption. We have not examined,
e.g., the case of a swimmer for which 〈Q̇〉 and 〈umigr〉 have
a component that is periodic in time. Minimization in this
case would still be performed working with the constant
components of 〈Q̇〉 and 〈umigr〉, but the space of possible
swimming strategies is larger than in the constant case. Thus,
we do not rule out the possibility that swimming strategies
admitting periodic components in 〈Q̇〉 and 〈umigr〉 may have
better properties than the ones considered in the present
analysis.
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APPENDIX A: DETERMINATION OF THE MIGRATION
VELOCITY IN THE DETERMINISTIC CASE

The migration velocity in the deterministic case is obtained
substituting Eqs. (3) and (4) into Eq. (6). Exploiting equality
of the contribution to ũ1 from particles 2 and 3, we can write

umigr � 2�
〈[
T

(1)

12,11ẋ
(1)

2,1 + T
(1)

12,12ẋ
(1)

2,2

]〉
T , (A1)

and we adopt the convention that in vector and tensor
expressions, indices before a comma indicate particle labels;
after comma, they indicate vector components.

A little algebra from Eqs. (1) and (2) and (4) and (5) gives
us

T12,11 = σ

[
7

4
−

√
3

32
(9z1 − 5z2)

]
,

(A2)

T12,12 = σ

[
3
√

3

16
− 9

32
(3z1 + z2)

]
,

where σ = 3a/(4�R). Substituting Eq. (A2) into Eq. (A1), we
obtain

umigr � 3
√

3a

265
〈5z2ż1 − 27z1ż2〉T

= −3
√

3a

16
〈z1ż2 − z2ż1〉T , (A3)

which is Eq. (10).

APPENDIX B: SWIMMER EFFICIENCY IN THE STRONG
NOISE REGIME

The mean circulation frequency can be obtained from
Eq. (51):

〈φ̇〉 = (1 − β)〈sin φ cos φ〉 − α〈(cos φ)2〉. (B1)

The angular distribution ρ(φ) to be used in Eq. (B1) is
obtained from the deformation PDF ρ(z): ρ(φ) = ∫ ∞

0 zdzρ(z);
ρ(z) = A exp[−(1/2)Z−1

ij zizj ], Zij = 〈zizj 〉. Using Eq. (52),
we obtain, after a little algebra,

ρ(φ) = B[C(cos φ)2 + D(sin φ)2 + E sin φ cos φ]−1,

(B2)

where

C = 1 + β + α2, D = (1 + β)β, E = 2αβ, (B3)

and B is a normalization. Adopting, as definition of the stroke
time, ωT = 2π/〈φ̇〉, Eqs. (19), (53), and (54) give us, for the
efficiency in the strong noise regime,

λ = η/η̄ = 2〈φ̇〉/α. (B4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

λ

α

a

b

c

FIG. 4. Plot of the ratio λ = η/η̄ vs α for three different values
of β: (a) β = 5.0, (b) β = 1.0, (c) β = 0.1.
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Evaluation of the average in Eq. (B1), with the distribution
in Eqs. (B2) and (B3), gives the result in Fig. 4. Equa-
tion (51) leads to an efficiency that is always below that of
the corresponding optimal deterministic swimmer. Maximum
efficiency is achieved for β = 1 and α small, which is, in

some sense, a maximally isotropic forcing in deformation
space. This is not a casual result. It is possible to see
that a trimer obeying a symmetrized version of Eq. (51),
ż1 + z1 − αz1 = ξ1, ż2 + z1 + αz2 = ξ2, is characterized by
efficiency η = η̄ for all values of α.
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