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The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a
challenging task, because of the very slow dynamics and the severe finite-size effects they show. By exploiting
at the best the capabilities of standard modern CPUs (especially the streaming single instruction, multiple
data extensions), we have been able to simulate the four-dimensional Edwards-Anderson model with Gaussian
couplings up to sizes L = 70 and for times long enough to accurately measure the asymptotic behavior. By
quenching systems of different sizes to the critical temperature and to temperatures in the whole low temperature
phase, we have been able to identify the regime where finite-size effects are negligible: ξ (t) � L/7. Our estimates
for the dynamical exponent (z � 1/T ) and for the replicon exponent (α � 1.0 and T independent), that controls
the decay of the spatial correlation in the zero overlap sector, are consistent with the replica symmetry breaking
theory, but the latter differs from the theoretically conjectured value.
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I. INTRODUCTION

Even though much progress has been made in the past
decades, our comprehension of the underlying nature of
the spin glass phase in finite dimensions faces many open
problems [1]. The two major scenarios stem from theories
that are exact in opposite dimensional limits. Exact in one
dimension, the droplet picture [2,3] considers only two
equilibrium pure states related by spin-flip symmetry. In
contrast, in the mean-field picture [4], replica symmetry is
fully broken in a hierarchical pattern and the many equilibrium
pure states are organized in an ultrametric fashion [5,6].

These central features of the mean-field solution survive
in finite dimensions, as the mean-field solution is amenable
to computations down to, and around, the upper critical
dimension (du = 6), in the form of a replicated field theory. It is
well known that at and below the critical temperature there is a
massless mode associated with the breaking of the continuous
replica symmetry. Therefore, a spin glass is always in a critical
state due to the coexistence of many equilibrium states, and
the associated overlap-overlap connected correlation functions
decay as a power law. This Goldstone mode is called the
replicon mode. In this work we will present results restricted
to the zero overlap sector.1 Note that since there is no replica
symmetry breaking in the droplet theory (only two pure states
exist) the overlap-overlap correlation function is not even
defined for the zero overlap sector, and in the qEA sector,
where it is defined, it decays algebraically with the standard
droplet scaling exponent θ .

*Present address: Departamento de Fı́sica, Universidade Federal do
Rio Grande do Sul CP 15051, 91501-979, Porto Alegre, Brazil.

1Correlations are expected to behave differently in other overlap
sectors. Results for the replicon exponent for different overlap sectors
will appear in a forthcoming publication.

As it happens in the wider framework of the renormalization
group for random systems, spin glasses in zero magnetic
field face technical difficulties, especially for long distance
behavior in 6 − ε dimensions inside the broken phase [7]. At
this point, numerical simulations are very useful and we feel
that studying the four-dimensional case is very important to
interpolate between the field theoretical results above du and
the tridimensional case. The latter is the most explored case in
large scale numerical simulations, which is indeed the crucial
case, but also very close to the lower critical dimension (most
probably dl � 2.5 [8,9]).

Above du = 6, the strongest infrared behavior among all
propagators is exhibited by the zero overlap replicon, where the
associated overlap-overlap correlations decay as r−α with α =
d − 4 below T < Tc and α = d − 2 at T = Tc [10]—verified
by numerical simulations in large-d diluted hypercubes [11]
and in d = 6 [12]. This scenario should change for d < 6,
leading to the standard relation α = d − 2 + η at T = Tc (η
being the anomalous dimension). Moreover field theoretical
arguments suggest [13] that α = (d − 2 + η)/2 for T < Tc.

The large majority of works devoted to the numerical
estimation of the replicon exponents have been done by Monte
Carlo simulations of tridimensional models. Nonequilibrium
methods [14–17] are an alternative to equilibrium studies
[18–20], presenting compatible values; the latest estimates are
α � 0.4 at T < Tc for the zero overlap sector.

Nonequilibrium methods rely on the extrapolation of the
dynamical evolution to allow one to estimate the equilibrium
correlation functions [15], assuming a simple and yet general
ansatz [14] for the time dependence in the overlap-overlap
correlation function. However, a very powerful method based
on a set of integral estimators of characteristic length scales
was introduced recently [17], allowing a more robust and
ansatz-independent determination of the equilibrium cor-
relation functions. Although such nonequilibrium methods
allow the study of equilibrium spatial correlations only in a
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restricted overlap sector, they benefit from the use of very
large lattices and thus having finite-size effects under control,
while equilibration of large system sizes deep in the cold phase
is computationally cumbersome.

The only previous numerical determination of the four-
dimensional case used a similar nonequilibrium analysis based
on the definition of an ansatz, but in rather small system
sizes and time windows [L � 26 and t < 60 000 Monte Carlo
(MC) steps], with a replicon exponent lying in the range
0.9 < α < 1.35 below Tc [21]. In this work we report, using
nonequilibrium methods mentioned above, an almost constant
in temperature replicon exponent α � 1.0 and the dynamical
critical exponent (inversely proportional to T ) with high
accuracy, using unprecedented sizes and time range, where
we can observe clearly the finite-size effects and have them
under control.

II. MODEL AND THE CORRELATION FUNCTION

We have simulated the Edwards-Anderson model for spin
glasses on a four-dimensional cubic lattice of volume L4 with
helicoidal boundary conditions. The Hamiltonian is

H = −
∑
〈x,y〉

Jxyσxσy, (1)

where σx = ±1 are Ising spin variables located at lattice
position x and Jxy are quenched coupling constants joining
pairs of lattice nearest neighbors (denoted by 〈x,y〉), drawn
from a Gaussian probability distribution of zero mean and
unitary variance.

Our study concentrates on the behavior of the correlations
of the replica field qx(t) = σ

(1)
x (t)σ (2)

x (t):

C4(r,t) = L−4
∑

x

qx(t)qx+r(t), (2)

where σ (1) and σ (2) are two real replicas, meaning two
independent systems evolving with the same couplings. We
denote by (· · · ) the average over different realizations of
disorder. In our study we have used the data for C4(r,t)
measured along the directions of the principal axis. We have
not found significant improvement of the statistical errors by
averaging C4(r,t) over spherical shells.

We always consider the time evolution of this system
quenched from high temperatures (initial conditions are
chosen randomly, i.e., T = ∞) to a fixed working temper-
ature, below or at the estimated critical temperature Tc =
1.805(10) [22]. To mimic the physical evolution we have
used the standard Metropolis dynamics. Since we start with
two uncorrelated replicas, they will typically relax in two
orthogonal valleys, so that the system will remain in the
q = 0 sector for large times (much longer than times used
in this study, due to the very large lattices we simulate). As a
consequence, from dynamics we extract the properties of the
equilibrium q − q correlation in the zero overlap sector.

In order to reach large-scale space and time regimes, we
have developed an optimized code dedicated to the use of
single instruction, multiple data (SIMD) technology, present in
practically every modern CPU, where a single processor is able
to perform four floating-point operations simultaneously. With

TABLE I. Set of the simulation parameters. Configurations of the
two replicas at each 2i/2 MC step where saved to disk, as well as the
couplings realization.

T L NS MC steps

1.805 70 40 222.5

42 20 223

30 90 223

1.400 70 34 219.5

42 20 223

30 60 223

1.263 70 50 221

54 20 221.5

42 36 226

30 211 223

1.100 54 38 221

42 16 222

30 60 223

0.900 54 40 220

30 91 223

0.700 30 55 223

0.540 30 87 223

the help of streaming SIMD extensions (SSE) instructions [23]
we could benefit from this intrinsic parallelization to perform
all the operations involved in a Monte Carlo simulation
(see Ref. [24] for the linear congruential pseudorandom
number generator and Ref. [25] for the implementation of
the exponential function), updating four noninteracting spins
simultaneously, one in each quarter of the whole volume.

Since this optimization pushes the processor performance
to its theoretical limit, the overall computation time is strongly
affected by the type and size of the cache memory, as well as
its availability. For an Intel Xeon CPU X5365 at 3.00 GHz
with a L2 Cache of 4 MB, the speedup is 19 times faster than
an equivalently optimized but nonvectorized code.

We have simulated the off-equilibrium dynamics using
linear sizes ranging from L = 30 to 70, for seven temperatures
ranging approximately from 0.3Tc to 0.8Tc, plus Tc—see the
complete set of simulation parameters in Table I. For each
sample, we saved to disk the couplings and the configurations
of each replica at 2i/2 MC steps; the analysis was performed
offline.

III. RESULTS

First we analyze the overlap correlation function starting
with an ansatz known to be a good representation of its
functional form [14]:

C4(r,t) = const

rα
exp{−[r/ξ (t)]δ}. (3)

Assuming that the coherence length grows algebraically as
ξ (t) = Bt1/z, and following Ref. [15], we perform a fit to
Eq. (3) in two steps. First the time dependence for each fixed
distance is fitted to

− ln C4(r,t) = A(r) + B(r)t−δ/z, (4)
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TABLE II. Best fitting parameters and corresponding fitting
ranges obtained by interpolating spatial correlation functions with
the ansatz in Eq. (3). In the cases marked by * a second order term,
t−2δ/z, has been added to Eq. (4).

T L [ri ,rf ] δ B−δ z [ri ,rf ] α

1.400 70 [3,11] 1.47(4) 1.00(5) 6.18(32) [1,7] 1.10(6)
42 [3,8] 1.49(5) 0.98(9) 6.26(48) [1,8] 1.11(4)∗

1.263 70 [3,12] 1.48(3) 0.96(2) 6.79(17) [1,5] 1.07(2)∗

42 [3,12] 1.52(8) 0.78(2) 7.68(37) [1,6] 1.05(3)∗

30 [3,10] 1.48(4) 0.92(4) 6.91(37) [1,6] 1.09(2)∗

1.100 54 [3,9] 1.51(4) 0.88(6) 7.82(74) [1,4] 1.04(6)
30 [3,9] 1.52(8) 0.76(6) 8.9(1.5) [1,7] 1.03(7)∗

0.900 30 [3,8] 1.51(7) 0.77(6) 10.1(2.2) [1,4] 1.05(7)∗

0.700 30 [2,6] 1.50(4) 0.86(4) 11.0(1.6) [1,3] 1.08(11)
0.540 30 [2,6] 1.54(6) 0.81(3) 13.0(2.8) [1,3] 1.09(15)

from which the optimal δ/z is determined through the
minimization of a spatially averaged χ2,

χ̂2 = 1

rM − 2

rM∑
r=3

χ2(r)/NDOF(r), (5)

up to distance rM where fit to Eq. (4) is still meaningful. Then
we interpolate the coefficients in Eq. (4) with the laws B(r) =
B−δrδ and A(r) = const + α ln(r) at the optimal δ/z to obtain
the best estimates for the exponents α, δ, and z. In general
the χ̂2 minimization has been performed for distances r � 3.
However, in some cases we found it necessary to use shorter
distances for the estimate of α and eventually a quadratic term
C(r)t−2δ/z in Eq. (4) has been added.

Table II summarizes the best estimates obtained with this
procedure. With high accuracy the exponent of the stretched
exponential is constant throughout the low temperature phase
with value δ = 1.50(1). The dynamical critical exponent
dependence on the temperature is very well described by the
law z � 8.9(2)/T and the replicon exponent is nearly constant
with average α � 1.06(6).

This fitting method provides a reliable estimation for the
exponents and it is certainly a robust way to get the t → ∞
limit through a global fit [21] to the ansatz in Eq. (3). Still it
suffers from some drawbacks: it is ansatz dependent and some
technical aspects are not perfectly under control. For example,
in order to ensure a fair spatial average of the χ̂2 in the first
step of the procedure, short distances have to be carefully
selected in order not to dominate over the longer distances.
It can be difficult to determine precisely whether this time

window sits between an initial fast transient dynamics and a
near equilibrium dynamics when ξ (t) � r .

To overcome these issues, we move to an ansatz-
independent method to estimate z and α, through a set of
integrals of the correlation function in the form

Ik(t) ≡
∫ L/2

0
dr rk C4(r,t), (6)

and, since we expect a scaling form C4(r,t) ∼ r−αf ( r
ξ
), then

Ik(t) ∝ ξ (t)k+1−α, (7)
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FIG. 1. (Color online) Time dependence of the coherence length
for T = 1.263 and all system sizes simulated. The line accounts
for the power-law fit to L = 70 data in the range ξ2,3 ∈ [3,5], that
corresponds to ξ∞

2,3(t) ≡ 1.20(1) t1/7.44(10). Inset: The scaling function
of the coherence length, evidencing the point where finite-size effects
become important, L � 6.5 ξ2,3(t).

and we can estimate the coherence length as

ξk,k+1(t) ≡ Ik+1(t)

Ik(t)
. (8)

From Eqs. (7) and (8) it is possible to estimate the replicon
exponent α. For example, in case the correlation function is
given exactly by Eq. (3) with α = 1 and δ = 1.5 we have that

ξ2,3(t) = ξ (t)/
(4/3) = 1.12 ξ (t), (9)

with the constant weakly depending on α and δ.
In order to evaluate the integrals above, we adopt the same

procedure used in Refs. [17,26], introducing a self-consistent
integration cutoff at a distance where the correlation function
first becomes less than X times its statistical error, with X = 5
but for T = Tc (X = 7) and T = 0.9 (X = 4). As this method
alleviates the integrals from the wide fluctuations of the non-
self-averaging tails, it also induces a systematic error. To avoid
such a systematic error, we estimate the contribution of the
tail by performing a fit to the ansatz in Eq. (3) using our
previous estimates of δ � 1.5 and α � 1.0 for T < Tc and the
best previous estimate [22,27] α � 1.7 for T = Tc. The fit is
performed in the range [3, min(rmax,rcutoff)] with rmax = 10,
12, and 15 for L = 30, 42, and L � 54 respectively, and is
used to estimate the integral in the range [rcutoff,L/2].

In Fig. 1 we report the time dependence of ξ2,3(t) for
various system sizes at T = 1.263. In the early stage of the
dynamics, in general for ξ (t) � 3, spatial correlation functions
show the effects due to the lattice discretization and the
growth of ξ (t) shows some preasymptotic behavior. In the
inset of Fig. 1 we show that finite-size effects come into play
when L � 6.5 ξ2,3(t) � 7ξ (t), much earlier than the standard
expectation, ξ (t) � L/2. In addition to the finite-size effects,
we also observe some deviations due to the uncertainty in
estimating the contribution of the tail. As a consequence the
estimation of the z exponent from the fit ξ2,3(t) ∝ t1/z must be
restricted to a time window that excludes both the short time
dynamics (affected by lattice discretization) and the very long
time dynamics, even for the largest volumes.
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FIG. 2. (Color online) Data for T = 1.263; different sizes have
different numbers of data points, according to the length of the
simulation shown in Table I. The line corresponds to α = 1.02
obtained from fitting the L = 70 data. Deviations from this line are
finite-size effects. Although the simulations for L = 42 have been
run longer for a factor 32, it is clear that the last part of the simulation
is affected by strong finite-size effects and practically useless for the
estimation of the exponent.

Fortunately enough, all integrals Ik experience the same
inaccuracy in the extrapolation of the tail contribution, so that
these errors compensate each other in the relation between
ξk,k+1 and Ik . In Fig. 2 we clearly identify the finite-size
effects, but there are no other systematic errors due to the tail
extrapolation. Since I2 ∝ ξ 3−α

k,k+1 we can extract the replicon
exponent from a direct fit to the relation Eq. (7), without
discarding late time data for the largest sizes. We use a standard
method for linear fits with errors in both coordinates [28].

In principle, we could have used other values for k and m

in ξk,k+1 and Im appearing in the relation Eq. (7). The choice
for ξ2,3 and I2 is justified because it brings the highest amount
of points for the fits of ξk,k+1(Ik) to a power law, namely, from
20 to 50% less discarded short time data. To keep consistency
with the α estimation, we have chosen ξ2,3 for the estimate of
exponent z.
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FIG. 3. (Color online) Time dependence of the coherence length
ξ2,3 for the largest size L = 70 and several temperatures, ranging
from the critical one Tc = 1.805 down to very low temperatures.

2

6

 10

 0.1 1  10

ξ 2
,3

I2

T=1.400 L=70
T=1.263 L=70
T=1.100 L=54
T=0.900 L=54
T=0.700 L=30
T=0.540 L=30
T=1.805 L=70

FIG. 4. (Color online) Data for L = 70 and several temperatures.
The relation ξ2,3 ∝ I

1/(3−α)
2 provides, at large times, a reliable

estimate for the replicon exponent α. Lines correspond to α =
1.02 for T = 1.263 and α = 1.77 for T = Tc = 1.805. The latter
exponent corresponds to η = −0.23(1), which is compatible with
the latest estimate using equilibrium finite-size scaling analysis [22]:
η = −0.275(25).

Our main results are summarized in Figs. 3 and 4, where
ξ2,3(t) is shown as a function of time and I2(t), respectively,
for several temperatures. From data in Fig. 3 we estimate
the dynamical exponent z by fitting to a power law in the
range ξ ∈ [ξmin,ξmax], and from the data in Fig. 4 we get
the replicon exponent α fitting in the range ξ � ξmin. It is
immediately clear from the observation that all data with
T < Tc in Fig. 4 become parallel at large times that α is roughly
constant in the low temperature phase. Our best estimates for
the exponents z and α are reported in Table III, together with
the fitting ranges, the corresponding χ2, and the number of
degrees of freedom (NDOF). In Fig. 5 we plot the best estimate
for the exponents z and α in a way that makes evident that

TABLE III. Best estimates for the dynamical and replicon
exponents from the fitting of the data shown in Figs. 3 and 4. The fits
are performed on the range [ξmin,ξmax] for z, and with ξ2,3 � ξmin in
the case of α. Errors are obtained through jackknife methods.

T [ξmin,ξmax] z χ 2
ξ /NDOF α χ 2

I2(ξ )/NDOF

1.805 [3.5,13.0] 4.95(04) 19/21 1.766(03) 3.4/21
1.400 [3.5,8.0] 6.86(14) 5.1/16 1.055(19) 1.5/18

[4.0,8.0] 6.89(17) 3.3/14 1.050(22) 0.7/16
1.263 [3.0,5.0] 7.44(10) 6.2/11 1.020(10) 3.4/20

[3.0,5.5] 7.45(08) 7.1/13
[3.5,5.5] 7.46(10) 3.4/10 1.015(13) 2.1/17

1.100 [3.0,5.5] 9.15(15) 4.0/15 0.996(19) 7.8/20
[3.5,5.5] 9.21(20) 3.4/11 1.024(29) 5.5/16
[3.0,6.5] 9.19(16) 7.8/20
[3.5,6.5] 9.23(27) 6.6/16

0.900 [2.7,4.0] 11.32(33) 6.6/14 0.909(31) 1.8/19
[3.0,4.0] 11.50(46) 5.9/10 0.921(42) 1.4/15

0.700 [2.7,4.5] 15.31(67) 2.3/18 0.900(36) 1.1/18
[3.0,4.5] 15.47(77) 1.3/14 0.923(40) 0.4/14

0.540 [2.3,3.3] 17.9(1.3) 12/17 0.896(39) 2.0/17
[2.6,3.3] 19.6(2.1) 5.4/11 0.86(20) 1.8/11
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FIG. 5. (Color online) Best estimates for z(T ) multiplied by T

(above) and α (below) taken from Table III. Lines are best fits:
T z(T ) = 9.7(2) and α = 1.025(9).

z(T ) � 9.7(2)/T and α � 1.025(9) for T < Tc. Actually the
best value for α has been estimated only from data in the
range T ∈ [1,1.5], because for lower temperatures we observe
a systematic decrease in the α value that we explain as follows.
From data plotted in Fig. 4 we see that systems at the lowest
temperatures are still approaching the asymptotic dynamics;
so, it is likely that the small drift of the exponents for these
low temperatures does not reflect a real change, but rather a
preasymptotic effect due to a not large enough value of ξ (t).
Moreover in the T = 0 limit we could have in principle a
different exponent and we are maybe observing the beginning
of the crossover region. Please note that the relatively small
sizes used at the lowest temperatures (see Table I) do not induce
any finite size effect, because the growth of ξ (t) is extremely
slow and barely reaches ξ ∼ 4 < L/7.

IV. CONCLUSIONS

We have performed an extensive numerical study of the
four-dimensional Gaussian Edwards-Anderson model with the

1
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101 102 103 104 105 106 107

χ S
G

t

2π2I3
N 

_
q2

FIG. 6. (Color online) In order to check the reliability of the
integral estimator I3, we compare it to the SG susceptibility for the
L = 30 and T = 1.263 case, where we have the largest number of
samples (211).

aim of measuring the dynamical and the replicon exponents.
We have used very large system sizes (up to 704), which were
never used before. These huge sizes are required to overcome
finite-size effects, which appear when the coherence length
ξ (t) is of the order of 1/7 of the system size. The values of
the replicon exponent α, controlling the spatial decay of the
correlation function, C4(r,t) ∼ r−α , are roughly constant in the
low temperature region (apart from some preasymptotic effects
at very low temperatures). Our final conservative estimate is
α = 1.03(2), which is not far but definitely different from
the one conjectured by the field theoretical arguments based
on the analysis of the first order in the ε = 6 − d expansion,
(d − 2 + η)/2 = 0.883. We also confirm that the dynamical
exponent z(T ) is inversely proportional to the temperature in
the entire temperature range we studied.
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APPENDIX: A CLOSER LOOK AT INTEGRAL
ESTIMATORS

In this Appendix we explore in some detail the properties
of the integrals Ik defined by Eq. (6) as well as the related
estimators for the coherence length defined by Eq. (8).
Note that the spin glass susceptibility is given by χSG(t) =
2π2I3(t). This relation offers a check for the correctness
of the computation of the integrals. Since χSG = Nq2 is a
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FIG. 7. (Color online) Comparison between the integral estima-
tor for the coherence length, ξ2,3, and the ξfit obtained by fitting to the
ansatz in Eq. (3). Data are for L = 70 and T = 1.263 and the values
of ξfit have been multiplied by a factor 1/
(4/3) = 1.12 in order to
be equal to ξ2,3 in case the ansatz in Eq. (3) is asymptotically exact.
Fitting these data in the range 3 < ξ < 5 we get z(ξ2,3) = 7.4(1) and
z(ξfit) = 7.23(7). We draw a line of slope 1/7.3 as a guide for the eye.

032127-5



NICOLAO, PARISI, AND RICCI-TERSENGHI PHYSICAL REVIEW E 89, 032127 (2014)

non-self-averaging quantity we do such a comparison for the
case in which we dispose the largest set of samples (see Fig. 6).

A comparison between the integral estimator ξ2,3 for the
coherence length and another estimator ξfit can be seen in
Fig. 7. The latter is obtained by fitting correlation functions
C4(r,t) with the ansatz in Eq. (3) with α = 1.0 and δ = 1.5.

These two estimators are in agreement with each other, once
normalized according to Eq. (9). A closer inspection reveals
the deviation of ξ2,3 at larger times due to the badness of the
estimation of the tail contribution, so that a secure range for
a fit to obtain z is ξ2,3 ∈ [3,5], though compatible results are
obtained in a wider time window, as can be seen in Table III.
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and Random Fields, edited by A. P. Young (World Scientific,
Singapore, 1998).

[11] L. A. Fernández, V. Martin-Mayor, G. Parisi, and B. Seoane,
Phys. Rev. B 81, 134403 (2010).

[12] G. Parisi, P. Ranieri, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo,
J. Phys. A 30, 7115 (1997).

[13] C. D. Dominicis and I. Giardina, Random Fields and Spin
Glasses: A Field Theory Approach (Cambridge University,
Cambridge, 2006).

[14] E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo, and F. Ritort, Phys.
Rev. Lett. 76, 843 (1996).

[15] E. Marinari, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-
Lorenzo, J. Phys. A 33, 2373 (2000).

[16] F. Belletti et al., Phys. Rev. Lett. 101, 157201 (2008).
[17] F. Belletti et al., J. Stat. Phys. 135, 1121 (2009).
[18] E. Marinari and G. Parisi, Phys. Rev. B 62, 11677

(2000).
[19] E. Marinari and G. Parisi, Phys. Rev. Lett. 86, 3887

(2001).
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