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Asymmetric simple exclusion process on chains with a shortcut
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We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three
consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and
the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007)] to
describe directed motion of molecular motors along twisted filaments. We report here unexpected results which
revise the previous findings in the case of maximum current through the network. Our theoretical analysis,
based on the effective rates’ approximation, shows that the second (shunted) segment can exist in both low- and
high-density phases, as well as in the coexistence (shock) phase. Numerical simulations demonstrate that the last
option takes place in finite-size networks with head and tail chains of equal length, provided the injection and
ejection rates at their external ends are equal and greater than one-half. Then the local density distribution and
the nearest-neighbor correlations in the middle chain correspond to a shock phase with completely delocalized
domain wall. Upon moving the shortcut to the head or tail of the network, the density profile takes a shape typical
of a high- or low-density phase, respectively. Surprisingly, the main quantitative parameters of that shock phase
are governed by a positive root of a cubic equation, the coefficients of which linearly depend on the probability
of choosing the shortcut. Alternatively, they can be expressed in a universal way through the shortcut current.
The unexpected conclusion is that a shortcut in the bulk of a single lane may create traffic jams.
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I. INTRODUCTION

The asymmetric simple exclusion process (TASEP) is one
of the paradigmatic models for understanding the rich world
of nonequilibrium phenomena. Devised to model kinetics of
protein synthesis [1], it has found a number of applications
for vehicular traffic flow [2], biological transport [3], one-
dimensional surface growth [4], forced motion of colloids
in narrow channels [5], spintronics [6], transport of “data
packets” on the Internet [7], and current through chains of
quantum dots [8], to mention a few.

Novel features of the TASEP have been found on networks
consisting of coupled linear chains with nontrivial geometry.
In the approach advanced in our work [9] each macroscopic
segment s of the network is considered in a stationary phase
determined by its effective injection α∗

s and ejection β∗
s rates.

Exact in the thermodynamic limit results for the density profile
are incorporated. The only molecular-field-type approximation
used consists in the neglect of correlations between different
chain segments. This allows one to treat the coupling between
each two connected segments as coupling to reservoirs with
certain effective rates. The possible phase structures of the
whole network are obtained as solutions of the resulting set of
equations for the effective rates that follow from the continuity
of current. The importance of our approach for modeling
complex biological transport phenomena was pointed out
by Pronina and Kolomeisky [10]. This method became very
popular and was used in a number of studies of TASEP and its
generalizations on networks with, e.g., junctions, bifurcations,
intersections, interacting lanes [11]. Finite-size effects on the
density profile due to shifting the position of the double-chain
section from the middle of an open network were studied
too [12].

Here we consider the TASEP on an open chain with a
shortcut in the bulk, introduced as “model A” in Ref. [13]. The

current through the shortcut is proportional to a probability q.
It is convenient to consider the system as composed of three
consecutively connected macroscopic chain segments and a
shortcut between the tail of the first segment and the head of
the third one; see Fig. 1.

In principle, the effect of a shortcut can easily be un-
derstood: the decrease in the current through the shunted
part (second segment) of the original chain leads to a sharp
change of the particle density in the latter. If the chain
without a shortcut (q = 0) is in the low-density (L) phase,
its bulk density ρL

bulk < 1/2 supports a current J < 1/4. The
shortcut takes a part J sc > 0 of that current away from the
second segment, hence the current J (2) = J − J sc has to
be supported by still less bulk density ρ

(2)
bulk < ρL

bulk in that
segment. Similarly, when the initial chain is in the high-density
(H) phase with ρH

bulk > 1/2, the drop in the current through
the second segment leads to a still higher bulk density in that
segment, ρ

(2)
bulk > ρH

bulk. Not so simple is the situation when
the initial chain is in the maximum current (M) phase with
ρM

bulk = 1/2. Now the drop in the current through the shunted
segment of the network can be compensated equally well by
a decrease or increase in its bulk density. Then the middle
segment is forced either in the L or in the H phase, which may
also lead to coexistence of the L phase on the left-hand side
with the H phase on the right-hand side. This phase structure
is additionally favored by the downward (upward) bend in the
density profile of the first (third) segment in the maximum
current phase. In the case of an open system the coexisting
phases are likely to be separated by a completely delocalized
domain wall. Such was the situation observed in each of the
equivalent segments in a double-chain section incorporated in
the middle of a long chain carrying a maximum current [9].
It seems plausible that the above mechanism of influence of
the shortcut on the phase state of the shunted segment should
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FIG. 1. Schematic representation of the network geometry. The
three segments are denoted by Sk , k = 1,2,3. The shortcut is shown
by a dashed arrow.

be invariant with respect to its explicit structure. In particular,
one may consider a shortcut in the form of an additional chain
connecting the last site of the first segment to the first site of
the third one. Since the length of the shortcut is irrelevant, we
can include the case of parallel segments with equal length
considered in our work [9]. However, the authors of Ref. [13]
have claimed that in the case of a maximum current, the
shunted middle segment of their “model A” can exist only in the
high-density phase. This contrast in the conclusions motivated
us to renew the study, both analytically and numerically, of
the model. The results may have important implications for
vehicular traffic flow control, as well as for biological transport
in living cells.

II. MICROSCOPIC MODEL

Here we consider “model A” of a shortcut, proposed in
Ref. [13], when both the injection α and ejection β rates at
the open ends of the system are larger than 1/2, so that the
first and third segments are in the maximum current phase.
Let τ

(s)
i be the occupation number of site i = 1,2, . . . ,Ls of

the segment s = 1,2,3. According the rules of the random-
sequential algorithm, when a particle at the last site of the
first segment (with τ

(1)
L = 1) attempts to move, it may jump

along the main track to the first site of the second segment
with rate (1 − q)(1 − τ

(2)
1 )(1 − τ

(3)
1 ) + (1 − τ

(2)
1 )τ (3)

1 , or take
the shortcut to the first site of the third segment with rate
q(1 − τ

(3)
1 ), or stay immobile with rate (1 − q)τ (2)

1 (1 − τ
(3)
1 ) +

τ
(2)
1 τ

(3)
1 . These rules lead to the following exact expressions for

the stationary current through the second segment:

J (2) = (1 − q)
〈
τ

(1)
L

(
1 − τ

(2)
1

)(
1 − τ

(3)
1

)〉

+ 〈
τ

(1)
L

(
1 − τ

(2)
1

)
τ

(3)
1

〉
, (1)

where 0 � q � 1, and through the shortcut,

J sc = q
〈
τ

(1)
L

(
1 − τ

(3)
1

)〉
, 0 � q � 1. (2)

In addition to (1), we have

J (2) = 〈
τ

(2)
L

(
1 − τ

(3)
1

)〉
. (3)

The vehicular interpretation of the model is obvious.
The driver chooses the shortcut with a fixed probability q,
independently of the fact whether the main road (segment 2)
is open (τ (2)

1 = 0) or not (τ (2)
1 = 1). If the shortcut is closed

(τ (3)
1 = 1) and the main road open (τ (2)

1 = 0), then the vehicle
proceeds to the latter with rate 1. However, according to
Ref. [13] vehicular traffic is better described by their “model
B” in which there are two types of drivers (particles), say,
the type 1 drivers are aware of the shortcut, and the type 2

ones are not. If the first site of the network is empty, particles
are injected with rate α, so that the particle is of type 1 with
probability q, and of type 2 with probability 1 − q. Particles
of type 1 (type 2) will always (never) use the shortcut.

In a biological context, the shortcut is designed to model the
situation when the filament, along which the molecular motor
is moving step by step, is twisted so that two sites i and j

which are distant along the chain become close in space, thus
giving a chance for the motor to jump directly from site i to j .

III. THEORETICAL ANALYSIS

In the effective rates analysis [9] one neglects the correla-
tions between sites belonging to different segments, so that the
above expressions simplify to

J (2) = ρ
(1)
L

(
1 − ρ

(2)
1

)[
(1 − q)

(
1 − ρ

(3)
1

) + ρ
(3)
1

]

= ρ
(2)
L

(
1 − ρ

(3)
1

)
, (4)

and J sc = qρ
(1)
L (1 − ρ

(3)
1 ), where ρ

(s)
i = 〈τ (s)

i 〉, s = 1,2,3, is
the average value of the occupation number τ

(s)
i in a given

stationary state. Within the above approximation effective
injection, α∗

s , and ejection, β∗
s , rates for segment s = 1,2,3 are

introduced according to the rule J (s) = β∗
s ρ

(s)
L = α∗

s (1 − ρ
(s)
1 ),

with α∗
1 = α and β∗

3 = β [9]. Since J (1) = J (3) = J (2) + J sc,
one obtains

α∗
1 = α, β∗

1 = 1 − ρ
(2)
1 + qρ

(2)
1

(
1 − ρ

(3)
1

)
, (5)

α∗
2 = ρ

(1)
L

[
1 − q

(
1 − ρ

(3)
1

)]
, β∗

2 = 1 − ρ
(3)
1 , (6)

α∗
3 = ρ

(2)
L + qρ

(1)
L , β∗

3 = β. (7)

Expressions (5)–(7) for the effective rates coincide exactly
with Eqs. (4) obtained in Ref. [13]. However, the results of
our analysis are essentially different from those claimed in
Ref. [13].

We study the possible phase structures of the type (M, X ,
M), when the first and third segments are in the maximum
current phase (M), and the second segment is in a low-
density phase (X = L), high-density one (X = H), or on
the coexistence line (X = C). The case X = M is excluded,
since the presence of a shortcut implies J (2) < J (1) = J (3) =
1/4. To check the consistency of a given structure with the
corresponding conditions on the effective rates (5)–(7), we
make use of the known, exact in the thermodynamic limit,
values of the bulk density ρ

(s)
bulk and local densities ρ

(s)
1 , ρ

(s)
L ,

in dependence on the thermodynamic phase of each segment
[14]. For simplicity, in our computer simulations we assume
that all the segments have an equal, large enough length L � 1.
Thus, in all cases under consideration ρ

(1)
bulk = ρ

(3)
bulk = 1/2, and

ρ
(1)
1 = 1 − 1/(4α), ρ

(1)
L = 1/(4β∗

1 ), (8)

ρ
(3)
1 = 1 − 1/(4α∗

3 ), ρ
(3)
L = 1/(4β). (9)

By inserting the expressions for ρ
(1)
L and ρ

(3)
1 into Eq. (6), we

obtain

α∗
2 = 1/(4β∗

1 ) − q/(16α∗
3β

∗
1 ), β∗

2 = 1/(4α∗
3 ), (10)

and, from Eq. (4), J sc = 1/4 − J (2) = q/(16β∗
1 α∗

3 ).
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The challenge of the problem to be solved rests in the
self-adaptive feature of the local density profiles in the interior
of the network. Indeed, for a fixed network, the external rates
α,β > 1/2 are only under control, which uniquely determine
the bulk densities of the first and third segment, as well as
the local densities at the external ends of the network, ρ(1)

1 and
ρ

(3)
L ; see Eqs. (8) and (9). Therefore, observing these quantities

only, one cannot tell whether there is some network (a “black
box”) in the interior, or one deals with a simple chain in the
maximum current phase. In our case, the phase of the middle
segment depends on the values of its effective injection and
ejection rates, α∗

2 and β∗
2 , respectively, which couple to the

other two internal rates β∗
1 and α∗

3 via Eqs. (10). The latter
rates, β∗

1 and α∗
3 , are related, in turn, to the local densities at

the last site of the first segment and the first site of the third
segment. Moreover, given the value of the shortcut parameter
q, they determine the currents through the shortcut, J sc, and
through the second segment, J (2) = 1/4 − J sc. However, the
current J (2) has to be supported by the bulk density ρ

(2)
bulk of

the second segment, which equals α∗
2 in the low-density phase

and 1 − β∗
2 in the high-density one; see Eqs. (11) and (18)

below. Since the current J (2) depends on the phase of the
second segment, for each option one has to solve a closed
set of equations for the four effective rates. If these equations
have a solution such that α∗

2 < β∗
2 < 1/2 (β∗

2 < α∗
2 < 1/2),

then the middle segment will be in the low- (high-) density
phase. If α∗

2 = β∗
2 < 1/2 happens to be a solution too, then

the coexistence phase takes place. Thus, the internal state of
the network is a result of self-adaptive changes in the shape
of the local density profiles which are constrained by the
current conservation at each vertex.

Now we pass to the separate consideration of each of the
possibilities X = L, H, C.

A. Middle segment in the low-density phase

In this case we have the following exact in the thermody-
namic limit expressions:

ρ
(2)
bulk = ρ

(2)
1 = α∗

2 , J (2) = α∗
2 (1 − α∗

2 ),
(11)

ρ
(2)
L = α∗

2 (1 − α∗
2 )/β∗

2 .

Substituting the expressions for ρ
(2)
1 and ρ

(2)
L into Eqs. (5) and

(7), we find

β∗
1 = 1 − α∗

2 [1 − q/(4α∗
3 )],

(12)
α∗

3 = α∗
2 (1 − α∗

2 )/β∗
2 + q/(4β∗

1 ).

We have obtained a set of four nonlinear equations, (10) and
(12), for the four effective rates β∗

1 , α∗
2 , β∗

2 , and α∗
3 . From

Eqs. (10) and the first equation in (12) we obtain

β∗
1 = 1/[1 + 4(α∗

2 )2], (13)

α∗
3 = q[1 + 4(α∗

2 )2]/[4(1 − 2α∗
2 )2], (14)

β∗
2 = (1 − 2α∗

2 )2/{q[1 + 4(α∗
2 )2]}. (15)

The above expressions for β∗
1 , α∗

3 and β∗
2 identically satisfy

the second equation in (12) with respect to α∗
2 = ρ

(2)
1 . The

(M, L, M) phase structure of the network requires α∗
2 < 1/2.

Then β∗
1 > 1/2, which, together with α > 1/2, ensures that

the first segment is in the M phase. The condition α∗
2 < β∗

2
for the second segment to be in the L phase leads to the cubic
inequality

4q(α∗
2 )3 − 4(α∗

2 )2 + (4 + q)α∗
2 − 1 < 0. (16)

This inequality has to be fulfilled simultaneously with the
condition α∗

3 > 1/2 for the third segment to be in the M phase
(given β > 1/2). Therefore, the free parameter α∗

2 has to obey
the constraints

qα∗
2 [1 + 4(α∗

2 )2] < (1 − 2α∗
2 )2 < (q/2)[1 + 4(α∗

2 )2]. (17)

As a simple consequence, in the case of q → 0− the free
parameter α∗

2 → 1/2−, which agrees with the result α∗
2 =

ρbulk = 1/2 for a single chain in the maximum current phase.

B. Middle segment in the high-density phase

In this case the exact thermodynamic parameters of the
second segment are

ρ
(2)
bulk = ρ

(2)
L = 1 − β∗

2 , J (2) = β∗
2 (1 − β∗

2 ),

ρ
(2)
1 = 1 − β∗

2 (1 − β∗
2 )/α∗

2 . (18)

Substituting the above expressions for ρ
(2)
1 and ρ

(2)
L into Eqs. (5)

and (7), we find

β∗
1 = q/(4α∗

3 ) + [1 − q/(4α∗
3 )]β∗

2 (1 − β∗
2 )/α∗

2 ,
(19)

α∗
3 = 1 − β∗

2 + q/(4β∗
1 ).

Taking into account Eqs. (10), we have again a set of four
nonlinear equations for the four effective rates. From Eqs. (10)
and the second equation in (19) we obtain

α∗
3 = 1/(4β∗

2 ), (20)

β∗
1 = qβ∗

2 /[1 − 4β∗
2 (1 − β∗

2 )], (21)

α∗
2 = [1/(qβ∗

2 ) − 1][1/4 − β∗
2 (1 − β∗

2 )]. (22)

The above expressions for α∗
2 , α∗

3 , and β∗
1 satisfy the first

equation in (19) identically with respect to β∗
2 = 1 − ρ

(2)
L . The

phase structure (M, H, M) requires α∗
2 > β∗

2 , which leads to
the cubic inequality

4q(β∗
2 )3 − 4(β∗

2 )2 + (4 + q)β∗
2 − 1 > 0. (23)

Together with β∗
2 < 1/2 it ensures the second segment to be

in the H phase. The first segment is in the M phase when
α > 1/2 and β∗

1 > 1/2. The second condition leads to the
inequality

qβ∗
2 > (1/2)[1 − 4β∗

2 (1 − β∗
2 )].

Hence, q → 0+ implies β∗
2 → 1/2−, hence J (2) → 1/4− and

J sc → 0+. The condition α∗
3 > 1/2 for the third segment to be

in the M phase (given β > 1/2) is satisfied whenever β∗
2 <

1/2.
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C. Middle segment on the coexistence line

The second segment can exist in a L or H phase, depending
on whether α∗

2 > β∗
2 or α∗

2 < β∗
2 , respectively. Naturally, we

expect the coexistence phase C to take place at a common
point in the closure of the above open sets, i.e., when the
rates α∗

2 = β∗
2 coincide with an appropriate root of the cubic

equation given by an equality sign in expressions (23) and
(16). To prove this, we set α∗

2 = β∗
2 and assume the exact in

the thermodynamic limit values

J (2) = α∗
2 (1 − α∗

2 ), (24)

ρ
(2)
1 = α∗

2 = ρ
(2)
− , (25)

ρ
(2)
L = 1 − α∗

2 = ρ
(2)
+ . (26)

Here ρ
(2)
∓ = ρ∓(J (2)) with ρ±(J ) = (1 ± √

1 − 4J )/2 are the
bulk densities in theL andH phases, respectively. Substituting
the above expressions for ρ

(2)
1 and ρ

(2)
L into Eqs. (5) and (7),

we obtain

β∗
1 = ρ

(2)
+ + qρ

(2)
+ /(4α∗

3 ), (27)

α∗
3 = ρ

(2)
+ + q/(4β∗

1 ). (28)

Inserting in the first equation 1/(4α∗
3 ) expressed from the

second equation in (10) with β∗
2 = α∗

2 , and replacing ρ
(2)
+ and

ρ
(2)
− by 1 − α∗

2 and α∗
2 , respectively, we obtain

β∗
1 = 1 − α∗

2 + q(α∗
2 )2. (29)

On the other hand, dividing both sides of the first equation
in (28) by 4β∗

1 , and using J sc = 1/4 − J (2), we arrive at

1/4 = ρ
(2)
+ /(4β∗

1 ) + ρ
(2)
−

(
1/4 − J (2)) . (30)

Solving the above equation for β∗
1 we obtain

β∗
1 = [1 + 4(α∗

2 )2]−1. (31)

Clearly, β∗
1 > 1/2 when α∗

2 < 1/2. The equality on the right-
hand sides of the two above derived expressions for β∗

1 leads
to the cubic equation

4q(α∗
2 )3 − 4(α∗

2 )2 + (4 + q)α∗
2 − 1 = 0. (32)

Unexpectedly, the value of α∗
2 = β∗

2 is determined as a
function of q, 0 � q � 1, by the real root of Eq. (32), which is
less than 1/2 and tends to 1/2− as q → 0+. A comparison of
the values of α∗

2 given by this root of (32) and ρ
(2)
1 , evaluated

by computer simulations, is shown in Fig. 2. From the second
equation in (10) at β∗

2 = α∗
2 we have α∗

3 = 1/(4α∗
2 ), so that

α∗
2 < 1/2 directly implies α∗

3 > 1/2.

D. Predictions of the domain wall theory

An open chain with stationary current J < 1/4 can be
found in low-density ρ−(J ) and high-density ρ+(J ) phases.
According to the domain wall theory [15], on the coexistence
line these phases are separated by a completely delocalized
domain wall. As a result, the averaged density profile is linearly
increasing from ρ−(J ) at the left end of the chain to ρ+(J )
at its right end. This prediction is compared to numerical
simulation data in Fig. 3 for external rates α = β = 0.75,
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α* 

2 = ρ(2)
1

q

FIG. 2. (Color online) Comparison of the numerically evaluated
a∗

2 = ρ
(2)
1 , shown by red stars, with the values of the appropriate root

of the cubic equation (32), shown by blue circles, for different values
of the rate q.

length of each segment L = 400, and q = 0.5. The data were
averaged over 100 runs of length 223 attempted moves each.
One sees a good agreement between the theoretical prediction
ρ

(2)
1 = ρ

(2)
− 	 0.282 and the simulation result ρ

(2)
1 	 0.286.

The agreement at the high-density end is also fairly good,
between the theoretical prediction ρ

(2)
400 = ρ

(2)
+ 	 0.718 and the

simulation result ρ
(2)
400 	 0.701.
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x

ρ(x)

FIG. 3. (Color online) Local density profile at α = β = 0.75 and
q = 0.5 shown by red stars as a function of the normalized coordinate
x = i/L, where i = (s − 1)L + 1,(s − 1)L + 2, . . . ,sL labels the
sites in the segment s, s = 1,2,3. The shape of the density profile
in the first and third segments is typical for the maximum current
phase, while that in the second segment closely resembles the linear
dependence with the distance characteristic of the coexistence phase
with a completely delocalized domain wall. The predictions of the
domain wall theory are shown by a blue line.
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FIG. 4. (Color online) Position dependence of the nearest-
neighbor correlations along the network at different values of q. The
normalized coordinate x = i/L is the same as in Fig. 3.

Another important prediction of the domain wall theory is
the parabolic shape of the nearest-neighbor correlations

Fcor(x) = 〈
τ

(2)
i τ

(2)
i+1

〉 − 〈
τ

(2)
i

〉〈
τ

(2)
i+1

〉

as a function of the normalized distance x = i/L. The
simulation results for all q show almost vanishing correlations
in the bulk of the first and third segments and a parabolic-like
shape in the second segment; see Fig. 4. The noticeable tilt
of the “parabolas” to the right when q � 0.7 may be due
to the different value of the correlations G(s,s+1) between
the segments s and s + 1, s = 1,2. For example, we have
numerically evaluated G(1,2) 	 −0.0073 at both q = 0.3 and
q = 1.0, while G(2,3) 	 −0.0023 at q = 0.3 but G(2,3) 	
0.0095 at q = 1.0. Theoretically, the maximum value of
Fcor(x) is reached at the midpoint of the chain and equals

max
x

Fcor(x) = [
ρ

(2)
+ − ρ

(2)
−

]2
/4 = 1/4 − J (2) = J sc. (33)

The validity of this prediction of the domain wall theory is
illustrated in Fig. 5. Remarkably, the value of J sc determines
also the endpoints of the linear profile,

ρ
(2)
1,L = 1/2 ∓

√
J sc. (34)

We emphasize that Eqs. (33) and (34) are universal with
respect to the shortcut nature. Thus, the main characteristics
of the shunted section of a chain which is carrying maximum
current depend only on the value of the current through the
shortcut and do not depend on the structure of the latter.

IV. DISCUSSION

In the framework of the effective rates approach [9] we
reconsidered the simple model of a long open chain with zero-
length shortcut in the bulk, suggested as “model A” in Ref. [13].
In contrast to those authors, we analytically solved the set of
four equations for the four effective rates in the case when the
network carries maximum current and the second (shunted)
segment is either in a low- or in a high-density phase. We
found out that in both cases the solution depends on one free
parameter: the effective injection rate of the second segment

FIG. 5. (Color online) Comparison between the numerically es-
timated maximum value of the nearest-neighbor correlations in the
second segment maxx Fcor(x), shown by red stars connected with
a red line, and the current J sc through the shortcut, shown by
blue circles connected with a blue line, at different values of the
parameter q.

in the former case and the effective ejection rate of the same
segment in the latter case. In the space of the corresponding
free parameter, the boundary of each phase obeys a cubic
inequality with coefficients linearly depending the shortcut
probability; see inequalities (16) and (23). At the common
point of the closed domains, when the effective injection and
ejection rates are equal, and less than 1/2, the second segment
can be found on the coexistence line. Here the values of the
current and the local densities at the endpoints of the density
profile are determined through Eqs. (24)–(26) by the positive
solution, less than 1/2, of the cubic equation (32).

Since the system is open, the low-density and high-density
domains can be separated by a completely delocalized domain
wall. Then the domain wall theory predicts linear spatial
dependence of the local density profile and a parabolic one
of the nearest-neighbor correlations in the shunted segment
These predictions were confirmed by extensive computer
simulations; see Figs. 3 and 4. Finally, Eqs. (33) and (34)
establish that the endpoints of the linear density profile and
the maximum of the parabolic nearest-neighbor correlations
depend solely on the shortcut current, independently of the
nature of the shortcut. This conclusion is supported by our
results on chains with a section in the middle which consists
of two equivalent parallel chains [9], when one of the parallel
chains is considered as a “shortcut.” In that case J sc = J (2) =
1/8 and Eqs. (33) and (34) agree fairly well with the results
shown in Figs. 8 and 9 in Ref. [9] see also the comparison
between theoretical predictions and simulation results given
in Eq. (67) there.

Results with somewhat better statistics for the local density
profile in a network with segments of length L1 = L2 = L3 =
400 and a shortcut realized by a chain of length Lsc = 100 are
shown in Fig. 6. The data are averaged over 100 independent
runs of length 223 attempts each. For the maximum of the
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FIG. 6. (Color online) Local density profile at α = β = 0.75 in a
network with segments of length L1 = L2 = L3 = 400 and a shortcut
realized by a chain of length Lsc = 100 is shown by red stars. The
predictions of the domain wall theory are shown by a blue line. The
normalized coordinate x is the same as in Fig. 3.

nearest-neighbor correlations we have now maxx Fcor(x) =
0.123 to be compared to J sc = 0.125.

In contrast to our study, the authors of Ref. [13] found it
difficult to obtain analytical solutions for the set of effective
rates for “model A” when the first and third segments are in the
maximum current phase. Their computer simulations display
only the (M, H, M) phase structure of the network. However,
in the cases when the first and third segments are both in
the low-density or high-density phase, their results agree with
ours.

We are not aware of any analytical study, within the effective
rates approximation, of “model B” which involves two types
of particles. It seems instructive to continue investigations in
that direction.

Here it is worth noting that the presented theory neglects
finite-size effects, since it uses results for the density profiles
which are exact in the thermodynamic limit. Moreover, its
validity is restricted to the extent to which correlations between
different macroscopic segments can be neglected.

We have empirically established that the middle segment of
the network is in a coexistence phase when its first and third
segments are of equal length and the values of the injection
and ejection rates at the external sites of the network are equal
too, α = β > 1/2. In our paper [12] we have found that if
in a finite-size system a double-chain section is moved from
the central position forward or backward, keeping constant the
overall length of the network, the effective rates and of each of

FIG. 7. (Color online) Numerical results for the local density
profile ρ(x) at α = β = 0.75 in networks with different position
of the shortcut: (a) For segments of length L1 = 200, L2 = 400,
L3 = 600, the profile in the second segment, shown in blue stars, is
typical for a high-density phase; (b) for segments of length L1 = 600,
L2 = 400, L3 = 200, that profile, shown in red rotated squares,
is typical for a low-density phase; (c) the case of equal length
chains, L1 = L2 = L3 = 400, corresponds to a coexistence phase
in the second segment with a linear profile, shown in green disks, as
predicted by the domain wall theory. The normalized coordinate x is
the same as in Fig. 3.

these chains change: from α∗
2 	 β∗

2 to α∗
2 > β∗

2 in the first case,
or to α∗

2 < β∗
2 in the second one. Accordingly, the shape of the

local density profiles changes from almost linear, typical for
the coexistence phase (α∗

2 	 β∗
2 ), to one typical for the high-

(low-) density phase when α∗
2 > β∗

2 (α∗
2 < β∗

2 ). A similar effect
is observed in the present model too; see Fig. 7.

Summarizing, the most unexpected result is the model
prediction that a shortcut in the bulk of a single lane,
carrying a maximum stationary current, may cause traffic jams
characteristic of a shock phase with a completely delocalized
domain wall. The next unexpected result is the universal
dependence of the main features of the shunted segment on
the current through the shortcut.
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