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We show that the number of harmonics of the Wigner function, recently proposed as a measure of quantum
complexity, can also be used to characterize quantum phase transitions. The nonanalytic behavior of this quantity
in the neighborhood of a quantum phase transition is illustrated by means of the Dicke model and is compared
to two well-known measures of the (in)stability of quantum motion: the quantum Loschmidt echo and fidelity.
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I. INTRODUCTION

Quantifying the complexity of quantum systems is a chal-
lenging fundamental problem, also of practical relevance to a
better understanding of the minimum computational resources
required to simulate many-body quantum systems. A very
convenient framework for investigating quantum complexity is
the phase-space representation of quantum mechanics [1–11].
The main advantage of such an approach is that it can be
equally well applied to classical and quantum mechanics,
being based on the structure of the Liouville density in the
former case and of the Wigner function in the latter. In
this context, the number of Fourier harmonics of the Wigner
function — whose growth rate reproduces in the semiclassical
limit the well-known notion of classical complexity based
on the local exponential instability of chaotic dynamics —
has already been used to measure the complexity of single-
particle [6–8] and many-body [9] quantum systems.

An interesting question is whether the number of harmonics
is capable of characterizing the complexity of the quantum
motion near quantum phase transitions (QPTs), where a slight
variation in the controlling parameter may induce dramatic
change in the wave function. As is known, in addition
to conventional quantities such as the order parameter, the
fidelity, which is the most basic metric quantity, is also
capable of characterizing QPTs [12–22]. In the context of
QPTs, fidelity is defined as the overlap of the ground states
of the Hamiltonians with a slight difference in the controlling
parameter driving the QPT. The dramatic change of the wave
function at a QPT implies a fast decrease of the fidelity when
approaching the critical point. Another metric quantity useful
for characterizing the occurrence of a QPT is the quantum
Loschmidt echo (LE) [23–42], which provides a measure to
the stability of the quantum motion under two slightly different
Hamiltonians. This quantity exhibits a dramatic change in its
decaying behavior in the neighborhood of critical points.

Since the number of harmonics is geometric in nature, being
based on the richness of the phase-space structure, it is natural
to expect that it could be related to other metric quantities such
as the fidelity and the LE and, as a result, could also be used
to characterize QPTs. It should be stressed that, in contrast to
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the number of harmonics, the fidelity and the LE in general
are not good measures of the complexity of quantum motion.
For example, the LE decay does not clearly distinguish, either
in quantum or in classical mechanics, between chaotic and
integrable systems and for integrable systems the decay can be
even faster than for chaotic systems in certain situations [40].
On the other hand, in classical mechanics the number of
harmonics of the classical phase-space distribution function
grows linearly for integrable systems and exponentially for
chaotic systems, with the growth rate related to the rate of
local exponential instability of classical motion [4,5]. Thus
the growth rate of the number of harmonics is a measure of
classical complexity, whose extension to the quantum realm
has been more recently demonstrated in Refs. [6–9].

In this paper we show that the number of harmonics of the
Wigner function is useful also in characterizing QPTs. For this
purpose we study a Hamiltonian that in a low-energy region
relevant to a QPT can be written as a finite number of harmonic
oscillators, with at least one mode whose frequency vanishes
at the critical point. In particular, we focus on the Dicke model
in the thermodynamic limit, with a single zero mode. We show
that the number of harmonics diverges when approaching the
QPT, which is a manifestation of the fact that a small variation
of the controlling parameter provides a dramatic change of
the wave function in the vicinity of the critical point. As a
consequence, the number of harmonics exhibits a nonanalytic
behavior at the QTP, similarly to other metric quantities such
as the fidelity and the LE, which we briefly discuss for the
Dicke model.

The paper is organized as follows. In Sec. II we review
basic definitions of the harmonics of the Wigner function and
discuss their properties for a Hamiltonian describing a QPT
in terms of a finite number of harmonic oscillators. The time
evolution of the number of harmonics is then illustrated for the
Dicke model in the vicinity of its QPT in Sec. III, while other
metric quantities, i.e., the LE and the fidelity, are discussed in
Sec. IV. We conclude with a summary in Sec. V.

II. HARMONICS OF THE WIGNER FUNCTION
CLOSE TO A QPT

In this section we recall the definition of the number of
harmonics of the Wigner function and discuss its application
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in the neighborhood of a QPT. For the sake of simplicity, we
limit ourselves to systems whose Hamiltonian can be written
in terms of a set of bosonic creation-annihilation operators,
that is to say,

Ĥ ≡ Ĥ (0) + Ĥ (1), (1)

where Ĥ (0) = Ĥ (0)(n̂1, . . . ,n̂M ) is a time-
independent unperturbed Hamiltonian and Ĥ (1) =
Ĥ (1)(â†

1, . . . ,â
†
M,â1, . . . ,âM ; t) is a perturbation. Here â

†
i

and âi are bosonic creation and annihilation operators,
n̂i = â

†
i âi are particle number operators, and M is the

number of bosonic modes. Using the c-number α-phase
method [43–45], the Wigner function of a state, which is
described by a density operator ρ̂(t), can be written as

W (α,α∗; t) = 1

π2M�M

∫
d2χ exp

(
χ∗ · α√

�
− χ · α∗

√
�

)

× Tr[ρ̂(t)D̂(χ)], (2)

where α and χ are M-dimensional complex parameter vectors
and

D̂(χ) = exp

(
M∑
i=1

(χiâ
†
i − χ∗

i âi)

)
(3)

is the so-called displacement operator. Coherent states |α〉 can
be generated by D̂:

|α〉 ≡ |α1α2α3 · · · αM〉 = D̂

(
α√
�

)
|00 · · · 0〉, (4)

with |αi〉 being the eigenstate of the annihilation operator âi ,
namely, âi |αi〉 = (αi/

√
�)|αi〉, and |00 · · · 0〉 being the vacuum

state.
We then consider the amplitudes, denoted by Wm(I ; t), of

the M-dimensional Fourier expansion of the Wigner function:

W (α,α∗; t) = 1

πM

∑
m

Wm(I ; t)eim·θ , (5)

where m is an M-dimensional integer vector. Here I and θ are
M-dimensional real vectors, determined from α by the relation
αl = √

Ile
−iθl , with l = 1, . . . ,M .

To estimate the number of harmonics [6,7], we will consider√
〈m2〉t , with 〈m2〉t the second moment of the harmonics

distribution [46],

〈m2〉t =
∑

m

|m|2Wm(t), (6)

where

Wm(t) ≡
∫

d I |Wm(I ; t)|2∑
m

∫
d I |Wm(I ; t)|2 . (7)

It is useful to give an explicit expression of Wm(t) in terms of
the density matrix ρ̂. For this purpose, one may note that in the
basis of Ĥ (0), namely, in |n〉 = |n1 · · · nM〉, the displacement
operator D̂(χ) has the well-known matrix elements [47]

〈ni + mi |D̂(χi)|ni〉 =
√

ni!

(ni + mi)!
χ

mi

i e−|χi |2/2Lmi

ni
(|χi |2)

(8)

(ni,mi ≥ 0,i = 1, . . . ,M), where Lmi
ni

(x) indicate Laguerre
polynomials. Using this expression, the integration over χ

in Eq. (2) can be carried out. Then, making use of the
orthogonality and the completeness of Laguerre polynomials,
one has

Wmi
(Ii ; t) = 2

�
e−(2/�)Ii

∞∑
ni=0

(−1)ni

√
ni!

(ni + mi)!

(
4Ii

�

)mi/2

×Lmi

ni

(
4Ii

�

)
〈ni + mi |ρ̂(t)|ni〉. (9)

This gives the following expression of Wm(t) [9]:

Wm(t) =
∑

n |〈n + m|ρ̂(t)|n〉|2∑
m1,...,mM�0

∑
n |〈n + m|ρ̂(t)|n〉|2

. (10)

In fact, as only the lowest-energy levels are concerned close
to the critical point, we assume that the Hamiltonian describing
a QPT can be approximately written in terms of M harmonic
oscillators (up to an irrelevant constant energy term)

Ĥ (λ) =
M∑
i=1

ei(λ)ĉ†i (λ)ĉi(λ), (11)

where λ is the controlling parameter driving the QPT and
ĉ
†
i (λ) and ĉi(λ) are bosonic creation and annihilation operators

for the ith mode, with frequency ei(λ)/�. We use |�μ(λ)〉,
with μ = (μ1, . . . ,μM ) and μ1, . . . ,μM = 0,1, . . . , to denote
eigenstates of Ĥ (λ):

Ĥ (λ)|�μ(λ)〉 = Eμ(λ)|�μ(λ)〉, (12)

where

|�μ(λ)〉 =
M∏
i=1

1√
μi!

(ĉi
†)μi |�0(λ)〉, (13)

Eμ(λ) =
∑

i

μiei(λ), (14)

with |�0(λ)〉 indicating the ground state of the
Hamiltonian (11).

Let us consider two values λ0 and λ of the controlling
parameter. For the sake of clarity, while using μ to indicate
eigenstates |�μ(λ)〉 of Ĥ (λ) we use n = (n1, . . . ,nM ) to label
the eigenstates |�n(λ0)〉 of Ĥ (λ0). We consider the time
evolution driven by the Hamiltonian Ĥ (λ), starting at a time
t = 0 from the ground state |�0(λ0)〉 of Ĥ (λ0). Substituting
the time-dependent state vector

|	(t)〉 =
∑
μ

e−iEμ(λ)t |�μ(λ)〉〈�μ(λ)|�0(λ0)〉 (15)

into Eq. (10), the second moment of the harmonics distribution
can be expressed as follows:

〈m2〉t =
∑

m1,...,mM�0 m2F(m,t)∑
m1,...,mM�0 F(m,t)

, (16)

where

F(m,t) =
∑

n1,...,nM�0

∣∣∣∣∣
∑
μν

Knm
μν e−i(Eμ−Eν )t

∣∣∣∣∣
2

, (17)
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Knm
μν = 〈�n+m(λ0)|�μ(λ)〉〈�μ(λ)|�0(λ0)〉

× 〈�0(λ0)|�ν(λ)〉〈�ν(λ)|�n(λ0)〉. (18)

In computing the harmonics, we have taken Ĥ (0) = Ĥ (λ0) and
Ĥ = Ĥ (λ).

Since the second moment of the harmonics distribution is
written in terms of inner products of eigenstates at different
values of the controlling parameter, we expect this quantity
to change dramatically with λ and λ0 approaching the critical
point λc. That is, due the fast change of the wave function
at a QPT, we expect the number of harmonics to be able
to detect the QPT. In the following section we shall illustrate
such a property in the physically relevant example of the Dicke
model.

III. DICKE MODEL QPT

A. Dicke Hamiltonian in the thermodynamic limit

The single-mode Dicke model [48] describes the interaction
between a single bosonic mode and a collection of N two-level
atoms. The system can be described in terms of the collective
operator Ĵ for the N atoms, with

Ĵz ≡
N∑

i=1

ŝ(i)
z , Ĵ± ≡

N∑
i=1

ŝ
(i)
± , (19)

where ŝ
(i)
x(y,z) are Pauli matrices divided by 2 for the ith atom.

The Dicke Hamiltonian is written as [48] (hereafter we take
� = 1)

Ĥ (λ) = ω0Ĵz + ωâ†â + (λ/
√

N )(â† + â)(Ĵ+ + Ĵ−). (20)

Performing the Holstein-Primakoff transformation

Ĵ+ = b̂†
√

2j − b̂†b̂, Ĵ− = (
√

2j − b̂†b̂)b̂,
(21)

Ĵz = (b̂†b̂ − j ),

one has

Ĥ (λ) = ω0(b̂†b̂ − j ) + ωâ†â

+ λ(â† + â)

⎛
⎝b̂†

√
1 − b̂†b̂

2j
+
√

1 − b̂†b̂

2j
b̂

⎞
⎠ , (22)

where j = N/2. As shown in Ref. [48], in the thermodynamic
limit N → ∞, the system undergoes a QPT at λc = 1

2

√
ωω0,

with a normal phase for λ < λc and a superradiant phase for
λ > λc.

In the normal phase and for low-lying states, b̂†b̂/N can
be neglected and then the Hamiltonian in Eq. (22) can be
written as

Ĥ (λ) = ω0b̂
†b̂ + ωâ†â + λ(â† + â)(b̂† + b̂) − jω0. (23)

This Hamiltonian can be diagonalized and written as a sum of
two harmonic oscillators

Ĥ (λ) = e1(λ)ĉ†1ĉ1 + e2(λ)ĉ†2ĉ2 + g, (24)

where g is a c-number function and

e1,2(λ) = { 1
2

[(
ω2 + ω2

0

)±
√(

ω2
0 − ω2

)2 + 16λ2ωω0
]}1/2

,

(25)

with e1(λ) < e2(λ). It is seen that e1(λ) = 0 and e2(λ) 
= 0
for λ = λc, hence the ground level of Ĥ (λc) is infinitely
degenerate and the system undergoes a QPT at λc, with a
single zero mode.

In the superradiant phase, one may write the bosonic modes
in Eq. (22) in terms of two new bosonic modes

â† → â′† +
√

A, b̂† → b̂′† −
√

B, (26)

where A and B are of order N . Then, taking the thermodynamic
limit and eliminating the linear terms in the Hamiltonian by
choosing appropriate values of A and B, one can also diago-
nalize the Hamiltonian in the superradiant phase, resulting in
the same form as in Eq. (24), with the following energy levels
of two modes:

e1,2(λ) =
⎧⎨
⎩1

2

⎡
⎣ω2+ω2

0

κ2
±
√(

ω2
0

κ2
− ω2

)2

+ 4ω2ω2
0

⎤
⎦
⎫⎬
⎭

1/2

,

(27)

where κ ≡ ωω0/4λ2 and e1(λ) < e2(λ). It is easy to see that
e1(λ) = 0 and e2(λ) 
= 0 for λ = λc, hence the ground level
of Ĥ (λc) is also infinitely degenerate (and with a single zero
mode) at the critical point from the superradiant phase side.

Therefore, the Dicke Hamiltonian close to the critical
point can be approximated, in both phases, by an effective
Hamiltonian of the form (11) with M = 2 harmonic oscilla-
tors. If both values λ and λ0 of the controlling parameter belong
to the same phase, as we will always consider in our paper,
then we can compute the second moment of the harmonic
distribution by means of Eqs. (16)–(18).

B. Time evolution of the number of harmonics of the Wigner
function near the critical point

When λ is sufficiently close to the critical point λc and the
dynamics is mainly determined by the lowest-energy levels,
i.e., those of the zero mode, Eq. (11) can be further simplified
to a single harmonic oscillator (M = 1). We have numerically
checked that adding the second mode, i.e., the nonzero one,
does not significantly affect the dynamics close to the critical
point. Therefore, in what follows we will present data for the
single mode only. We would like to point out that, even though
the Dicke model in the vicinity of the QPT has the simple form
of a one-dimensional (1D) harmonic oscillator, this does not
imply triviality of the problem considered here because the
oscillator has different frequencies at different values of λ and
in particular it is completely degenerate at the critical point λc.

For this model, as shown in Fig. 1, the basic feature of
the second moment 〈m2〉t of the harmonics distribution of
the Wigner function is that it is a periodic function of the
time t . This is because, as discussed above, the Hamiltonian
Ĥ (λ) has effectively the form of a 1D harmonic oscillator. To
find the period, let us consider the times corresponding to the
maximum values of 〈m2〉t , e.g., points A and B in Fig. 1, and
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FIG. 1. (Color online) Second moment 〈m2〉t of the harmonic
distribution versus time t for the Dicke model at λ = λc − 10−4, λ0 =
λc − 10−3 (solid curve), and λ0 = λc − 7 × 10−4 (dashed curve).
Hereafter we set in numerical calculations ω = ω0 = 1.

denote these times by tp. These times tp can be found by the
requirement d〈m2〉t /dt = 0. Making use of Eq. (16), we find
that d〈m2〉t /dt = 0 is equivalent to the relation

∑
ϑϑ ′

G sin[(μ − ν − β + γ )e1(λ)t]

× cos[(μ′ − ν ′ − β ′ + γ ′)e1(λ)t] = 0, (28)

where ϑ ≡ (μ,ν,β,γ ) and G is a function of the quantity
Knm

μν defined in Eq. (18). As discussed in Appendix A, all of
μ, ν, β, and γ are even numbers, hence the left-hand side of
Eq. (28) is zero at the times satisfying e1(λ)t = kπ/2, with odd
numbers k corresponding to the maximums and even numbers
k corresponding to the minimums of 〈m2〉t . Hence, we have
the maximums at the times

tp = kπ

2e1(λ)
(k = 1,3,5, . . .). (29)

Therefore, 〈m2〉t has a period

T = π

e1(λ)
. (30)

This value is in agreement with the numerical calculations
shown in Fig. 1. Note that this period T is half of the period
of the lowest mode of the system Ĥ (λ) and is infinitely long
at the critical point λc. It has the same form in both phases of
the Dicke model. It is interesting to remark that the period T

of the number of harmonics can be related to the gap between
the ground state and the first excited state via Eq. (29). Such
an important quantity can be obtained also by other time-
dependent metric quantities such as the quantum Loschmidt
echo (see Sec. IV below).

Next we consider the amplitude of the oscillations of the
number of harmonics. We study the maximum value of 〈m2〉t
in Eq. (16), which is determined by the functions F(m,tp).

FIG. 2. (Color online) Dependence of the amplitude Ap on η for
different values of |λc − λ0| and |λc − λ|. Open symbols (with the
superscript N on λ0) stand for the normal phase and closed symbols
(superscript S) for the superradiant phase. The solid fitting curve is
given by Ap = a|η|b, with a = 0.083 and b = −2.3.

Substituting Eq. (29) into Eq. (17), we obtain

F(m,tp) =
∑
n�0

∣∣∣∣∣
∑
μν

(−1)(μ−ν)/2Knm
μν

∣∣∣∣∣
2

. (31)

Therefore, the amplitude of 〈m2〉t , denoted by Ap, is ob-
tained from the summation of the terms Knm

μν , with weights
(−1)(μ−ν)/2. As discussed in Appendix A, the quantities Knm

μν

are in both phases functions of the ratio

η = λ − λc

λ0 − λc

. (32)

Therefore, Ap depends only on the ratio η and not on λ and λ0

separately. This property (illustrated in Fig. 2) is in agreement
with the scaling derived in Ref. [49] for metric quantities for
QPTs with a single bosonic zero mode at the critical point. As
shown in Fig. 2, the dependence of Ap on η can be well fitted
by the curve Ap = a|η|b and since b is negative, Ap diverges
when |η| goes to zero.

A complete characterization of the harmonics dynamics is
obtained by means of the harmonic probability distribution

Q(m,t) = F(m,t)∑
m�0 F(m,t)

. (33)

Numerical simulations given in Fig. 3 for t = tp show that
Q decreases exponentially with increasing m, while, for a
given m, the smaller the quantity |η| is, the larger the value
of Q. This latter behavior is in agreement with the fact that
Ap diverges when η → 0. Since the distribution Q(m,tp)
decrease with m exponentially, we can conclude that the
quantity

√
〈m2〉tp provides a good estimate of the number of

harmonics developed up to the time tp and can be considered as
a suitable measure of the complexity of the Wigner function at
this time.

Finally, we discuss our numerical simulations for the time
evolution of the number of harmonics of the Wigner function
for times t much shorter than the period T . Previous studies
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FIG. 3. (Color online) Variation of ln Q with m for λc − λ =
0.01 and the harmonics distribution computed at the times tp
corresponding to the maximum value of 〈m2〉t .

show that 〈m2〉t is proportional to t2 in the integrable regime
of a single-particle system [7] and grows exponentially in the
integrable regime of a many-body system [9]. In our model,
we found, both in the normal and in the superradiant phases,
that 〈m2〉t increases as t2 within an initial period of time (see
Fig. 4). For longer times (but still much smaller than T ), 〈m2〉t
increases faster than t2 in both phases. Further discussion about
these behaviors of the number of harmonics will be given in
the following section, where the relation between this quantity
and the LE is discussed.

IV. LOCHMIDT ECHO AND FIDELITY FOR THE DICKE
MODEL AT A QPT

The divergence of the number of harmonics developed by
dynamics when approaching the critical point is a consequence
of the fact that a small difference in the controlling parameter

〈 
   

〉
〈 

   
〉

FIG. 4. (Color online) Dependence of 〈m2〉t on t for λc − λ0 =
10−2 and η between 0.4 and 0.001. The top panel is for the normal
phase and the bottom panel is for the superradiant phase. The short
solid straight lines indicate the t2 behavior.

leads to a dramatic change of the wave function in the vicinity
of a QPT. It is therefore interesting to compare the behavior
of the number of harmonics with two other metric quantities,
namely, the quantum Loschmidt echo and the fidelity.

The so-called quantum Loschmidt echo gives a measure
to the stability of the quantum motion under slight variation
of the Hamiltonian [23–25]. It is defined by ML(t) = |m(t)|2,
where

mL(t) = 〈	0|exp(iĤ t/�) exp(−iĤ ′t/�)|	0〉. (34)

Here |	0〉 is the initial state, Ĥ = Ĥ ′ + εV̂ , and ε is a small
parameter. Extensive investigations have been performed in
recent years to understand the decaying behaviors of the
LE [26–42]. In chaotic systems, roughly speaking, the LE
has a Gaussian decay [23] below a perturbative border and has
an exponential decay ML(t) ∝ exp(−�t) above the border. In
the latter case, for intermediately strong perturbation [28,32]
� is given by the half-width of the local spectral density of
states and for relatively strong perturbation it is perturbation
independent [26,35,38]. In integrable systems with one degree
of freedom, the LE has a Gaussian decay, followed after a
transient region by a power-law decay [39]. In contrast, in
integrable systems with many degrees of freedom the LE has
an exponential decay [42].

In our study of the LE, we take Ĥ = Ĥ (λ) and Ĥ ′ = Ĥ (λ0),
with Ĥ (λ) the Hamiltonian for the Dicke model and ε = λ −
λ0. Moreover, we choose the initial state to be the ground
state |�0(λ0)〉 of Ĥ (λ0), so that the LE is in fact a survival
probability. From Eq. (34) we obtain

ML(t) =
∣∣∣∣∣
∑

μ

|〈�0(λ0)|�μ(λ)〉|2eiEμ(λ)t

∣∣∣∣∣
2

. (35)

Then, substituting Eq. (A6) into Eq. (35), the LE can be
written as

ML(t) =
∣∣∣∣∣
∑

μ

∣∣C0
μ

∣∣2eiEμt

∣∣∣∣∣
2

, (36)

where C0
μ is defined in Eq. (A6) of Appendix A. Using

arguments similar to those given in Sec. III B, one finds that the
LE is also an oscillating function of time with the same period
T = π/e1(λ) as for the number of harmonics. Moreover, ML(t)
takes its minimum values, denoted by Mp, at the same times
tp corresponding to the maximum values of the number of
harmonics. As shown in Ref. [49] (see Fig. 3 therein), the
quantity Mp is a function of the scaling parameter η only,

Mp = 2
√

η

1 + η
. (37)

The analytical derivation of this formula is here provided in
Appendix B.

Recent investigations show that the LE may be employed
to characterize QPTs since it has been found to have extra-
fast decay in the vicinity of the critical points [42,50–54].
Furthermore, as shown in Refs. [6,7], the number of harmonics
of the Wigner function may be connected to the LE. For
example, in a single-particle system, to the lowest order

032120-5



QIN, WANG, BENENTI, AND CASATI PHYSICAL REVIEW E 89, 032120 (2014)

〈     〉

FIG. 5. (Color online) Plot of 1 − ML vs the number of harmon-
ics of the Wigner function 〈m2〉t . Circles denote η = 0.001 and
λ0 = λc − 0.01, with the time t varying from 1 to 25. Triangles
denote t = 35 and λ0 = λc − 0.005, with η varying from 0.001
to 0.3. The solid curve indicates the fitting function 1 − ML =
〈m2〉t /[3.5 + 〈m2〉t + 3(〈m2〉t )2/3].

in ε, the two quantities have the relation

ML(t)  1 − 1
2ε2〈m2〉t . (38)

In order to find the relation between the number of
harmonics of the Wigner function and the LE in the Dicke
model, we have performed numerical simulations. We have
found that there exists a one-to-one correspondence between
the two quantities, as shown in Fig. 5. That is, for different
values of η and t , the LE shows the same dependence on 〈m2〉t .
Specifically, the following fitting function has been found to
work well:

ML = a + b(〈m2〉t )2/3

a + 〈m2〉t + b(〈m2〉t )2/3
, (39)

with fitting parameters a = 3.5 and b = 3.0. For short times t

such that [〈m2〉t + b(〈m2〉t )2/3] � a, Eq. (39) gives

ML(t)  1 − 1

a
〈m2〉t . (40)

Equation (40) has a form similar to that in Eq. (38), however,
one may note a major difference, i.e., the quantity a in
Eq. (40) is a fixed (fitting) parameter, but not a function of
the perturbation strength ε. The dependence on ε in (40)
is contained only in 〈m2〉t and we found numerically that
〈m2〉t ∝ ε2 for small ε.

In the Dicke model, it is known that the LE has an
initial Gaussian decay [42,49]. Then Eq. (40) implies that
the number of harmonics 〈m2〉t should increase as t2 within
an initial period, in agreement with our numerical results
(see Fig. 4) as well as with previous results for integrable
single-particle systems [7]. Beyond the initial Gaussian decay,
after a transient region, the LE has been found [42] to show
a 1/t decay for relatively long times (shorter than T/2) and
for sufficiently small η. Consistently, Fig. 4 shows that, in the
corresponding situation, the number of harmonics increases
faster than t2. For 〈m2〉t � 1, the scaling in Eq. (39) reduces to
ML  b〈m2〉−1/3

t . Therefore, given that the LE ML ∝ 1/t [42],

it gives 〈m2〉t ∝ t3. In fact, this is the reason we chose the
exponent 2/3 in the fitting in Eq. (39). However, we remark
that, to see numerically the dependence 〈m2〉t ∝ t3, we would
need much smaller values of η than those accessible in our
calculations.

Finally, for the sake of completeness, we briefly review
results for another basic metric quantity used to characterize
the occurrence of quantum phase transitions, namely, the
fidelity

Lp = |〈�0(λ0)|�0(λ)〉|, (41)

which is given by the overlap of two ground states at different
values λ and λ0 of the controlling parameter [12–17,19,21].
The dramatic change of the wave function at a QPT implies a
fast decrease of Lp in the neighborhood of the critical point.
In the Dicke model, it has been found that Lp ∝ |λ0 − λc|1/8

for a sufficiently small ε [12]. In Ref. [49] we have shown
that Lp only depends on the scaling parameter η, with Lp =√

2 8
√

η/
√√

η + 1.

V. CONCLUSION

In classical systems the growth rate of the number of
harmonics is determined by the Lyapunov exponent [5] and
complexity arises from the fact that the orbits of deterministic
systems with positive Lyapunov exponent are unpredictable,
with positive algorithmic complexity [55,56]. In the quantum
realm, it was shown that the number of harmonics can be used
to measure the complexity of single-particle systems, pure or
mixed [6], and to detect in the time domain the crossover
from integrability to chaos [7]. The effectiveness of such a
measure for quantum many-body dynamics was illustrated for
spin chains in Ref. [9].

In this paper we have shown that the number of harmonics
of the Wigner function is a suitable quantity to characterize
quantum phase transitions. We have shown, in the case of the
Dicke model, that there exists a one-to-one correspondence
between the number of harmonics and the quantum Loschmidt
echo such that both quantities can be equivalently used to
characterize the quantum phase transition. We can conclude
that the number of harmonics emerges as an extremely broad
complexity quantifier.

Finally, we point out that our analysis could be extended to
the case when several superradiant modes rather than a single
one are formed at the transition, a phenomenon in analogy
to the decay of collective excitations in highly excited heavy
nuclei [57–63].
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APPENDIX A: PROPERTIES OF THE EIGENSTATES OF
Ĥ(λ0) AND Ĥ(λ) FOR THE DICKE MODEL

In this appendix we discuss some properties of the
eigenstates of Ĥ (λ0) and Ĥ (λ) for the Dicke model. Let us
first discuss the normal phase and write the lowest-mode
annihilation operator ĉ1(λ0) in terms of the creation and
annihilation operators for the value λ of the controlling
parameter, namely,

ĉ1(λ0) = P1ĉ1(λ)† + P2ĉ1(λ). (A1)

The coefficients P1 and P2 are given by [48]

P1 = 1

2
cos(r − r0)

(√
e1(λ0)

e1(λ)
−
√

e1(λ)

e1(λ0)

)
, (A2)

P2 = 1

2
cos(r − r0)

(√
e1(λ0)

e1(λ)
+
√

e1(λ)

e1(λ0)

)
, (A3)

where 2r = arctan[4λ
√

ωω0/(ω2
0 − ω2)]. In the limit of small

ε = λ − λ0, cos(r − r0) ≈ 1.
In the close neighborhood of the critical point λc, from

Eq. (25) one gets

e1(λ) 
[

8λc(λc − λ)ωω0

ω2
0 + ω2

]1/2

. (A4)

Then it is seen that e1(λ0)/e1(λ)  (1/η)1/2, with the scaling
parameter η = (λ − λc)/(λ0 − λc). Using this result, we see
that

P1  1

2

(
1

4
√

η
− 4

√
η

)
, P2  1

2

(
1

4
√

η
+ 4

√
η

)
, (A5)

hence P1 and P2 are, close to the QPT, functions of the ratio η

only.
We also discuss some properties of the expanding coeffi-

cients of |�n(λ0)〉 in the basis |�μ(λ)〉,

|�n(λ0)〉 =
∑

μ

Cn
μ|�μ(λ)〉. (A6)

Let us write the coefficients in the form of vectors, i.e., Cn ≡
{Cn

0 ,Cn
1 ,Cn

2 , . . .}. We note that

ĉ1(λ0)|�0(λ0)〉 = 0, (A7)

ĉ
†
1(λ0)|�n(λ0)〉 = √

n + 1 |�n+1(λ0)〉. (A8)

Substituting Eqs. (A1) and (A6) (for n = 0) into Eq. (A7), we
obtain

C0
μ = −P1

√
μ − 1

P2
√

μ
C0

μ−2. (A9)

Then, substituting Eqs. (A1) and (A6) into Eq. (A8), we find

Cn = 1√
n!

C0(X)n, (A10)

where X is a symmetric triple-diagonal matrix

X =

⎛
⎜⎜⎜⎜⎝

0 P2

P1 0
√

2P2√
2P1 0

√
3P2

√
3P1

. . .

⎞
⎟⎟⎟⎟⎠ . (A11)

Next, we discuss the superradiant phase. Similar to Eq. (A1),
we write

ĉ1(λ0) = P ′
1ĉ1(λ)† + P ′

2ĉ1(λ), (A12)

where

P ′
1 = 1

2
cos(r ′ − r ′

0)

(√
e′

1(λ0)

e′
1(λ)

−
√

e′
1(λ)

e′
1(λ0)

)
, (A13)

P ′
2 = 1

2
cos(r ′ − r ′

0)

(√
e′

1(λ0)

e′
1(λ)

+
√

e′
1(λ)

e′
1(λ0)

)
. (A14)

Here 2r ′ = arctan[2ωω0κ
2/(ω2

0 − κ2ω2)], with cos(r ′ − r ′
0) ≈

1 for small ε. From Eq. (27) one obtains

e′
1(λ) 

[
16(λ − λc)(λ + λc)

(
λ2 + λ2

c

)
ω2 + ω2

0

]1/2

. (A15)

As a result, e′
1(λ0)/e′

1(λ)  (1/η)1/2, where (λ0 + λc)(λ2
0 +

λ2
c)  (λ + λc)(λ2 + λ2

c) has been used in the neighborhood
of the critical point. Then P ′

1 and P ′
2 are also functions of the

ratio η only. Moreover, Eq. (A10) also holds in the superradiant
phase.

From Eq. (A9) we see that the μth coordinate of Cn is
coupled to the (μ ± 2)th coordinates only, hence C0

μ with even
and odd μ are not connected. The continuity of the ground
state of H (λ) with respect to variation of λ implies that C0

0 is
considerably large at least in the case of λ  λ0. Therefore,
in the study of ground states, only even numbers μ should
contribute significantly in Eq. (A6). Then Knm

μν in Eq. (18) can
be written as

Knm
μν = (Cn+m

μ

)∗
C0

μ

(
C0

ν

)∗
Cn

ν , (A16)

with even numbers μ and ν.

APPENDIX B: DERIVATION OF EQ. (37)

Following arguments similar to those given in Sec. III B
for the times at which the number of harmonics of the Wigner
function takes the local-maximum values, it is seen that the
LE in the Dicke model takes its locally lowest values Mp at
the same times tp. Therefore, we can compute Mp by Eq. (36)
with t = tp and obtain

Mp =
∣∣∣∣∣
∑

μ

(−1)μ/2
∣∣C0

μ

∣∣2∣∣∣∣∣
2

, (B1)
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with μ an even integer number. From Eq. (A9) and the
normalization condition, we obtain

∣∣C0
μ

∣∣2 = Pμ/2Dμ∑
μ Pμ/2Dμ

, (B2)

whereP = (P1/P2)2 andDμ = (μ − 1)!!/(μ)!!. Noticing that∑
μ

Pμ/2 (μ − 1)!!

(μ)!!
= 1√

1 − P
, (B3)

∑
μ

(−1)μ/2Pμ/2 (μ − 1)!!

(μ)!!
= 1√

1 + P
, (B4)

we get

Mp = 1 − P
1 + P . (B5)

Then, making use of Eq. (A5), we have

P =
(

1 − √
η

1 + √
η

)2

. (B6)

Substituting this equation into Eq. (B5), we finally obtain (37).

[1] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov. Sci.
Rev. C 2, 209 (1981).

[2] Y. Gu, Phys. Lett. A 149, 95 (1990).
[3] J. Ford, G. Mantica, and G. H. Ristow, Physica D 50, 493

(1991).
[4] A. K. Pattanayak and P. Brumer, Phys. Rev. E 56, 5174 (1997).
[5] J. Gong and P. Brumer, Phys. Rev. A 68, 062103 (2003).
[6] V. V. Sokolov, O. V. Zhirov, G. Benenti, and G. Casati, Phys.

Rev. E 78, 046212 (2008).
[7] G. Benenti and G. Casati, Phys. Rev. E 79, 025201 (2009).
[8] V. V. Sokolov and O. V. Zhirov, Europhys. Lett. 84, 30001

(2008).
[9] V. Balachandran, G. Benenti, G. Casati, and J. Gong, Phys. Rev.

E 82, 046216 (2010).
[10] G. Casati, I. Guarneri, and J. Reslen, Phys. Rev. E 85, 036208

(2012).
[11] G. Benenti, G. G. Carlo, and T. Prosen, Phys. Rev. E 85, 051129

(2012).
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