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We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic
lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective
temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy
between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is
not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies
the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven
lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated
for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to
be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki
[J. Stat. Phys. 125, 125 (2006)] is free of inconsistencies, and the zeroth law holds. This is because the rate
depends only on the state of the donor system, and is independent of that of the acceptor.
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I. INTRODUCTION

Among the many open questions in nonequilibrium physics,
a central issue is whether thermodynamics can be extended to
systems far from equilibrium [1–6]. By “thermodynamics” we
mean a macroscopic description employing a small number
of variables, capable of predicting the final state of a system
following removal of some constraint [7]. One expects the
set of variables needed to describe a nonequilibrium system
to be somewhat larger than required for equilibrium; it
should not, however, involve microscopic details. Thus in
near-equilibrium thermodynamics, fluxes of mass, energy, and
other conserved quantities enter as relevant variables [8,9].
This approach functions well in the hydrodynamic or local-
equilibrium regime; here, by contrast, we are concerned with
systems maintained far from equilibrium.

Faced with a vast range of nonequilibrium phenomena, it is
natural to focus on the nearest analog to equilibrium thermody-
namic states, that is, on nonequilibrium steady states (NESS),
and to analyze the simplest possible examples exhibiting such
states, for example, the driven lattice gas [10–12] or the
asymmetric exclusion process [13]. Thus Sasa and Tasaki [14],
extending the ideas of [1], proposed a general scheme of
steady-state thermodynamics (SST), including definitions of
the chemical potential and pressure in NESS, and developed
a theoretical analysis of the driven lattice gas; a numerical
implementation in driven systems is discussed in [3]. More
recently, Pradhan et al. [15] tested, via numerical simulation
of driven lattice gases in contact, the consistency of the
scheme proposed in [14], focusing on the validity of the zeroth
law. These authors find that the zeroth law holds to good
approximation, and suggest that observed deviations may be
attributed to the nonuniformities induced by the contact itself.
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A central notion in SST is that of coexistence. Consider
two systems, each in a steady state, and weakly coupled to one
another, so that they may exchange particles and/or energy.
We say that the systems coexist when the net flux of the
quantity or quantities they may exchange is zero. If the two
systems are in equilibrium states, then coexistence corresponds
to chemical and/or thermal equilibrium, marked by equality
of their respective chemical potentials and temperatures. To
construct a SST, we need to define intensive parameters for
NESS, such that the value of the parameter associated with
particle exchange (an effective chemical potential, μ) is the
same when two systems coexist with respect to such exchange,
and, similarly, an effective temperature, Te, if the systems
coexist with respect to energy exchange. The definition of
intensive parameters for nonequilibrium systems (such as the
zero-range process) possessing an asymptotic factorization
property has been discussed in considerable detail by Bertin
et al. [4].

In this work we consider coexistence in classical lattice-gas
models. To eliminate inhomogeneities that might otherwise
arise, we allow all sites to participate in particle exchange.
In driven systems, the rate pr of exchange attempts is a
relevant parameter; we consider the limit pr → 0, or the weak-
exchange limit. By contrast, virtual exchange characterizes the
fluxes that would occur, were the systems allowed to exchange
particles and/or energy, given their respective stationary states;
nothing is actually transferred. The difference between virtual
exchange and the weak-exchange limit is that in the latter case,
fluxes are measured in a new stationary state, attained under
exchange of particles and/or energy, albeit at a vanishing rate.
Of course, null currents under virtual exchange is a necessary
condition for having null currents (and so coexistence) under
weak exchange [16].

Consider a pair of systems A and B, maintained at the
same temperature, and free to exchange particles. When the
net flux of particles between the systems is zero, we assert
that their chemical potentials μA and μB must be equal, if
such functions in fact exist. If one of the systems is a particle
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reservoir of known chemical potential, we can use the zero-flux
condition to measure the chemical potential of the other. With
μ so defined, we stipulate two essential properties it must
satisfy to be a valid chemical potential.

(1) (Zeroth law) If pairs of systems (A,B) and (A,C)
separately satisfy the zero-flux condition, then, if B and C are
allowed to exchange particles, the net flux should also be zero.

(2) If systems A and B, at the same temperature, and
initially isolated, with μA �= μB , are permitted to exchange
particles, then the ensuing flux should reduce |μA − μB |, and
should continue until the difference is null. In other words,
knowing the functions μA(ρ) and μB(ρ), of two systems in
isolation should allow us to predict the direction of particle
transfer when they are placed in contact, and their densities at
coexistence.

In the case of athermal lattice gases, the above considera-
tions lead to a dimensionless effective potential μ∗ ≡ μ/kBT

equivalent to that defined by Sasa and Tasaki [14]; we show
in Sec. III that this function satisfies the two criteria stated
above. For the lattice gas with nearest-neighbor interactions
(the Katz-Lebowitz-Spohn or KLS model), one must decide
how the rates of particle exchange between systems depend on
their respective changes in energy; even restricting attention
to rates satisfying detailed balance, there are many possible
choices. We show that, for the familiar Metropolis rates, the
simplest extension of the approach used in athermal systems
does not predict coexistence correctly. This leads us to define
an effective temperature as well as an effective chemical
potential for the driven lattice gas. We shall nevertheless show
that such a definition in general leads to violations of the
zeroth law. Remarkably, the exchange scheme proposed by
Sasa and Tasaki (ST) is free of such inconsistencies. Using this
approach, it is possible to define μ∗ in a consistent manner, and
to predict coexisting densities in the KLS model. The essential
difference between ST rates and more familiar expressions
such as Metropolis rates is that in the former, the rate for
transferring a particle from system A to system B depends on
the change in energy of A, but not on that of B.

The balance of this paper is organized as follows. In
Sec. II we review the kinetics of particle transfers, focusing
on the properties of the transition rates. Section III discusses
the application to the NNE lattice gas. In Sec. IV, a direct
application of the method to the KLS model (involving only the
effective chemical potential) is shown to fail when Metropolis
exchange rates are used. Coexistence with respect to particle
exchange is correctly predicted using Sasa-Tasaki rates. In
both cases, however, there is a steady flow of energy from the
driven to the nondriven system, motivating the definition of an
effective temperature. The consequences of this definition are
investigated analytically and numerically in Sec. V. We close
in Sec. VI with a discussion of the implications of our results
for steady-state thermodynamics.

II. TRANSITION RATES

Since our definitions of intensive parameters on based on
stationary averages of fluxes of particles and energy between
systems, it seems worthwhile to review briefly the kinetics
of particle transfers. We consider classical stochastic lattice
gases, that is, Markov processes whose state space corresponds

to possible configurations of particles on a lattice or a pair
of lattices, and whose evolution is defined by transition
rates between certain pairs of configurations. We denote the
transition rate from configuration C to C ′ by w(C ′|C).

In this work we are concerned with transfers of particles
between systems. Let A and B be lattice gases characterized
by intensive parameters μA and βA ≡ 1/kBTA, and similarly
for B. Let CA be a configuration of A, with energy EA,
and let C ′

A, with energy E′
A = EA + �EA, be a configuration

of A obtained by adding a single particle to CA. Consider
now the composite system (A,B), with initial configuration
C ≡ (CA,C ′

B), and let C ′ ≡ (C ′
A,CB) be a configuration of

the composite system after transferring a particle from B

to A. Although the systems of interest are not necessarily
in equilibrium, we need to include such systems in our
description, and shall therefore assume that the transition rates
for particle transfers between systems satisfy detailed balance.
That is, if βA = βB = β,

w(C ′|C)

w(C|C ′)
= exp[β(μA − μB) − β(�EA − �EB)]. (1)

In case system B is a particle reservoir with dimensionless
chemical potential μ∗ ≡ βμ, we ignore the associated reser-
voir configurations and simply write

w(C ′
A|CA)

w(CA|C ′
A)

= exp[μ∗ − β�EA]. (2)

As is well known, there are many possible choices of
transition rates consistent with detailed balance. In studies of
equilibrium systems, all such choices are equivalent insofar as
static properties are concerned, and rates can be chosen on the
basis of calculational convenience or computational efficiency.
Out of equilibrium, however, the choice of rates can have very
significant effects on stationary and time-dependent behavior.
This holds both for the rates governing the internal dynamics
of a system, and for particle exchanges between systems. In
principle, one would like to have a SST that is valid for any
choice of rates. But we shall see that the consistency condition
discussed in the Introduction implies a strong constraint on the
rates for particle transfers between systems.

Perhaps the most familiar rate function satisfying detailed
balance is that associated with Metropolis rates, for which

wM (C ′|C) = ε min{1, exp[β(μA − μB)

−β(�EA − �EB)]}, (3)

where ε is an arbitrary, constant rate. Another function widely
studied in the context of driven lattice gases is the so-called
mechanism-B rate:

wB(C ′|C) = ε

1 + exp[β(μA − μB) − β(�EA − �EB)]
.

(4)

A rather less studied rate (in simulations) is that introduced
in [14], which we shall call Sasa-Tasaki or ST rates:

wST(C ′|C) = ε exp[β(μA − �EA)]. (5)

The rate for the reverse transition is obtained by letting
A → B. Thus the rate for particle transfer from A to B

depends exclusively on parameters associated with A, and
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vice versa. We shall refer to this important condition as the
ST property. The class of rates satisfying detailed balance and
the ST property is unique to within a multiplicative factor,
ε. The ST expression can be seen as resulting from a very
high-energy barrier W between A and B; the particle first
makes a transition from A to the barrier, and from there to
B. In this case the prefactor ε ∝ e−βW ; the limit W → ∞
corresponds to the weak-exchange limit [17].

III. LATTICE GAS WITH NEAREST-NEIGHBOR
EXCLUSION

To begin we examine the lattice gas with nearest-neighbor
exclusion (NNE). In this model the pair interaction is infinite
if the distance between particles is �1, and is zero otherwise.
Since there is no characteristic energy scale, the relation
between the density and the dimensionless chemical potential
μ∗ = μ/kBT is independent of temperature. Such models
are termed athermal. The NNE lattice gas has been studied
extensively as a discrete-space version of the hard-sphere
fluid [18–21], and is known to exhibit a continuous (Ising-
like) phase transition to sublattice ordering at a density of
ρc 	 0.367 74 [22].

Consider a NNE system on a lattice of Ld sites, with a
fixed number of particles, and with a stochastic dynamics
(e.g., particle hopping) obeying detailed balance. This simply
means that if C and C ′ are two valid configurations, then the
transition probabilities P (C ′|C) and P (C|C ′) must be equal.
Any particle displacement satisfying the NNE condition is
accepted. Suppose the system is also allowed to exchange
particles with a reservoir at dimensionless chemical potential
μ∗. Exchanges may be implemented as follows. A site is
selected at random, and if it is occupied, the particle is
removed with a certain probability pR . If the chosen site
is open, i.e., vacant and with all nearest neighbors also
vacant, then a particle is inserted with probability pI . If C ′
is a configuration obtained by adding a single particle to
configurationC, then at equilibrium the respective probabilities
satisfy P (C ′)/P (C) = eμ∗, which implies pI/pR = eμ∗.

For a system with n particles, the probability of gaining a
particle in an exchange is

P (n → n + 1) =
∑
C

nop(C)

Ld
pIP (C), (6)

where the sum is over all n-particle configurations and nop(C)
is the number of open sites in configuration C. Similarly, the
probability of losing a particle is

P (n → n − 1) =
∑
C

n

Ld
pRP (C). (7)

The coexistence condition P (n → n + 1) = P (n → n − 1)
implies μ∗ = ln(ρ/ρop), where ρop is the average density of
open sites over configurations with n particles.

The NNE lattice gas exhibits nonequilibrium steady states
under a drive [23]. In the simple case of single-particle nearest-
neighbor hopping on the square lattice, we parametrize the
drive such that hopping attempts in the +x direction occur
with probability p/2, and those in the opposite direction with
probability (1−p)/2; the attempt probabilities for hopping in

the ±y directions are 1/4 as in equilibrium. Then p = 1/2
corresponds to the unbiased (equilibrium) case, and p = 1 to
maximum drive. The model exhibits a line of phase transitions
in the ρ − p plane, with ρc 	 0.263 for p = 1.

We define μ∗ in the driven NNE lattice gas (and in any
driven athermal system) via the same relation: μ∗ ≡ ln(ρ/ρop).
The reason is that the reservoir must have this value of μ∗ for
the net particle flux between it and the system (driven or not)
to be zero. Note that our definition of μ∗ is equivalent to the
general definition proposed by Sasa and Tasaki [14].

This definition of μ∗ is compatible with the zeroth law for
all values of the drive. To see this, consider two systems,
S and S ′, characterized by densities ρ and ρ ′, and drive
parameters p and p′, and which satisfy the zero-current
condition with respect to the same particle reservoir, so that
(ρ/ρop) = (ρ ′/ρ ′

op). Under virtual exchange between S and
S ′, the net particle current is 〈�n〉SS ′ = ρ ′ρop − ρρ ′

op, which is
identically zero under the hypothesis of a common value of μ∗.

To determine the effective chemical potential μ∗(ρ,p)
of the driven NNE lattice gas, we simulate the model on
square lattices of size L × L with L = 40, 80, and 100, with
periodic boundaries. (Restricting the analysis to the disordered
phase, ρ < ρc, finite-size effects are weak.) We use a set
of 5–10 independent realizations, each consisting of 2 × 105

lattice updates (LU) for relaxation, followed by 107 LU for
calculating stationary averages. (A LU corresponds to one
attempted move per site.)

A second series of studies probes coexistence, by simulating
a pair of systems, A and B, of the same size. At each event,
particle exchange is selected with probability pr . We use a
series of small pr values (typically, 0.001–0.006) to allow
extrapolation to pr = 0. Exchange is allowed between any
pair of sites, (i,j )A and (i ′,j ′)B , in the two lattices. In an
exchange move, a pair of sites is chosen at random. Then if
(i,j,)A is occupied and (i ′,j ′)B is open, or vice versa, a particle
is exchanged between the systems.

Simulation results for μ∗(ρ,p) in isolated systems are
shown in Fig. 1 (smooth curves). (The system size is L = 80;
similar results are obtained for other sizes.) We see that, for a
given density, μ∗ under maximum drive is smaller than in equi-
librium, and that the difference increases with density. This can
be understood as the result of a bunching effect: particles tend
to pile up along the drive, leaving larger vacant regions and
hence a higher value of ρop, which in turn reduces μ∗. The
points in Fig. 1 show pairs of coexisting stationary densities
(extrapolated to pr = 0) between a system with p = 1 and
one in equilibrium. Each pair of coexisting systems possesses
a single value of μ∗ (to within a statistical uncertainty of
10−4 or less), showing that equality of this quantity can be
used to predict the coexisting densities. The points, moreover,
fall along the stationary μ∗(ρ,p) curves of the corresponding
isolated systems, confirming that, under weak exchange, the
systems are governed by the same relation between the
intensive variables ρ and μ∗ as they are in isolation.

As noted in the Introduction, stationary properties at
coexistence depend on the rate pr of exchange attempts. This is
illustrated in Fig. 2: both the coexisting densities and chemical
potentials vary systematically with pr , converging to well de-
fined limits as pr → 0; the limiting chemical potential values
agree to within uncertainty. [For the parameters of Fig. 2, the
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FIG. 1. (Color online) NNE lattice gas: simulation results for μ∗

in equilibrium (upper curve) and under maximum drive (lower curve),
system size L = 80. Pairs of points sharing the same value of μ∗

represent coexisting densities in the equilibrium and driven systems
under weak exchange. Uncertainties are smaller than line thickness
and symbol size.

limiting values are μ∗ = 0.119 57(6) and 0.119 59(10) in the
nondriven and driven systems, respectively.] This dependence
arises because varying pr changes the fraction of moves in
which the drive acts, effectively varying its strength. Increasing
pr reduces the effect of the drive, so that the coexisting
densities approach one another, and μ∗ increases, approaching
its equilibrium value. (As a technical point we note that
although very small values of pr would in principle be
desirable in approaching the limit, such values also imply slow
relaxation and large uncertainties in simulations, so that in
practice it is better to perform studies at a series of reasonably
small pr values and extrapolate to pr = 0.)

FIG. 2. NNE lattice gas: simulation results for coexisting densi-
ties in a nondriven system (lower) and under maximum drive (upper)
as a function of exchange rate pr (system size L = 80; mean density
ρ = 0.24). Inset: chemical potentials μ∗ at coexistence (for the same
parameters) in the nondriven (squares) and driven (×) systems. Error
bars are smaller than symbols.

The zeroth law is verified in the following manner. We
first simulate a pair of systems, one (A) in equilibrium, the
other (B) with maximum drive, under weak exchange. For the
parameters used (L = 100; mean density ρ = 0.26), we obtain
the coexisting densities ρA = 0.2542(1) and ρB = 0.2658(1).
The measured chemical potential is μ∗ = 0.3278(8) in both
systems. We next examine a system (C) with drive p = 0.6,
and find that it coexists with system A (at density ρA = 0.2542,
as above) when ρC = 0.2548(1); the corresponding chemical
potential values agree to within uncertainty with that obtained
under coexistence of systems A and B. The zeroth law then
implies that systems B and C should also coexist at the
previously obtained densities. This is verified by simulating
these systems under weak exchange, starting each with density
ρ = 0.2603. In the stationary state, the coexisting densities
are ρC = 0.2548(1) and ρB = 0.2658(1), just as expected. We
have repeated this analysis using other densities and drive
values, confirming in each case the validity of the zeroth law.

Given that μ∗ is an increasing function of density, for any
value of the drive, our analysis shows that if NNE models with
different values of μ∗ are permitted to exchange particles,
the ensuing particle flux will tend to equalize the chemical
potentials. Since our definition of the effective chemical
potential is based on the particle insertion probability, which
is well defined even under a drive, we expect that steady-state
thermodynamics can be defined in a consistent manner for
athermal systems in general, at least insofar as configuration
space is concerned.

A. NNE lattice gas with first- and second-neighbor hopping

Although our numerical results are in good accord with
theoretical expectations for the driven NNE lattice gas with
nearest-neighbor hopping, the model has a defect that might be
expected to complicate theoretical analyses: it is nonergodic.
Specifically, there are valid configurations which admit no
escape via hopping to nearest-neighbor sites; an example of
such a “trapped” configuration is shown in Fig. 3. (Note that
trapped configurations exist already in equilibrium; for p =
1 the class of trapped configurations is considerably larger.)

FIG. 3. NNE lattice gas: example of a particle configuration
satisfying the NNE condition, but which admits no escape via
nearest-neighbor hopping.
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FIG. 4. (Color online) NNE2 lattice gas: dimensionless chemical
potential μ∗ versus density for p = 1/2 (upper curve) and p = 1
(lower curve). System size L = 80.

Since (for p < 1) a trapped configuration C∗ is inaccessible
from any other configuration, the evolution cannot visit the
full configuration space, making the process nonergodic. (For
p = 1 the ergodicity violation is stronger, since, starting from
a generic initial configuration, the process can become trapped
in an absorbing configuration [23].)

If we extend the set of transitions to include hopping to
second as well as first neighbors, the process appears to be
ergodic for all values of p; we shall refer to this as the
NNE2 lattice gas. The hopping rates are 1/8 in the directions
perpendicular to the drive, p/4 for displacements with a
positive projection along the drive, and (1−p)/4 for those
with a negative projection. The phase diagram of driven NNE2
model was studied some years ago by Szolnoki and Szabo [24],
who showed that there is a line of Ising-like phase transitions
in the ρ − p plane, with ρc 	 0.35 for p = 1. As before, we
restrict attention to the disordered phase.

The behavior of μ∗ in the driven NNE2 model is qualita-
tively similar to that of the model with only nearest-neighbor
hopping (the NNE model). The dimensionless chemical
potential for p = 1 is plotted versus density in Fig. 4. The
difference between μ∗(ρ,p = 1) and μ∗(ρ,p = 1/2) grows
more slowly with density than in the NNE model, as might
be expected, since the tendency to block particle motion is
reduced in the present case.

As in the NNE model, we verify that under weak exchange
between systems with different values of the drive, p and p′,
the coexisting densities ρ and ρ ′ are predicted by equating
the chemical potentials μ∗(ρ,p) and μ∗(ρ ′,p′). For example,
simulations of isolated systems (with system size L = 80) in
equilibrium and under maximum drive yield a common value
of μ∗ for particle numbers 2040 and 2124 (densities 0.318 75
and 0.331 88), respectively. Simulations of the two lattice
system, using pr = 0.001–0.005, yield (in the limit pr → 0)
the same chemical potential, μ∗ = 1.0000(1), and coexisting
densities 0.318 76(1) and 0.221 86(1). Thus consistency of
SST is verified in the NNE2 lattice gas, supporting our surmise
that it holds for athermal systems in general.

IV. DRIVEN LATTICE GAS WITH ATTRACTIVE
INTERACTIONS

We turn our attention to the driven lattice gas (KLS
model) with attractive nearest-neighbor interactions. The
system evolves via a particle-conserving dynamics with a drive
D = Di favoring particle displacements along the +x direction
and inhibiting those in the opposite sense. The acceptance
probability for a particle displacement �x is

pa = min{1, exp[−β(�E − D · �x)]}. (8)

In this case, we consider nearest-neighbor hopping, which is
sufficient to ensure ergodicity.

In this section we attempt to describe coexistence between
KLS systems using the approach employed for the NNE
lattice gas. That is, given a system S with density ρS ,
temperature T , and drive D > 0, we determine μ∗

S via the
zero-current condition. We then examine the possibility of
coexistence between S and a nondriven (equilibrium) system
S0 at temperature T , whose density ρ is adjusted to render its
chemical potential μ∗

0 equal to μ∗
S .

Since particle exchanges with the reservoir also transfer
energy, we must alter the insertion and removal probabilities;
a convenient choice satisfying detailed balance is

pI = min[1,eβ[μ−(Enew−Ecur)]] (9)

and

pR = min[1,eβ[−μ−(Enew−Ecur)]]. (10)

In the above expressions, Ecur is the energy of the current
configuration and Enew that following the change, be it
insertion or deletion. The above expressions correspond to
Metropolis rates, as discussed in Sec. II.

Given that the system is in configuration C, the expected
change 〈�n〉C in the particle number n in an attempted in-
sertion or removal is 〈�n〉C = Prob[n → n + 1] − Prob[n →
n − 1]. For the procedure defined above,

〈�n〉C = 1

Ld

∑
j

[(1 − σj )pI ;j − σjpR;j ], (11)

where the sum is over sites and σj = 1(0) if site j is occupied
(vacant). The probabilities pI ;j and pR;j are those of Eqs. (9)
and (10), respectively, with Enew the energy following insertion
or removal at site j . If P (C) is the probability distribution
on configuration space, then the expected change in particle
number per attempted transfer (insertion or removal) is

〈�n〉P =
∑
C

P (C)〈�n〉C . (12)

In the KLS model, the change in energy upon particle
insertion (removal) at a site with j occupied neighbors is
�E = −j (�E = +j ). Thus the expected change in particle
number per exchange event is

〈�n〉 =
q∑

j=0

[ρ+
S (−j ) min{1,eβe(μ+j )}

− ρ−
S (j ) min{1,e−βe(μ+j )}], (13)
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where q is the lattice coordination number and ρ+
S (−j ) [ρ−

S (j )]
is the density of vacant [occupied] sites with exactly j occupied
nearest neighbors. The densities are stationary averages over
the set of configurations with n particles, as in the NNE case.
Setting 〈�n〉P = 0, we have an equation for eμ∗

.
On the square lattice, the allowed values of �E are

−4,−3, . . . ,0, while for removal �E takes the values
0,1, . . . ,4. Consider first μ � 0. In this case, pI ;�E = 1 for
all pertinent values of �E, while pR;�E=j = e−β(μ+j ) for
j = 0,1, . . . ,4. Then Eq. (12) becomes

〈�n〉P = {(1 − ρ) − e−μ∗
[ρ−(0) + e−βρ−(1)

+ e−2βρ−(2) + e−3βρ−(3) + e−4βρ−(4)]}, (14)

where we used the fact that
∑4

j=0 ρ+(j ) is just the density of
vacant sites. Since μ is not known a priori, the relations for
μ > 0, μ ∈ [−1,0), [−2,−1), [−3,−2), [−4,−3), and μ <

−4 are all analyzed. We solve all six zero-current conditions
and determine which is self-consistent, i.e., yields a μ value
in its proper interval. In practice, given the stationary values
ρ±(j ), we find that only one of the six conditions is in fact
satisfied in a self-consistent manner.

From the Ising-lattice gas correspondence we know that, for
ρ = 1/2, the chemical potential μ = −2 for all temperatures,
if D = 0. The driven KLS lattice gas is invariant under
exchange of particles and empty sites or holes if we also let
D → −D. Since the stationary properties depend on D, but
not on the orientation of the drive, particle-hole symmetry
(PHS) also applies to the driven lattice gas. In particular,
for ρ = 1/2, in the stationary state, we have the symmetries
ρ−(j ) = ρ+(4 − j ), for j = 0, . . . ,4. Inserting these relations
in the zero-current condition, one finds that μ = −2 for density
one-half, in the stationary state, regardless of T or D. A
further consequence of PHS is that, in both the driven and
nondriven cases, if we define �μ(ρ,T ,D) ≡ μ(ρ,T ,D) −
μ(1/2,T ,D) = μ(ρ,T ,D) + 2, then �μ is an odd function
of �ρ ≡ ρ − 1/2.

In the present study we restrict attention to temperatures
above the critical temperature Tc. For the driven lattice gas on
the square lattice, Tc → 0.769(2) as D → ∞ [25], while the
corresponding critical temperature in the pair approximation
(PA) is 0.8015 [26]. We concentrate on a temperature of unity;
qualitatively similar results are found at other temperatures
above Tc.

We study the KLS model on square lattices of L × L sites
with L = 40, again with periodic boundaries. After verifying
that the system has attained a steady state, we determine the
densities ρ±(j ). In a particle exchange move, a site (i,j )A
in lattice A is chosen at random. If the occupancy states of
this site and the corresponding site (i,j )B are different, then
a particle is exchanged between the lattices with probability
pex = min{1, exp(−β�E)}, where the energy change �E

involves nearest-neighbor particle interactions within each
lattice, but not the drive. There are no interactions between
particles in lattices A and B. We use particle exchange
probabilities pr = 0.0002, 0.0005, and 0.001 and extrapolate
to the weak-exchange limit. Studies using random exchange
[i.e., between sites (i,j )A and (i ′,j ′)B , chosen independently
in systems A and B] yield similar results, suggesting that
stationary properties are not sensitive to this choice.

FIG. 5. (Color online) KLS lattice gas: simulation results (points,
L = 40), and PA predictions (curves) for μ∗ in equilibrium (lower
on right) and under a strong drive, D = 10 (upper on right), for
temperature T = 1.

We complement our simulation studies with PA analyses,
following the approach devised in [26]. Briefly, the PA is
formulated in terms of a set of coupled (nonlinear) differential
equations for the nearest-neighbor pair probabilities b(i,o),
where i denotes the pair type (doubly occupied, doubly
vacant, or mixed) and o denotes the orientation (parallel or
perpendicular to the drive). Joint probabilities involving three
or more sites are approximated on the basis of the pair proba-
bilities, as detailed in [26]. We study homogeneous systems at
fixed temperature, density, and drive, integrating the equations
until the stationary state is attained. Using the stationary pair
probabilities we calculate the densities ρ±(j ) and hence the
quantity μ∗ via the zero-current condition. We extend this
method to study a pair of systems under weak exchange.

Figure 5 shows simulation and PA results for μ∗(ρ,T ,D)
for the KLS model in equilibrium and under a strong drive
(D = 10), for temperature T = 1. For ρ < 1/2, μ∗ is smaller
in the driven system than in equilibrium, for the same density;
for ρ > 1/2 the trends reverse. The curves cross at ρ = 1/2,
as expected.

With the values of μ∗ in hand, we study pairs of systems, one
in equilibrium, the other with D = 10, under weak exchange.
The results shown in Fig. 5 lead one to expect that if the
two systems are initialized with the same density, ρ > 1/2,
then particles will migrate from the driven to the nondriven
system, until the corresponding μ∗ values are the same. In
fact, particles flow in the opposite sense, so that, in the
stationary state, ρ(D = 10) > ρ(D = 0) and μ∗(D = 10) >

μ∗(D = 0). This is demonstrated in Fig. 6: the curve shows
the relation between coexisting densities ρE and ρD in the
equilibrium and driven systems, respectively, predicted by
equating μ∗(ρ,T ,D = 0) and μ∗(ρ,T ,D = 10), using the PA.
The small squares represent the coexisting densities given
by the PA under weak exchange (pr = 0.001). The latter lie
on the opposite side of the line ρD = ρE from the curves
obtained using equal chemical potentials. The simulation data
(diamonds and crosses) follow the same trends as the PA
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FIG. 6. (Color online) KLS lattice gas: PA predictions and simu-
lation (MC) results for coexisting densities ρE (for D = 0) and ρD (for
D = 10). Equating chemical potentials in the driven and nondriven
systems yields the smooth curve (PA) and the blue diamonds (MC).
For systems under weak exchange, the corresponding values are
denoted by black squares (PA) and blue crosses (MC). The dotted
diagonal line corresponds to ρD = ρE .

predictions. We conclude that, using Metropolis exchange
rates, equating values of μ∗ does not predict coexisting
densities in the KLS model.

A. KLS lattice gas under Sasa-Tasaki contact

We now consider the KLS model in contact with a reservoir
or another KLS system using ST rates for particle exchange.
Following the ST prescription, the dimensionless chemical
potential of a system (driven or not) of N = ρV particles on a
lattice of V sites is given by

μ∗ = ln
g

1 − ρ
, (15)

where g = ∑q

j=0 ρ−(j )e−βj (see Appendix B of [14]). Sasa
and Tasaki show that a pair of systems coexist under exchange
of particles when their respective values of μ∗ are equal.

We verify the ST coexistence criterion in simulations of the
KLS model on a lattice with L = 40 and temperature T = 1.
To begin we determine μ∗ in the nondriven system for densities
near 0.75; in a system with drive D = 10, similar values of
μ∗ are found for ρ 	 0.606. Having obtained μ∗(ρ) for the
two systems, we find that, for a fixed total particle number of
2169, the dimensionless chemical potential takes the common
value of μ∗ = −1.713 15 for densities 0.750 04 and 0.605 58
in the nondriven and driven systems, respectively. These are
the predicted coexistence densities for a pair of systems,
one nondriven and the other with D = 10, each at temperature
T = 1. Simulating the two systems under weak exchange,
we verify that the stationary densities in fact approach the
predicted values as pr → 0, and that the chemical potentials
defined via Eq. (15) approach the common value cited above.

Summarizing, we have shown that in the case of the KLS
model, coexistence under particle exchange is not predicted

correctly using the condition of equal dimensionless chemical
potentials, if the exchange is governed by Metropolis rates.
Correct predictions are however obtained using ST exchange
rates. We expect the same conclusions to hold for other
interacting (nonathermal) lattice gases. We may further expect
that other exchange rates (such as mechanism-B rates), which
do not share the ST property, will yield incorrect predictions.

V. KLS LATTICE GAS: EFFECTIVE TEMPERATURE

The results of Sec. IV demonstrate that equating the
dimensionless chemical potentials μ∗, of a driven and a non-
driven KLS system, does not predict the stationary densities
when these systems are allowed to exchange particles using
Metropolis rates. The reason for this becomes apparent when
we examine the energy transfer 〈�E〉SS0 from the nondriven
to the driven system at coexistence, under weak exchange.
A steady state requires 〈�n〉 = 0, but the particle exchanges
on average transfer energy from the driven to the nondriven
system, making 〈�E〉SS0 < 0. (For the parameters studied
here, |〈�E〉SS0 | is on the order of 10−3 to 10−2.) A steady
flux of energy from the driven to the nondriven system is
also observed under ST exchange rates, even though equating
the values of μ∗ yields the coexisting densities correctly:
the systems coexist under particle exchange but not under
energy exchange. In this section we examine the possibility
of predicting coexistence (under both particle and energy
exchange) using two parameters, by introducing an effective
temperature as well as an effective chemical potential.

The steady flow of energy from the driven to the nondriven
system suggests that the former is effectively at a higher
temperature than the latter. Note that in the driven KLS system
S, the acceptance probability pa = min{1, exp[−β(�E − D ·
�x)]} implies contact with a reservoir at temperature T = 1/β;
since this reservoir is only accessible toS, we call it the private
reservoir, RS . On average, the drive increases the energy of
S, since it increases the likelihood of transitions with �E > 0
more than those with �E < 0. Under steady conditions, the
energy increase due to the drive is balanced by the energy
transfer to RS : this is the housekeeping heat associated with
the stationary operation of a driven system [1]. Under the drive,
we may regard the temperature ofRS as merely a parameter in
the definition of the transition probabilities; we refer to it as the
“nominal temperature.” We expect the effective temperature,
Te, of the driven system to be greater than Tn.

The parameters μ and Te of the KLS system will again
be defined via exchange with a reservoir. If a system S is in
contact with a (heat and particle) reservoir at temperature Te

and chemical potential μ, then, assuming Metropolis exchange
rates, an exchange in which the energy of S changes by
�E, and the number of particles in S changes by �n, is
accepted with probability p = min{1, exp[βe(μ�n − �E)]},
where βe = 1/Te. The effective temperature and chemical
potential of S are then determined by the conditions

〈�n〉S =
q∑

j=0

[ρ+
S (−j ) min{1,eβe(μ+j )}

− ρ−
S (j ) min{1,e−βe(μ+j )}] = 0 (16)
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and

〈�E〉S = −
q∑

j=0

j [ρ+
S (−j ) min{1,eβe(μ+j )}

− ρ−
S (j ) min{1,e−βe(μ+j )}] = 0. (17)

We take ρ+
S (−j ) and ρ−

S (j ) as averages over the stationary state
in which S exchanges energy and particles with the reservoir;
in equilibrium, these densities therefore represent grand
canonical averages. If S is driven, its stationary properties
depend on the rate pr of exchange attempts with the reservoir,
and μ and Te are defined in the weak-exchange limit.

Our definitions of μ and Te for a driven systemS are a direct
consequence of the principle that, if S coexist with a reservoir
R, it must be characterized by the same temperature and

chemical potential as R. We now ask whether this definition is
thermodynamically consistent. Given a reservoir R such that
Eqs. (16) and (17) hold for some driven system S, let S0 be
an equilibrium KLS lattice gas with the same temperature and
chemical potential as R. Since S0 and R are in equilibrium,
we have, for the site densities ρ±

0 (j ) ofS0, the detailed-balance
relations,

ρ+
0 (−j ) = e−βe(μ+j )ρ−

0 (j ), (18)

which of course imply 〈�n〉0 = 〈�E〉0 = 0 for exchange
between S0 and R.

Consistency requires that S and S0 coexist, that is, that
the particle and energy fluxes between these systems be zero
under virtual exchange. These fluxes (per exchange attempt,
from the nondriven to the driven system) are given by

〈�n〉SS0 =
∑
j,j0

[ρ+
S (−j )ρ−

0 (j0) min{1,eβe(j−j0)} − ρ−
S (j )ρ+

0 (−j0) min{1,eβe(j0−j )}] (19)

and

〈�E〉SS0 = −
∑
j,j0

j [ρ+
S (−j )ρ−

0 (j0) min{1,eβe(j−j0)} − ρ−
S (j )ρ+

0 (−j0) min{1,eβe(j0−j )}]. (20)

Using detailed balance we may write

〈�n〉SS0 =
∑
j0

⎧⎨
⎩

∑
j<j0

[ρ+
S (−j )ρ−

0 (j0)eβe(j−j0) − ρ−
S (j )ρ+

0 (−j0)] +
∑
j�j0

[ρ+
S (−j )ρ−

0 (j0) − ρ−
S (j )ρ+

0 (−j0)eβe(j0−j )]

⎫⎬
⎭

=
∑
j0

ρ−
0 (j0)

⎧⎨
⎩

∑
j<j0

e−βe(j0−j )[ρ+
S (−j ) − e−βe(μ+j )ρ−

S (j )] +
∑
j�j0

[ρ+
S (−j ) − e−βe(μ+j )ρ−

S (j )]

⎫⎬
⎭

=
∑
j0

α(j )[ρ+
S (−j ) − e−βe(μ+j )ρ−

S (j )] (21)

and

〈�E〉SS0 = −
∑
j0

jα(j )[ρ+
S (−j ) − e−βe(μ+j )ρ−

S (j )], (22)

where

α(j ) ≡
j∑

k=0

ρ−
0 (k) +

q∑
k=j+1

eβe(j−k)ρ−
0 (k). (23)

Now α(j ) is an increasing function of j , and since it takes
a different value for each j , the conditions 〈�n〉SS0 = 0 and
〈�E〉SS0 = 0 are in general distinct from Eqs. (16) and (17),
which define μ and Te. The four conditions cannot be satisfied
simultaneously except in special cases. For example, for μ >

0, 〈�n〉S = 0 implies that
∑

j0
[ρ+

S (−j ) − e−βe(μ+j )ρ−
S (j )] =

0, which is clearly different from the condition 〈�n〉SS0 = 0.
We have therefore demonstrated a violation of the zeroth law:
although S and S0 both coexist with R, in general they do not
coexist with each other. Evidently, this conclusion holds for
attractive nearest-neighbor lattice gases on any regular lattice,
in dimension d � 2, regardless of the coordination number.

The argument can be extended to other functional forms
of the acceptance probability pa . For example, in the case

of mechanism B rates, a transition involving a particle
displacement �x, attended by a change �E in interaction
energy, is accepted with probability

pB = 1

1 + exp[β(�E − D · �x)]
, (24)

with β = 1/Tn, while for particle and energy exchange with a
reservoir at inverse temperature βe and chemical potential μ,
we have

pB = 1

1 + exp[βe(�E − μ�n)]
. (25)

The parameters βe and μ characterizing the driven system
S satisfy the relations

〈�n〉S =
∑

j

[
ρ+
S (−j )

1 + e−βe(μ+j )
− ρ−

S (j )

1 + eβe(μ+j )

]
= 0 (26)

and

〈�E〉S = −
∑

j

j

[
ρ+
S (−j )

1 + e−βe(μ+j )
− ρ−

S (j )

1 + eβe(μ+j )

]
= 0. (27)
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Using the relation analogous to Eq. (19), with mecha-
nism B acceptance probabilities in place of the Metropolis
expressions, and Eq. (18), one may now write

〈�n〉SS0 =
∑
j0

ρ−
0 (j0)

∑
j

1 + e−βe(μ+j )

1 + eβe(j0−j )

[
ρ+
S (−j )

1 + e−βe(μ+j )

− ρ−
S (j )

1 + eβe(μ+j )

]
. (28)

Once again, it is not possible to satisfy all four coexistence
conditions simultaneously.

Here it is worth noting that the zero-current conditions
are qualitatively different for different choices of pa , so that
the effective temperature and chemical potential of the driven
system will depend on the choice of rates. Also, for a KLS
lattice gas with pa given as above, μ and Te depend on whether
we use Metropolis, mechanism B, or some other acceptance
probabilities for exchanges with the reservoir.

As was shown in Sec. IV, coexistence under particle
exchange using ST rates is predicted correctly and consistently
using equality of μ∗. There remains, nevertheless, a steady
transfer of energy from the driven to the nondriven system in
this case. (Numerical values of the flux again lie in the range
10−3 to 10−2.) As before, we define an effective temperature
for the driven system via the zero-energy-flux condition. For
ST rates, the zero-flux conditions determining the effective
temperature and chemical potential of S become

〈�n〉S =
q∑

j=0

[ρ+
S (−j ) − ρ−

S (j )e−βe(μ+j )] = 0 (29)

and

〈�E〉S = −
q∑

j=0

j [ρ+
S (−j ) − ρ−

S (j )e−βe(μ+j )] = 0. (30)

Solving each equation for eμ∗
and equating the resulting

expressions we obtain∑
j jρ−

S (j )e−βej∑
j ρ−

S (j )e−βej
=

∑
j jρ+

S (−j )

1 − ρ
, (31)

which can be solved for the effective temperature, Te = 1/βe,
of the driven system; then Eq. (29) defines its dimensionless
chemical potential, μ∗.

In this case, the inconsistency discussed above is absent.
If S and S0 are driven and nondriven systems coexisting with
a reservoir having parameters μ∗ and βe, the fluxes between
driven and nondriven systems are given by

〈�n〉SS0 =
∑
j,j0

[ρ+
S (−j )ρ−

0 (j0)e−βej0 − ρ−
S (j )ρ+

0 (−j0)e−βej ]

(32)

and

〈�E〉SS0 = −
∑
j,j0

j [ρ+
S (−j )ρ−

0 (j0)e−βej0

− ρ−
S (j )ρ+

0 (−j0)e−βej ]. (33)

Now using detailed balance we may write

〈�n〉SS0=
∑
j0

e−βej0ρ−
0 (j0)

∑
j

[ρ+
S (−j ) − e−βe(μ+j )ρ−

S (j )],

(34)

so that 〈�n〉S = 0 implies 〈�n〉SS0 = 0 and, similarly,
〈�E〉S = 0 implies 〈�E〉SS0 = 0. Thus rates enjoying the ST
property do not suffer from the inconsistency discussed above.

A. Numerical examples

Although we have shown analytically that an effective
temperature and chemical potential cannot be defined in
a consistent manner for the KLS model under Metropolis
exchange rates, it is interesting to study numerical examples,
to assess the degree of inconsistency. We obtain the stationary
solution to the master equation for the KLS model, including
exchange with a reservoir at temperature Te and chemical
potential μ, on a lattice of 4 × 4 sites, using the method
of [27]. In the equilibrium case we verify that 〈�E〉 = 0 for
Te = Tn, independent of the exchange rate pr , as expected.
For a nonzero drive, we determine Te such that 〈�E〉 = 0
for a series of pr values, permitting extrapolation to pr = 0.
(For the range of values used, pr = 0.001–0.006, all quantities
of interest are essentially linear functions of pr .) With the
values of μ, Te and the ρ+

S (−j ) and ρ−
S (j ) in hand, we

determine the corresponding densities in an equilibrium KLS
system at temperature Te and chemical potential μ. This
permits us to calculate the fluxes under virtual exchange using
Eqs. (19) and (20). For 0.6 � Tn � 1, we observe significant
fluxes (of order 10−3–10−4) between the driven system (with
D = 10) and the corresponding nondriven one. The density
dependence of the particle and energy fluxes for Tn = 0.6 and
D = 10 is shown in Fig. 7. For the parameters of this study,
|〈�E〉SS0 | takes its maximum value (slightly less than 0.005)

FIG. 7. KLS lattice gas: particle flux 〈�n〉SS0 (upper curve) and
energy flux 〈�E〉SS0 (lower curve), under virtual exchange, between
a driven system S (nominal temperature Tn = 0.6; drive D = 10)
and an equilibrium system S0, both of which coexist with the same
reservoir. Results obtained via numerical solution of the master
equation for systems of 4 × 4 sites.
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FIG. 8. (Color online) KLS lattice gas: dimensionless chemical
potential μ∗ versus density for T = 1 in equilibrium (lower curve)
and effective μ∗ for driven lattice gas with Tn = 1 and drive D = 10.
Upper inset: effective temperature Te of driven system versus density.
Lower inset: effective temperature of driven system versus drive
D for density ρ = 0.5 and Tn = 1. System size L = 80. Effective
parameters for the driven system are obtained using Sasa-Tasaki
exchange rates.

for ρ 	 0.805, which corresponds to Te 	 0.845; the energy
flux is equivalent to an equilibrium temperature mismatch
of about 0.4% in the KLS model with these parameters.
Studies using Tn = 1 yield somewhat smaller fluxes, i.e.,
|〈�E〉SS0 | ∼ 5 × 10−4 and |〈�n〉SS0 | ∼ 10−4.

Simulations of driven and nondriven KLS systems in
contact, following the same scheme as in the analysis of
the master equation, confirm the presence of inconsistencies.
For system sizes L = 20 and 40, and Tn = 1, the associated
fluxes are similar to those found for L = 4. In summary,
systematic violations of consistency are observed in studies
using Metropolis exchange rates in determining the effective
parameters and for exchange between driven and nondriven
systems.

By contrast, simulations using ST exchange rates verify the
consistency of the effective temperature and chemical potential
of driven systems. In these studies, we first simulate the
driven system (with fixed particle number, NS ) to determine
the ρ±

S (±j ), and obtain Te and μ∗ via Eqs. (31) and (29).
Next we simulate a nondriven system at temperature Te, for
several values of the particle number N0, to determine the value
for which μ∗

0 is equal to μ∗ of the driven system. For these
parameters,S andS0 evidently coexist with the same reservoir.
Finally, to test for consistency, we simulate the two systems
under weak exchange. We verify that in the steady state, the
particle numbers are those obtained via the coexistence criteria,
and that the stationary energy flux between the systems is zero
to within uncertainty.

A study using L = 320, Tn = 1, D = 10, and ρS =
0.6 (particle number NS = 61 440) yields Te = 1.725 27(5)
and μ∗ = −0.954 049(6) for the driven system; the corre-
sponding nondriven system (at temperature Te) has den-
sity ρ0 = 0.600 43 (particle number N0 = 61 484) and μ∗ =

−0.954 050(1), equal to within uncertainty to that of the driven
system. Studies of the two systems under weak exchange
(pr = 0.0005, 0.001, and 0.002) yield the limiting values
μ∗

0 = −0.9541(2) and μ∗
S = −0.9539(2), and densities ρ0 =

0.600 42(5) and ρS = 0.600 00(5). Thus the properties of the
coexisting systems agree with those predicted by equating the
effective temperature and dimensionless chemical potential
of the driven and nondriven systems in isolation. In the
weak-exchange limit the energy flux 〈�E〉SS0 is zero to a
precision of 10−5. Similar confirmations of consistency are
found for systems with L = 80 and 160.

It is of interest to examine how the effective parameters
of the driven system, obtained under ST exchange with the
reservoir, depend upon density and drive strength; some
examples are shown in Fig. 8. The dimensionless chemical
potential of the driven system follows the same general trend,
as a function of density, as in equilibrium, but is consistently
greater; the difference is an increasing function of density. The
effective temperature is always greater than Tn, as expected.
It exhibits a minimum at half-filling. For fixed density, the
excess effective temperature Te − Tn exhibits a sigmoidal
form, growing ∝D2 for a weak drive, then roughly linearly,
before saturating for D ≈ 10.

VI. CONCLUSIONS

We have examined, in concrete, operational terms, the
consistency of steady-state thermodynamics (SST) for driven
lattice gases. Effective intensive parameters (temperature and
chemical potential) for the driven system are defined via
zero-flux conditions under weak exchange with a reservoir.
Consistency requires that the parameters obey the zeroth law.

In the case of the lattice gas with nearest-neighbor exclu-
sion, only particle fluxes are of interest. The effective chemical
potential is consistent with the zeroth law, and correctly
predicts the coexisting densities of systems with distinct
values of the drive, as verified for the NNE lattice gas with
nearest-neighbor hopping only, and in a second model which
includes hopping to second neighbors as well. We expect that
this will be true of other models with purely excluded-volume
interactions, such as lattice gases with extended hard cores or
the hard-sphere fluid.

Analysis of the driven lattice gas with nearest-neighbor
attractive interactions (the KLS model) shows that we must
define an effective temperature Te as well as an effective
chemical potential. We then explore the possibility of pre-
dicting coexistence using equality of these parameters. A
theoretical argument shows that the zeroth law is violated for
generic exchange rates, but not for Sasa-Tasaki rates. Exact
solutions of small systems, and simulations of larger systems,
reveal that above the critical temperature, the discrepancies
obtained using Metropolis rates, while significant, are not very
large, consistent with the findings of [15]. The possibility of
nonzero particle and energy fluxes between the driven (S)
and nondriven (S0) systems, even when they coexist with the
same reservoir, arises because energy flows continuously from
the drive, through S and thence to its private reservoir RS .
Simulations confirm the zeroth law for Sasa-Tasaki rates.

Our results suggest that extending thermodynamics, fully
and consistently, to nonequilibrium steady states requires using
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rates with the ST property: the rate for particle transfer from
system A to system B depends exclusively on parameters
associated with A, and vice versa. Physically, ST rates
correspond to the initial and final particle positions being
separated by a high-energy barrier. While this seems eminently
reasonable for many systems of potential interest, it is not yet
clear if this principle applies universally.

Note that in the KLS system we verify consistency using
ST rates for exchanges between systems (and between system
and reservoir), even though the internal dynamics of each
system follows Metropolis rates. We believe that for single-
phase systems, the ST exchange scheme will yield consistent
definitions of the effective intensive parameters for any choice
of the rates governing the internal dynamics, as long as local
detailed balance is satisfied. Naturally, one hopes to apply

SST to study phase coexistence within a single system; here it
seems likely that a consistent description will require ST rates
for the internal dynamics as well. We intend to address this
issue in the near future.

A number of other questions remain for future investigation.
Applications to athermal models in continuous space, and to
models including particle momentum variables, are of interest
in extending the analysis to more realistic systems. A further
question is whether an entropy function can be constructed for
NESS.
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