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Scaling of temperature dependence of charge mobility in molecular Holstein chains
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The temperature dependence of a charge mobility in a model DNA based on a Holstein Hamiltonian is
calculated for four types of homogeneous sequences It has turned out that upon rescaling all four types are
quite similar. Two types of rescaling, i.e., those for low and intermediate temperatures, are found. The curves
obtained are approximated on a logarithmic scale by cubic polynomials. We believe that for model homogeneous
biopolymers with parameters close to the designed ones, one can assess the value of the charge mobility without
carrying out resource-intensive direct simulation, just by using a suitable approximating function.
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I. INTRODUCTION

At present, considerable attention of researchers is focused
on biological macromolecules, such as DNA, which are a
promising object to be used in nanobioelectronics [1,2], for
example, in constructing electronic biochips and using DNA
as molecular wires. The value of conductivity in the chain
can be assessed with the knowledge of charge mobility and
concentration of free charges.

Our calculations are based on a Holstein model. Despite its
simplicity this model is widely used for a description of DNA
charge transport [3-6]. Using the semiclassical Holstein model
we calculated a diffusion coefficient D from which the value of
the charge mobility u in homogeneous polyG, polyC, polyA,
and polyT DNA fragments was found (on the assumption that
the charge formed on one DNA strand cannot jump to the other)
for a wide range of thermostat temperatures 7. For different
chains occurring at the same temperature 7', the calculated
values of D are obviously different (the difference between
polyA and polyT is nearly two orders of magnitude). However,
the temperature dependence of the diffusion D(T") seems to be
alike in all the cases.

It turned out that upon rescaling of D and T by the values
depending on the overlapping integral between neighboring
sites of the chain, all the graphs D(T) lie very close to
one another, on the interval 100-1000 K the difference not
exceeding 5%. We believe that for a homogeneous biopolymer
with parameters close to DNA-modeled ones, one can assess
the value of the charge mobility at temperature 7" without
carrying out model calculations, just by associating it with a
point with appropriate coordinates on the “rescaled” graph.

The paper is arranged as follows. In Sec. II we introduce
a semiclassical Holstein Hamiltonian and relevant motion
equations which are modified by Langevin approach in such
a way as to involve the terms responsible for the contribution
of temperature fluctuations. In this formulation the problem is
of interest not only for DNA but also for a wide range of one-
dimensional molecular systems in which phonon dispersion is
negligible. In Sec. III we describe an approach for calculating
the diffusion coefficient of a quantum particle in a classical
molecular chain. There we present parameter values for
homogeneous nucleotide chains used in further calculations. In
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Sec. IV we give the calculation data obtained for the diffusion
coefficient of a hole in homogeneous chains. It is shown that
for these values, one can get universal approximations of
their temperature dependencies in a wide temperature range.
The results obtained can be used for any molecular chains
with optical phonons. In Sec. V we consider a Holstein
Hamiltonian with dispersion. This Hamiltonian immediately
stems from the Peyrard-Bishop model in the absence of
anharmonicity [7]. Consideration of the chain dispersion in
the case of DNA means taking account of the contribution
of stacking interaction into its dynamics. In this case the
temperature dependence of the diffusion coefficient also falls
on the universal approximating curve obtained for medium
temperatures. In this section we also investigate charge transfer
in regular and homogeneous chains with regard to solvation
effects. It is shown that for these chains, the approximation
found does not suit. In Sec. VI we discuss the results obtained.

II. MODEL

Modeling is reduced to solving a system of ordinary
differential equations which describe motion of a fast quantum
particle (electron or a hole) over a chain of classical sites. In
order to take account of the thermostat temperature, classical
equations involve terms with viscous friction and random force
possessing special statistical properties (Langevin equations).
Calculations are carried out for a large number of simulations
(i.e., dynamics of charge distribution from various initial
conditions and with various values of random force) so that
to calculate subsequently the values of macroscopic physical
quantities “averaged over simulations.”

The model is based on a Holstein Hamiltonian for a discrete
chain of sites [8] (Holstein considered a chain of two-atom
sites; in the case of DNA a complementary nucleotide pair is
thought to be a site) [9—11]. In a semiclassical approximation,
choosing a wave function W in the form W = Zflvzl b, |n),
where b, is the amplitude of the probability of the charge
(electron or hole) occurrence on the nthsite (n = 1,...,N, N
is the chain length), we write the averaged Hamiltonian:
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Here v,,,, (m # n) are matrix elements of the electron transition
between mth and nth sites (depending on overlapping inte-
grals), and v,,, is the electron energy on the nth site. We use the
nearest neighbor approximation, i.e., v,,, =0, if m # n £+ 1;
we suppose that intrasite oscillations i, about the center mass
are small and can be considered to be harmonical; and we
believe that the probability of charge’s occurrence on sites
depends linearly on sites” displacements ii,,, &’ is a coupling
constant, M is the nth site’s effective mass, and K is the elastic
constant. Motion equations of Hamiltonian (1) have the form

db,
lhﬁ - vn,n—lbn—l + Vn,nbn + 1)n,n—G-lbn—&-l + a,’znbna (2)
Ll Kiy -l - 792 4 2,0, )
= —RKU, — o |0y — = n .
I Vi

To model a thermostat, subsystem (3) involves the term
with friction (y is the friction coefficient) and the ran-
dom force A, (7) such that (A,(7)) =0, (A,(HA,F +3)) =
2k g T 7 8,m8(5) (T is the temperature [K]), k is the Boltzmann
constant. This way of imitating the environmental temperature
with the use of Langevin equations (3) is well known [12—14].

III. ON THE CALCULATION OF THE
DIFFUSION COEFFICIENT

We assessed the charge mobility in the following way
[15,16]. To calculate the mobility w, one should find the time
dependence of the mean-root-square displacement averaged
over simulations (X2(1)) = (3., |b,|*n?) at a given tem-
perature 7 and then use it to derive the diffusion coefficient
D, which enables one to assess the charge mobility w in the
chain. Individual simulations are trajectories of the ordinary
differential equations system from various initial conditions
and with various values of the random force simulating the
thermostat.

To nondimensionlize system (2) and (3) let us choose an
arbitrary characteristic time 7,7 = 7, and a characteristic size
of displacement U}, it, = Uu,. For a homogeneous chain,
the nondimensionalized motion equations, determining the
distribution of the charge along N-site chain, have the form

.db,

1 dt = r/(bn—l + bn+1) + Xunbna (4)
Py — bl =y ® sz, )
dr? = —wuy X 1Dn Y dt n\l).

The relations between dimension and dimensionless parame-
ters are as follows. Matrix elements n = v, ,+17/h, frequen-
cies of sites oscillation w = t/K/M, and y = 17 /M. The
characteristic size of displacements U* = \/ht/M is chosen
such that the multiplier of the terms in (4) and (5), which
are responsible for the interaction between the quantum and
classical subsystems, are the same, the coupling constant
x =a'\/t3/hM. Z,(t) is a Gaussian random variable with
the distribution

(Z,(®) =0, (Zu(DZy(t + 1)) = 8(1),
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TABLE 1. Dimension and dimensionless values of matrix ele-
ments of the transition between sites [17,18].

Sequence type v, eV n

polyA 0.030 0.456
polyC 0.041 0.623
polyG 0.084 1.276
polyT 0.158 2.400

where the dimensionless temperature is 7 = 7/ T*. In mod-
eling we believe that the parameters of classical sites are the
same, and the value of the matrix element 1 depends on the
nucleotide sequence type.

The parameters of the model corresponding to the DNA
fragment are the following: the characteristic time is t =
10~ s [we chose a time scale corresponding to quantum
subsystem (4)], and the effective mass of a complementary
pair is M = 1072! g. The dimensionless coefficients are
frequencies of classical sites @ = 0.01 (which corresponds
to the spring rigidity K = 0.06 eV/zoA2 of hydrogen bonds
between complementary bases), x = 0.02 (¢’ ~ 0.13 eV/A),
friction coefficient is y = 0.006 (y/M =6 x 10''s™!), for
the chosen characteristic temperature 7* = 1 K, coefficient
& ~ 0.051./y T. The values of the matrix elements which were
used in calculations [17,18] are given in Table 1.

Integrating numerically system (4) and (5) from given
initial conditions (at + = O classical displacements and site
velocities are determined from the thermodynamic equilibrium
distribution, and the charge is considered to be localized
on one site in the center of the chain) we find the charge
dynamics and sites’ trajectories at a given temperature in an
individual simulation. Then we calculate (X2(t)) averaged
over simulations and use it to find the diffusion coefficient
D at a given “temperature” T':

N/2

<X2<z>>=< > |bn<r)|2n2>, (X*(0)) =2D1. (7)

n=—N/2

Calculations of individual simulations were carried out by the
202s1g-method [19]. The model parameters as applied to DNA
are given in more detail, for example, in Ref. [20].

IV. MAIN RESULTS

Since we are interested in the qualitative picture, all results
are presented in dimensionless form. A change to dimensional
values is simple. Here we give a formula to assess the
dimensional value of the mobility 1(T) at a given temperature
T [K] from the calculated dimensionless value of the diffusion
coefficient D(T):

_ Deta®
T kgT*’
where a is the distance between neighboring sites of the
molecular chain, e is the electron charge, and 7 =T7/T™.
For DNAa ~ 3.4 A.

For different sequence types occurring at the same temper-
ature T, clearly the calculated values of D are different (the
difference between polyA and polyT is nearly two orders of

I (3
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FIG. 1. Dependencies of the diffusion coefficient D on tempera-
ture 7 for homogeneous nucleotides. Calculation results denoted by
symbols are connected by line segments. The scales are logarithmic.

magnitude; see Fig. 1). However, the temperature dependence
of the diffusion D(T') seems to be alike in all the cases.

It turned out that upon rescaling T — T/n?>, D — D/n,
all the graphs are similar, especially for low temperatures
(see Fig. 2).

It has been empirically found that for medium temperatures,
rescaling T — T/n?, D — D/./7 is more suitable. From
Fig. 3 we notice that for rescaled temperature 7 /5> > 10,
all graphs are very close to one another.

We approximated the data on a logarithmic scale by
a cubic polynomial for both dependencies D; = D/n and
D, = D//7 on different temperature intervals 7 = T/n?,
having chosen 0 < 77 < R = 8§ for the approximation interval
Dy, and T) > R for D,. The obtained parameter values of the
functions

x = In(T/n?),

9)

3 2
y =apx” +aix” +axx + as,

T/in?

FIG. 2. Rescaled dependencies for homogeneous polynucleotides.
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D/n'"2

T/n2

FIG. 3. Other rescaled dependencies for homogeneous nu-
cleotides. The temperature T is rescaled as in Fig. 1, but the diffusion
coefficient D is divided by /7.

are as follows:

(D for y; = In(D/n), on the interval 0 < T/n* < 8,
ap = 1.3359590 x 1072, a; = —7.0449850 x 1072,
a, = —1.0275530, as = 5.7815836;

(IT) for y, = In(D/,/n), on the interval 8 < T/n?,

ap = 1.4621272 x 1072,
a, = —6.5194332 x 107!,

a; = —1.7419911 x 107!,
az = 5.4939738.

Graphs of approximating polynomials are shown in Fig. 4.

(a) (b)

3
10 10'
o
£ =10
o o
10°
10™
10™ 10° 10’ 10 10*
T/in? T/n?

FIG. 4. Results of modeling and graphs of approximating poly-
nomials. (a) Low temperatures, rescaling T — T /5, D — D/n; (b)
medium temperatures, rescaling T — T/n%, D — D/ /n.
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The boundary value R = 8 is chosen in the following way.
For the results from the intercept 7} € [0,r], we calculated a
summary deviation S; from the approximation curve y;(x),
normalized by the number of results K, and on the second
interval r < T} we found the same deviation S, from y,(x):

1 & 1 &
Si=~< kglj[yl(xu -l &= E[yzm) — yal.

With increasing r, S; grows and S, decreases. The abscissa
of intersection of their graphs is chosen to be a boundary of
partitions R.

V. EXTENSIONS OF THE MODEL: TAKING ACCOUNT
OF STACKING INTERACTION IN DNA

In DNA, of great importance is nonlinear stacking inter-
action O, — ii,_1) [7,21], which for small values of the
difference has the form [21]

®(ﬁn - ﬁn—l) = %KY (ﬁn - ﬁn—l)2~

A more detailed Peyrard-Bishop model with nonlinear inter-
action between neighboring base pairs [7,22] for the case
of small site displacements can be reduced to the form
similar to that of the dispersion term in equations for crystals.
Solvation effects play a great role in processes of charge
transfer [23,24].

Earlier [20] we calculated the hole mobility for polyG
fragments of DNA in the cases of dispersion in classical chain
and taking account of solvation effects. The total energy of the
system has the form

Z Vambm b + Z o iiyby b}
~ 1

*\2 ~ ~ 2
+§ ; q:)(bnbn) + 5 ; Ks(un - unfl)
+1ZM52 +12Kﬁ2

2 n ! 2 n !

Here K is a constant determining the contribution of disper-
sion into the chain energy. In molecular crystals, the value

of dispersion K; in a classical chain is usually small. For
DNA, this is not the case. For DNA in Ref. [21] the value of

stacking interaction was found to be K; ~ 0.04 eV//&z, and

(W|H W) =

for intramolecular hydrogen bonds K ~ 0.06 eV/ A%

The energy of a charge’s solvation on the nth site depends
on the charge distribution density on the site [25]; d is
the effective solvation coefficient. In the calculations of the
diffusion coefficient we took ® = 1.04 eV [24].

The dimensionless parameters are k; = 6.4 x 107> and
® = 15.5. In calculations of individual simulations we added
random force and friction into motion equations of classical
sites, as aforesaid.

Using an approximating curve obtained for medium tem-
peratures (II), we considered an “inverse problem” as applied
to temperature dependencies D(T'), founded for a model with
dispersion and solvation.

For homogeneous chains we have found the cubic poly-
nomial approximation (9) with coefficients @; from (II) in
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the coordinate system x = In(T/n?), y = In(D//m). Let us
assume that for a certain chain (with dispersion or with
solvation, or a regular chain), we can find an “effective” value
of negr such that upon rescaling, the graph D(T) for this chain
will fall on this approximating curve (II).

This problem reduces to finding a minimum of the distance
R(n) from a point to the curve (II). We have data for one
temperature (7,D). It is required to find 7, such that the
point with the coordinates xo = In(T/n%),y0 = In(D/ /1),
be as close to curve (II) as possible. If 5.y values obtained
are close for different values 7', then the graph will be similar
to the graph of D(T) in a homogeneous chain with the matrix
element 7egr.

The test of this assumption showed that in the parameter
range under consideration, (1) for chains with dispersion
(ks = 6.4 x 107>, ® = 0) it is valid, and (2) for chains with
solvation, chains with solvation and dispersion and regular
chains it is not valid.

For the first case, we calculated diffusion coefficient D(T')
in all the homogeneous polynucleotide chains with dispersion.
The nes values were close for different temperatures. The
D(T) in polyA fragment was found to be close to that in
a homogeneous chain with ne¢ ~ 0.70 (which corresponds
to the matrix element v & 0.046 eV), for polyC nes =~ 0.96
(v & 0.063 eV); for polyG negr = 2.08 (v = 0.137 eV), and
for polyT nes ~ 4.1 (v~ 0.270 eV). The results of the
calculations in chains with dispersion and in homogeneous
chains with “effective” matrix elements 7.¢ are shown in
Fig. 5. A considerable discrepancy for polyT at 7 < 150
stems from the fact that the “boundary value” R =~ 8, below
which another approximation (I) should be used, for n = 4.1
corresponds to T = Rn? ~ 135.

> poly G

()
100 - \\0\ o poly T
. \\\\\v\‘

0.1

o poly A
o poly C

450 200 250 300 350 400
T

50 100

FIG. 5. Dimensionless temperature dependencies of the mobility,
TT* = T [K], in semilogarithmic scale. Symbols stand for the values
of the diffusion coefficient D, calculated for homogeneous chains
with dispersion. Continuous lines going adjacently join the values of
D(T) calculated for dispersionless chains [with the use of Egs. (4)
and (5)] with other matrix elements: near the values for polyA runs a
curve with g = 0.7, near those for polyC is a curve with 1. = 0.96,
near the values for polyG, a curve with ner = 2.08, and near those
for polyT, a curve with neg = 4.1.
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TABLE II. Results of n.s calculation for the minimum distance
to the approximating curve (II). Value of the effective matrix element
negr for different temperature 7.

Chain T =100 T =200 T =300
polyG with solvation

(® =155k =0) 0.33 0.28 0.22
polyG with dispersion and solvation

(® =155k, = 6.4 x 1075) 0.62 0.57 0.53
...ATATAT... 0.77 0.82 0.88
..GTGTGT... 0.47 0.52 0.55

So, to find the temperature dependence D(T) of the charge
in the homogeneous chain with dispersion we may to calculate
D for one value T and to count 7. Then this ne may be used
for estimating D at different temperatures.

For homogeneous chains with solvation ® = 15.5, we
failed to find a common matrix element 5.y for different
temperatures (see Table II).

We also calculated mobility for regular fragments of the
form of ...ATATAT... and ...GTGTGT.... In calculations of in-
dividual simulations, integration was performed for the system
of Egs. (4) and (5), in which matrix elements depended on the
sequence type and the sites of the classical subsystem were as-
sumed to be similar. The values of matrix elements were taken
from Refs. [17,18]: var = 0.105 eV (nar = 1.595), via =
0.086 eV (nra = 1.307), vgr = 0.137 eV (ngr = 2.081),
and vrg = 0.085 eV (nrg = 1.291). Then we tried to fit neg;
however, nei differs considerably for different temperatures
(see Table II).

As can be seen from Table II, for the case of a chain with
solvation we could not find a single value neg for different
temperatures. Also, the idea of ¢ is not worked out for regular
polynucleotides.

VI. DISCUSSION

It is shown that the values of the diffusion coefficient D in
a Holstein model chain simulating homogeneous DNA, which
are different for different nucleotide types, being rescaled, fall
on one and the same curve in the corresponding range 7; =
T/n?. For low T; < 8, rescaling is D — D/n; for medium
T; > 8, rescaling D — D/, /n suits better. For these data on
a logarithmic scale, approximating cubic dependencies are
found.

In studying the charge mobility in system (4) and (5),
we were interested in a qualitative picture and left aside
the domain of applicability of the model. The semiclassical
model used cannot be applied at temperatures below Debye
temperature, kgT < ® = hw (for model nucleotide pairs
® = 8 K). Calculations were carried out for coefficients that
are similar at any temperature. This is a simplest assumption.
Surely some parameters are temperature dependent. The most
spectacular example is concerned with DNA, whose constant
of hydrogen bonds interaction K — 0 as 7 — 350 K (at
temperature 60-80 °C DNA melts and hydrogen bonds of
complementary pairs are broken). It may be assumed that as
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the temperature decreases, the coefficient values change less
and less and finally become a constant.

We considered the Holstein model of DNA where Watson-
Crick pairs are represented as independent oscillators de-
scribed by classical motion equations. It is believed that the
planes of nucleotide base pairs are parallel to each other at
any moment, and the distances between neighboring planes
are unchanged (the standard DNA model). The transfer of
a hole in a DNA is determined by overlapping of its wave
functions at neighboring sites. In view of the model geometry,
the overlapping integrals are virtually independent of the
displacements. Thus in Hamiltonian (1) we take into account
the (intrasite) displacements for the diagonal matrix elements
only.

In the Su-Schrieffer-Heeger (SSH) model [26], the nondi-
agonal matrix element dependence on intersite displacements
is considered. The SSH model has been applied to DNA by
Conwell et al. [27-29]. Two important degrees of freedom
in DNA chain are relative base pair displacements along the
stack and the relative twist angles. It was shown [28] that
since these degrees of freedom are not independent they can
be taken into account by introducing the dependence of the
matrix elements on the intersite displacements with effective
coupling constant. The SSH model was applied to describe the
properties of polarons in DNA in many works (see, e.g., Refs.
[30-32] and references therein). In Ref. [33] we calculated
the hole mobility for Holstein model and SSH model and a
combined one (HSSH model), in polyG at T = 300 K. The
values obtained were similar. It is a task for further research to
verify the scaling laws for the SSH and HSSH DNA models.

We considered the simple case of the harmonic potentials in
the classical chain of sites. A Holstein model with dispersion
exactly corresponds to the Peyrard-Bishop model for DNA
[22], when sites’ displacements from their equilibrium posi-
tions are small [7]. This should undoubtedly be valid for low
temperatures; however, at room and higher temperatures the
assumption of the displacements smallness can be incorrect.
In this case consideration of the Peyrard-Bishop model, which
takes account of the chain anharmonicity, becomes actual. The
authors are planning to study this problem in the future.

Based on the numerical results for the Holstein semiclassi-
cal model, we can assume that charge mobility in a molecular
chain with dispersion and matrix element 17; looks like mobility
in a chain without dispersion and matrix element 7,, and
N1 < ny. Also, the approximated cubic curve is not valid for
regular chains and for homogeneous chain with solvation. The
curve can be applied for estimation of the hole mobility in “dry
DNA” rather than in “DNA in a solvent.”

We believe that in the range of “biologically significant”
temperatures, for homogeneous biopolymers with parameters
close to DNA parameters discussed, one can approximately
assess the value of the charge mobility at temperature T
without carrying out resource-intensive model calculations,
just by associating it with a point with suitable coordinate 7}
and recalculating the diffusion coefficient.
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