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Entropic memory erasure

Moupriya Das*

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
(Received 13 November 2013; published 25 March 2014)

We have considered a Brownian particle confined in a two-dimensional bilobal enclosure where the state of
the particle represents a bit of information having binary value 0 (left lobe) or 1 (right lobe). A time linear force
is applied on the particle, driving it selectively to a particular lobe, and thus erasing one bit of information.
We explore the statistics of heat and work associated with memory erasure to realize the Landauer limit in the
entropic domain. Our results suggest that the mean value of work done associated with the complete erasure
procedure satisfies the Landauer bound even when the memory is purely entropic in nature.
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I. INTRODUCTION

Logic gates form the basis of general purpose computation
[1]. In digital computation, the binary digits 0 and 1 represent
the two states of the inputs as well as the outputs. All computa-
tions are performed in terms of these two binary digits. In the
case of basic logic operations (OR and AND) at least two inputs
represented by 0 or 1 are converted to a single binary digit,
depending upon the nature of the operation. This incident can
be regarded as an erasing process; two bits converted to a single
bit with assistance of the nonlinearity of the system. Erasure
of information is very important for all three important steps
of information processing: computation, measurement, and
communication [2]. The idea of associating information pro-
cessing with thermodynamics [2–11] has been an area of active
research for many years. Landauer [2,3] showed that a minimal
quantity of heat, kBT ln 2, known as the Landauer bound, is
essentially generated when a classical bit of information is
erased [10]. When the erasing process is very slow, the mean
dissipated heat approaches this bound [2]. This fact has also
been established by experiment. For details we refer to [10].

The two states of the binary information are generally
similar in energy because the computing device should have
the same energy irrespective of its information content. So one
can think of a bistable potential with two wells representing
two states (say, the left well represents the 0 state and the right
well represents the 1 state). As noise is inherently present
in all computational devices, we can consider the motion of
an overdamped Brownian particle in the bistable potential
mimicking the computational procedure. An external bias is
required to transfer the particle selectively to the desired well,
i.e., essentially to erase a bit of information. This setup has been
used to verify Landauer’s principle by numerical computation
in small systems [11]. The nonlinearity of the bistable potential
is exploited by the external bias in the erasing procedure.
In the present work, we intend to investigate the process of
information erasing in the absence of any intrinsic potential
field but in the presence of geometrical confinement [12–16]. It
is now well established that when a Brownian particle moves in
a channel or tube of varying cross section, the confinement in
a higher dimension gives rise to an entropic potential [13–26]
in a reduced dimension. An effective entropic potential is
encountered in the free energy expression of the Fick-Jacobs
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[12] equation, which is equivalent to a one-dimensional
Smoluchowski equation. Our aim here is to explore the energy
requirements when the information has an entropic origin.
Since Landauer’s principle concerns the two states separated
by a potential energy barrier and calculations are done in
terms of energy dissipation and entropy production, it would
seem that an entropic barrier may play an important role in
the calculation of these thermodynamic quantities related to
the erasure process. Keeping this in mind we consider an
overdamped Brownian particle confined in a two-dimensional
bilobal enclosure. The two lobes of the enclosure represent
the two binary states; 0 and 1. The interesting question is the
statistics of the heat dissipated during an erasing process where
the potential barrier is of entropic origin. We investigate the
validity of the Landauer bound appearing as a boundary effect.

II. THE MODEL AND THE STOCHASTIC DYNAMICS

We consider the two-dimensional overdamped dynamics of
a Brownian particle confined in a bilobal enclosure as shown
in Fig. 1(a). The Langevin dynamics of the Brownian particle
is described by the following equation:

γ
d�r
dt

= −Gêy + F (t)êx +
√

γ kBT
−→
η(t). (1)

Here �r represents the position vector of the particle and êx

and êy are the unit vectors along the x and y directions,
respectively. γ is the frictional coefficient of the system, and
kB and T denote the Boltzmann constant and temperature
of the bath, respectively. G represents a very weak constant

bias acting along the transverse direction of the system.
−→
η(t) =

(ηx(t),ηy(t)) is a zero-mean Gaussian white noise which obeys
the fluctuation-dissipation relationship. The properties of the
noise are described by the following equations:

〈−→η(t)〉 = 0,
(2)

〈ηi(t)ηj (t ′)〉 = 2δij δ(t − t ′),

for i,j = x,y.

Apart from the usual forces, the particle is subjected to an
additional bias F (t)êx which is linear in time. The confinement
is imposed on the particle by using the following boundary
condition. The walls of the confinement [18], as shown in
Fig. 1(a), can be represented by the equation

yl(x) = −yu(x) = ωl(x) = −ωu(x)

= Ly(x/Lx)4 − 2Ly(x/Lx)2 − c/2, (3)
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FIG. 1. (Color online) (a) The bilobal enclosure with its geometric parameters. (b) Time series plot of the external force F (t) with the
parameter set Fmax = 1.0, ttherm = 200, τ = 600.

where ωl(x) and ωu(x) correspond to the lower and upper
boundaries of the system, yl(x) and yu(x) represent the
lower bound and upper bound of the y value at position x,
respectively, Lx represents the distance between the middle
point of the bottleneck and the position of the maximal width,
Ly describes the narrowing of the boundary functions, and c

denotes the remaining width of the bottleneck. Consequently,

ω(x) = [ωu(x) − ωl(x)]/2 (4)

corresponds to the local half-width of the bilobal structure.
These wall functions cause the particle to move in a bilobal
enclosure.

In order to simplify further analysis, we will use the dimen-
sionless description [16–20,26] of the dynamical system. We
scale the lengths with the characteristic length scale Lx , i.e.,
x̃ = x/Lx and ỹ = y/Lx , implying c̃ = c/Lx . This scaling
ensures that the scaled boundary functions and the local half-
width are ω̃l(x̃) = ωl(x)/Lx = −ω̃u(x̃) and ω̃(x̃) = ω(x)/Lx .
The time t is scaled by a characteristic time tref as t̃ = t/tref ,
where tref = γL2

x/kBTR , with TR a reference temperature. tref

is essentially twice the time required for a particle to diffuse a
distance Lx at temperature TR . The forces are scaled by FR =
γLx/tref , i.e., G̃ = Gtref/γLx and F̃ (t̃) = F (t)tref/γLx . In
order to keep brevity and notational convenience, we shall omit
the tilde from now on. In dimensionless form the Langevin
equation can be written as

d�r
dt

= −Gêy + F (t)êx +
√

D
−→
η(t), (5)

where D is the rescaled temperature and is given by T/TR .
The above Langevin dynamics can be decomposed into
two equations along two mutually perpendicular directions
(x and y) as

dx

dt
= F (t) +

√
Dηx(t),

(6)
dy

dt
= −G +

√
Dηy(t).

Here ηx(t) and ηy(t) are the components of the Langevin force
η(t) along the x and y directions, respectively. The boundary
function is represented by

ω(x) = [ωu(x) − ωl(x)]/2 = −ax4 + bx2 + c/2. (7)

In the above equation, we have defined the aspect ratio as
a = Ly/Lx and b = 2a, i.e., a and b are appropriately scaled
constants.

The driving force F (t) has the form

F (t) = 0

for 0 < t � ttherm, and

F (t) = Fmax(t − ttherm)/τ (8)

for ttherm < t � ttherm + τ . Here ttherm is the thermalization
time, the time interval during which the system is allowed
to become thermalized initially with the bath in the absence
of any bias; i.e., after the time ttherm the external force F (t)
is switched on. τ is the forcing time period and Fmax is the
amplitude of the driving force. The time series of the external
bias force has been plotted in Fig. 1(b). Due to the presence of
noise in the system, the thermodynamic quantities like work
or heat corresponding to the erasure procedure are stochastic
variables. Therefore we calculate the average quantities. We
consider an ensemble of particles. Each particle is placed at
the position of the bottleneck (0,0) at the initial time. As
expected, during the thermalization time ttherm the particles
become equally distributed in the two lobes, i.e., they contain
both kinds of binary information. The left lobe is assigned the
logical value 0 and the right lobe is assigned the logical value
1. It must be kept in mind that the two states of information
should be well separated in order to ensure thermal stability
of the information in the absence of any perturbation. The
external bias F (t) is switched on after the initial thermalization
period and the particles are directed selectively to the desired
lobe, thus erasing one kind of bit of information.

The Fokker-Planck equation [27] corresponding to the
Langevin dynamics [Eq. (6)] in the absence of any external
bias is presented as

∂P (x,y,t)

∂t

= D
∂

∂x
exp

[−u(x,y)

D

]
∂

∂x
exp

[
u(x,y)

D

]
P (x,y,t)

+D
∂

∂y
exp

[−u(x,y)

D

]
∂

∂y
exp

[
u(x,y)

D

]
P (x,y,t), (9)

where the potential function can be written as u(x,y) = Gy. To
capture the effect of confinement, we use a reflecting boundary
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FIG. 2. (Color online) Time evolution of an ensemble of 100 trajectories during the erasure process. During the thermalization time interval
(ttherm = 400), the state of memory 0 or 1 is equally probable. The parameter set used is D = 0.02, Fmaxτ = 600, and G = 0. (a) Complete
erasure to memory state 1 with Fmax = 0.4 and (b) incomplete erasure to memory state 1 with Fmax = 0.06.

condition at the wall. The dimensional reduction (i.e., studying
the dynamics only along the direction of interest) can be
achieved by involving a marginal probability distribution
P (x,t) along the x direction [i.e., P (x,t) = ∫

dyP (x,y,t)]
and a conditional local equilibrium probability density of y

at a given x, ρ(y; x), and assuming the condition P (x,y,t) ∼=
P (x,t)ρ(y; x). Thus, after reducing the transverse direction
the kinetic equation for the marginal probability distribution
takes the form [from Eq. (9)]

∂P (x,t)

∂t
= ∂

∂x

[
D

∂

∂x
P (x,t) + A′(x,D,G)P (x,t)

]
. (10)

In the present case with a constant force acting along the
negative y direction, the potential function A(x) reads as

A(x,D,G) = −Dln

[
2D

G
sinh

(
Gω(x)

D

)]
. (11)

A(x,D,G) represents the potential which is related
to the varying cross-sectional width of the system. As a
consequence, this potential is entropic rather than energetic
in origin. Equations (9)–(11) are necessary to realize the
appearance of an entropic potential in a reduced dimension
when a Brownian particle is confined in a higher-dimensional
space having varying cross section [14–16]. That is, the motion
of the particle is retarded due to the variation of the width of the
confinement even when there is no conventional potential bar-
rier present. This dimension reduction formulation is still valid
[18] in the presence of external bias [28] when the force is not
too high.

III. NUMERICAL SIMULATIONS:
RESULTS AND DISCUSSION

We have numerically simulated the overdamped two-
dimensional dynamics of the Brownian particle [Eq. (6)] along
with the boundary conditions Eq. (7) using an improved Euler
algorithm. The time step has been chosen to be equal to
10−3. Noise terms have been generated using the Box-Muller
algorithm. We have numerically checked that the fluctuation-
dissipation relation is satisfied in our study. The values of a,
b, and c are set as 0.25, 0.5, and 0.02 for the entire study. We
have kept the value of the transverse force G equal to zero
throughout our study. For analytical consideration, there is a

problem in making G exactly equal to zero because it leads
to an unrealistic value of the entropic potential [Eq. (11)].
An entropy-dominated situation [18] is realized when the
transverse force G tends to zero. This problem does not
arise for numerical simulations and one may set the value
of G equal to zero as we solve the exact two-dimensional
Langevin dynamics [Eq. (6)] of the particle subjected to
reflecting boundary conditions [Eq. (7)]. Although in practice,
a numerical study using G → 0 and G = 0 leads to the same
result, to make sure of the purely entropic nature of the
memory, we have set G = 0 for our entire numerical study.
This ensures that we are actually analyzing the statistics of
work and heat associated with an entropic memory erasure
procedure. There appears no contribution from any field
derived from a potential. The whole work and heat effect arises
as a nontrivial boundary phenomenon. The erasing process
has been demonstrated in the x vs t plot for 102 particles for
two different values of forcing amplitude Fmax [Figs. 2(a) and
2(b)]. As expected, during the thermalization time, the x value
concentrates around ±xm (the two positions of the maximal
width of the structure), reflecting the equal occupancy of the
two binary states 0 and 1. But after switching on the bias force,
one of the states (here the 0 state) is completely erased for the
first case and partially for the second case.

The quantifier, i.e., the success rate accounts for the success
of an erasure process, by measuring the number of cycles at
the end of which the particle stays in the desired well, out
of the total number of trajectories. In the present context a
total number 3 × 103 of trajectories have been considered.
From Figs. 2(a) and 2(b), it is evident that the success rate of
the erasure process is dependent on the amplitude of the bias
force. A very small value of the forcing amplitude cannot
make the particle cross the barrier (i.e., erase one bit of
information). A plot of the percent success rate against Fmax

shows that the success rate is very small for low amplitude
and saturates at the maximum value (100%) after crossing
a threshold value of Fmax (Fig. 3). It is observed that the
saturation occurs faster for a lower value of noise strength
D. The product Fmaxτ has been kept constant throughout the
calculation of the plot of percent success rate vs Fmax for
definiteness [10].

The quantity of primary importance is the work done
corresponding to the erasing of a bit of information. We

032130-3



MOUPRIYA DAS PHYSICAL REVIEW E 89, 032130 (2014)

0.0 0.2 0.4 0.6

60

70

80

90

100

 s
uc

ce
ss

 ra
te

 (%
)

Fmax

 D=0.02
 D=0.04
 D=0.06

FIG. 3. (Color online) Percent success rate vs Fmax plot for three
different values of D. The parameter set used is ttherm = 400, Fmaxτ =
600, and G = 0.

calculate the work done using the following equation:

W =
∫ ttherm+τ

ttherm

F (t)ẋdt. (12)

The above expression follows from the definition of work
itself: the force acting on a particle multiplied by the
displacement caused by the application of this force. And as
we intend to capture the history of the entire time interval, we
multiply force by velocity and integrate over the time period of
action of the force. As erasing occurs due to the application of
the external force and is associated with the displacement of the
particle from one memory state to another (i.e., one lobe to the
other), the above expression represents the work corresponding
to the memory erasure procedure. Equations (6), (7), and (8)
along with Eq. (12) are used for computing the work value
related to erasure. It is clear from the expression Eq. (12) that
when the particle moves along the direction of application of
the force, work is absorbed by the particle and when it moves
against the force work is produced. When we calculate 〈W 〉,
it is observed that the average value of work done as per the
erasure protocol increases with an increasing value of Fmax.
But the value of 〈W 〉 can never reach a value less than that of
the Landauer limit in any circumstances for a complete erasure
process. However, for incomplete erasure 〈W 〉 can have a value
less than the limiting value. We demonstrate this as follows:
As mentioned earlier, 〈W 〉 increases monotonically with Fmax.
So, the minimum value of 〈W 〉 for a complete erasure process
is achieved at the minimum Fmax value at which full erasing
occurs. From the minimum values of Fmax for which complete
erasure takes place for the given values of D (as obtained
from Fig. 3), we designate the threshold values of the forcing
amplitude. From the plot of 〈W 〉 against Fmax for three different
values of D (same as those used in Fig. 3) shown in Fig. 4(a),
it is evident that the value 〈W 〉 is always above the level
kBT ln2, i.e., the Landauer limit, for the Fmax values which
lie above the threshold. (W actually represents dimensionless
work value. So, we would compare this with Dln2 containing
the dimensionless temperature D.) We have plotted 〈W 〉 for
the Fmax values which correspond to full memory erasure in
Fig. 4(a) and scan the region near the threshold values of
Fmax and the Landauer limits for three different values of
temperatures in Fig. 4(b) for better understanding. In Fig. 4(c)
we have plotted 〈W 〉 against Fmax for a single temperature to
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FIG. 4. (Color online) (a) 〈W 〉 vs Fmax plot for three different
values of : D = 0.02 (stars), D = 0.04 (circles), and D = 0.06 (up
triangles). The parameter set used is ttherm = 400, Fmaxτ = 600, and
G = 0. The vertical lines represent the threshold values of Fmax for
three different values of D (line with small stars for D = 0.02, line
with small circles for D = 0.04, and line with small up triangles
for D = 0.06). The horizontal lines represent the limiting value of
〈W 〉, Dln2, for three different values of D (line with small stars for
D = 0.02, line with small circles for D = 0.04, and line with small
up triangles for D = 0.06). (b) The region near the thresholds of Fmax

and the limiting values of 〈W 〉 of (a) is scanned. (c) 〈W 〉 vs Fmax for
D = 0.02.

clearly show that 〈W 〉 always lies above the Landauer limit
for a full erasure of a bit of information. But for Fmax values
below the threshold, i.e., for incomplete erasure, 〈W 〉 can have
a value smaller than that of the limiting value. We analyze
the above findings as follows. The Landauer principle gives
the limiting value of 〈W 〉 for the complete erasure of one bit
of information in a system with thermal fluctuations [10,11].
In the present study, this corresponds to the average value of
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FIG. 5. (Color online) (a) P (W ) vs W plot for a system having an equally probable two-state distribution initially. (b) P (W ) vs W plot for
a system having only one occupied state (left lobe) initially. (c) Bimodal P (W ) vs W distribution for four different values of D. The parameter
set used is ttherm = 400 for (a) and (c); τ = 1500 for (a) and (b) and 600 for (c); Fmax = 0.4 for (a) and (b) and 1.0 for (c); D = 0.02 for (a) and
(b); and G = 0.

work associated with the complete transfer of an ensemble of
particles from one lobe (say, the left lobe or the binary state 0)
to the other lobe (say, the right lobe or the binary state 1). In
our study, it has been found that the value of 〈W 〉 satisfies the
Landauer limit even when the memory has an entropic origin.
Our result supports the recent development in information
thermodynamics [6,7]. These studies [6,7] reveal that the
lower bound of thermodynamic energy associated with the
erasure procedure obeys the Landauer principle for symmetric
memory. In the present study, we deal with symmetric memory
as both the memory states (i.e., the left lobe and the right
lobe of the enclosure) are occupied with equal probability in
the absence of any external bias. And the limiting value of
〈W 〉 validates the Landauer bound. For an incomplete erasure
process, the value of 〈W 〉 might lie below the Landauer limit
as this is associated with partial transfer of particles from one
lobe to the other, giving rise to an average value of W lower
than that of the Landauer limit. This is because a lesser number
of transfer of particles in an ensemble would require less work
as the particles which remain in the starting lobe contribute
almost no work to the total work value and consequently to its
average. For a success rate r , the generalized Landauer bound
[10] is realized as kBT [ln2 + rln(r) + (1 − r)ln(1 − r)]. So
it is evident that for complete erasure, i.e., r = 1, the lower
bound of the average work done reaches the Landauer bound,
and for any incomplete erasure, i.e., r < 1, the limiting value
lies below the Landauer limit. But this does not mean that
the Landauer principle is being violated in our study. If we
concentrate on the region of complete erasure (where one
should apply the Landauer principle) in the Fmax parameter
space, it is evident that the Landauer principle is valid for all
circumstances.

We have calculated the work distribution for 6 × 104

trajectories. Figure 5(a) represents the plot of the probability
distribution for erasure work allowing the particles first
to become thermalized for a considerable time before the
application of the bias force. In the inset Fig. 5(b), we have
demonstrated the distribution of erasure work, conditionally
keeping the particles initially in the left lobe. In the first
case, transitions occur to state 1 (desired state), i.e., to the
right lobe from both the states 0 and 1 (left and right
lobe). The distribution is bimodal [Fig. 5(a)]; the left peak
corresponds to the work done by half the particles which

were already located at the right lobe, whereas the right peak
corresponds to the erasure work done by the other half of
the particles which were initially present at the left lobe.
We obtain a unimodal distribution as depicted in Fig. 5(b)
when we initially keep all the particles in the left lobe,
i.e., at state 0. The peak displays the 0 → 1 transition of
particles representing bits of information. The important thing
to note here is that for individual realizations, W can have
values lower than that of the Landauer limit (can even have
values less than zero) [10,11]. But the average value of W is
always greater than this limit for a full memory erasure. This
observation deserves explanation. Thermodynamic quantities,
such as W , are stochastic variables at the microscopic level.
As W is being calculated using direct Langevin dynamics
for a single trajectory, the effect of thermal fluctuation is
reflected in the individual values of W . Due to the thermal
fluctuation induced by the heat bath, W can have a value
lower than the Landauer limit for an individual realization.
This is demonstrated in Figs. 5(a) and 5(b). The vertical
dotted lines present the Landauer limit. It is observed that
W can lie below the Landauer limit for a very small fraction
of realizations. Again, this does not imply any departure
from the Landauer principle. Actually, when one is looking
for a thermodynamic description of a system with thermal
fluctuation, it is advisable to concentrate on the average
quantities as they contain the entire information of the system
as a whole. As a consequence, in the presence of thermal
fluctuation it is better to compare 〈W 〉 with the Landauer
limit [10,11] rather than comparing W obtained from a single
realization of the trajectory. 〈W 〉 never crosses the Landauer
limit for a full erasure process, thus satisfying the principle for
a system with thermal fluctuation. We have plotted P (W ) vs W

for different noise strengths in Fig. 5(c). It has been observed
that with increasing noise strength, the two peaks come close
together and at very high values of noise strength, we obtain a
unimodal distribution.

Another important observation is that for a large erasure
cycle 〈W 〉 approaches a limiting value. This is shown in Fig. 6,
where the averaging has been done over 104 trajectories. One
important thing to note here is that the limiting value of 〈W 〉 for
large values of τ lies above the Landauer limit, whereas in the
case of a similar study in the presence of an energetic barrier,
〈W 〉 approaches the Landauer limit. The reason behind this
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FIG. 6. (Color online) 〈W 〉 vs τ plot for three different values of
D. The parameter set used is ttherm = 400, Fmax = 0.1, and G = 0.

observation may be explained in this way. In the energetic case,
there is always an intrinsic force field present in the system.
This force field derived from the potential assists the externally
applied force directly to transfer the particles (i.e., information)
from one potential well (i.e., state) to another, and the average
work done approaches the Landauer limit in the case of a very
slow erasure process. But particles subjected to an entropic
barrier in a reduced dimension are essentially free when we
consider their movement in the actual two-dimensional system.
The only constraint is that the particles cannot move out of the
given confinement. As there is no intrinsic force field present
in the system with varying cross section, the external force
does not get direct assistance from the system nonlinearity
in the case of directed transfer of particles from one lobe to
another, i.e., while erasing one kind of bit of information.
It is true that the shape of the system plays a role in this
process but that cooperation may be rather indirect and less
effective compared to the memory erasing process when the
two memory states are separated by an energetic barrier. The
erasing process requires extra work done on the particle when
the memory states are entropic in nature. As a consequence,
the value of 〈W 〉 saturates to a value higher than that of the
Landauer limit for a very large erasure cycle.

We now emphasize a pertinent point. In previous studies on
the Landauer limit in the energetic domain, the erasure protocol
is accompanied by a cycle involving two steps: symmetric
lowering of the potential energy barrier and tilting of the
potential. The lowering of the barrier does not contribute to the
calculation of the work done [10]. This is even more obvious in
systems having physical confinement with varying width. To
manipulate the depth or size of the lobes, one has to modulate
the wall of the system. As a result, the barrier lowering part
does not contribute to the direct numerical calculation of the
work done. It is therefore appropriate to omit this step and
use only the external forcing which drives the particle to the
desired lobe. As there is no symmetric modulation of the wall
function (equivalent to the symmetric lowering of the potential
energy barrier) in our study, we do not keep the entropic barrier
too high so that barrier crossing becomes too improbable.
In a true sense, we assume that barrier lowering has already
occurred when we start our time of observation, and terminate
the cycle instantly after the bias force is switched off. Thus
the system regains its initial state as soon as the bias force is
turned off.

IV. CONCLUSION

We have explained an entropic analog of the information
erasing procedure. It is observed that individual realizations
may turn up with work values lower than that of the Landauer
limit due to thermal fluctuation. But the average value of
work done is always greater than the limiting value even
when the information has an entropic representation. The
Landauer bound can be realized for an entropic potential.
The lower limit of the average work associated with entropic
memory erasure does not cross the Landauer bound in any
circumstances.
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