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Green-Kubo relation for friction at liquid-solid interfaces
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We have developed a Green-Kubo relation that enables accurate calculations of friction at solid-liquid interfaces
directly from equilibrium molecular dynamics (MD) simulations and that provides a pathway to bypass the
time-scale limitations of typical nonequilibrium MD simulations. The theory has been validated for a number
of different interfaces and it is demonstrated that the liquid-solid slip is an intrinsic property of an interface.
Because of the high numerical efficiency of our method, it can be used in the design of interfaces for applications
in aqueous environments, such as nano- and microfluidics.
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I. INTRODUCTION

The nature of liquid-solid (L-S) boundary conditions has
been a subject of intense scientific debate for over a century
[1–3]. It is only recently that the existence of a slip at
such interfaces has been accepted [4–7]. The urgency of
understanding slip and related phenomena has increased
further with the miniaturization of devices. In particular, in
micro- and nanofluidics [8–10], the presence or absence of
slip and the magnitude of friction at the L-S interface will
have a large effect on the flow rate of the fluid. L-S slip is
often characterized by a slip length l or a friction coefficient,

η̄ = η/l, (1)

where η is the viscosity of the liquid. Slip length is defined
as the extrapolated distance where the velocity of the liquid
matches the velocity of the solid wall, as shown in Fig. 1. One
of the major challenges in this field is the ability to measure
or predict the slip length or, alternatively, the coefficient of
friction at the L-S interface. While experimental measurements
are plagued with their own limitations (see, for instance, [11]),
here we focus on the challenges associated with predicting the
friction coefficient from atomistic simulations. In particular,
nonequilibrium molecular dynamics (NEMD) simulations,
which can be invaluable in providing insights into relations
between interfacial properties and friction [12–15], are limited
(with few exceptions; see, for instance, Ref. [16]) to sliding
velocities and shear rates that are orders of magnitude higher
than in typical experiments. In the case of L-S friction, such
simulations often trigger a nonlinear behavior, leading to
qualitative deviations from experiments. More explicitly, for
the viscous friction law

F = −η̄u, (2)

where F is the friction force per unit area and u is the slip
velocity, the nonlinear behavior means that at large enough
u, η̄ is not constant but depends on u. Here, we use the
linear response theory and the generalized Langevin equation
(GLE) to derive a relationship for predicting friction from
equilibrium molecular dynamics (EMD) simulations. Because
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friction is calculated from equilibrium properties of the system,
by nature this approach overcomes the time-scale limitations
of traditional NEMD techniques. Our theory is validated by
comparing results of EMD simulations with NEMD results
extrapolated to the limit of low sliding velocities.

A pioneering attempt to predict friction for L-S interfaces
from EMD simulations was reported by Bocquet and Barrat
(BB) [17]. It was proposed that the coefficient of friction η̄ can
be calculated from the integral of the time correlation function
of the total friction force Ftot between the solid and the liquid
layer adjacent to the solid,

η̄ = 1

SkT

∫ ∞

0
〈Ftot(0)Ftot(t)〉ECdt. (3)

In the above expression, S is the surface area, k is the
Boltzmann constant, T is the temperature, and 〈·〉EC denotes
ensemble averages at the equilibrium condition. Application
of the above theory led to two numerical issues, recognized by
the authors themselves [17]: (i) Equation (3) vanishes for finite
systems, and a cut-off time in the upper limit of the integral is
necessary to predict the integral in the thermodynamic limit.
(ii) Predictions of Eq. (3) do not agree quantitatively with the
fitted parameters based on the transverse momentum density
autocorrelation function. In addition, a number of criticisms
have been raised in the literature, questioning whether η̄ in
Eq. (3) corresponds to the intrinsic properties of the interface
[18–20]. BB responded to these criticisms in another paper
[21] and explained that results from simulations could be
spurious if the limit of the fluid particles going to infinity (the
thermodynamic limit) and the limit of time going to infinity
are not taken in the proper order. In this debate, one critical
issue was ignored, which is that the friction coefficient is not
a bulk property. Therefore, a large volume of the liquid is
not necessary for friction to arise at the L-S interface. For
example, L-S friction is present in a nanotube [22–24] where
the number of liquid molecules is highly constrained and, in
such confined systems [4,25], one is not allowed to take the
thermodynamic limit of the system size. Furthermore, L-S
friction is local, which means that for an inhomogeneous
solid surface [26], the friction coefficient can be different
from one domain to another, and for a mixture of liquid
[27], the friction coefficient can be different from one kind
of liquid particle to another. It is straightforward to see that
due to its mathematical structure, expressions such as Eq. (3)
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FIG. 1. (Color online) Schematic representation of slip-
boundary conditions. l is the slip length and v0 is the velocity of the
liquid layer adjacent to the solid surface.

cannot capture the potential inhomogeneity of L-S friction. In
addition, a number of papers on the dynamics of Brownian
particles have demonstrated that the integral of the total force
vanishes even if the thermodynamic and the time limit are
taken in the right order [28–30]. Further discussion of this
topic will be given in Sec. III D.

In this paper, we first develop a formal Green-Kubo (GK)
relation for L-S friction that overcomes the limitations of
previous models and allows highly efficient numerical eval-
uation of friction. Subsequently, we validate our GK relation
numerically by demonstrating a very good agreement between
the predictions from our GK relation for the L-S friction
coefficient and the measurements from NEMD simulations.
Finally, for completeness, we compare performance of the GK
relation developed here and that proposed previously by BB.

II. THEORETICAL MODEL

A. General strategy for the derivation of a Green-Kubo
relation for L-S friction

Having recognized that L-S friction is local and shall not
be described by a bulklike transport coefficient that vanishes
with finite system size, we shall construct the GK relation
from the dynamics of individual liquid particles near the solid
wall. Our approach to derive a GK relation therefore differs
from the standard one summarized by McQuarrie [31], which
starts from the Fourier transform of the diffusionlike partial
differential equation

∂φ

∂t
= D∇2φ, (4)

where φ is the field of interest and D is the correspond-
ing transport coefficient. This difference in the derivation
strategies arises from the difference between the L-S friction
coefficient and thermal transport coefficients, such as viscosity
and thermal conductivity. Due to the discontinuity at the L-S
interface, the L-S friction described by Eq. (2) does not have
a form of a partial differential equation as in Eq. (4) that
describes thermal processes at the macroscale. In fact, L-S
friction is, in general, a mechanical process rather than a
thermal one, although sometimes it can be strongly coupled to
thermal processes in the system [24,32–34]. The mechanical
nature of L-S friction makes it possible for us to construct a
mechanical external Hamiltonian and apply the linear response

theory. Here, in order to directly take into account the
microscopic details of the L-S interface, we choose to apply
the external perturbation to an individual liquid particle at the
L-S interface. The linear response theory then allows us to find
out the expression for η̄i , which is the friction coefficient of an
individual liquid particle i near the solid interface. Finally, we
can sum the contributions from all of the interfacial particles
to obtain the total friction coefficient,

η̄ = 1

C

∑
i

ηi, (5)

where C is the normalization factor. For a flat surface, C

can be chosen as the unit surface area. The specific choice
of C is not as important. What is most important is that
Eq. (5) demonstrates the additive property of L-S friction,
which allows for modeling of inhomogeneous L-S interfaces.

B. Application of linear response theory

As we will apply the linear response theory twice in
our derivation of the GK relation, we shall first briefly
review the linear response technique. When a system at
thermal equilibrium is slightly perturbed by an external force
f , the response of the system can be predicted from the
time correlation function of its thermal fluctuations at the
equilibrium state. For any physical observable B of interest,
its thermal average at the perturbed nonequilibrium state can
be expressed as the convolution of the external force and the
generalized susceptibility χAB as follows:

�〈B(t)〉 =
∫ ∞

−∞
χAB(t − t ′)f (t ′)dt ′. (6)

Here, A is the internal variable that is conjugate to f .
�〈B(t)〉 = 〈B(t)〉NE − 〈B〉EC, where 〈·〉NE and 〈·〉EC denote
ensemble averages at nonequilibrium and equilibrium condi-
tions, respectively. Due to the causality, χAB is nonzero only
at finite times (the application of the external force f begins at
time zero). The relation between the susceptibility χAB and the
corresponding time correlation of δA and δB at equilibrium is
as follows:

χAB(t) =
{

− 1
kT

d
dt

〈δA(0)δB(t)〉EC, t � 0

0, t < 0,
(7)

where δA = A − 〈A〉EC and δB = B − 〈B〉EC are thermal
fluctuations in variables A and B, respectively.

For the L-S interface, we choose the perturbation Hamilto-
nian to be �H = −xf eiωt , where f eiωt is the external drag
force, x is the particle’s displacement along the direction
parallel to the solid wall, ω is the frequency, and t is the
time. One can thus obtain the Fourier transformed frequency
dependent susceptibility by applying the periodic external
force. Under the perturbation of �H , the liquid particle
will respond with drift velocity, the magnitude of which is
determined by the balance between the external drag force, the
friction force exerted by the solid wall, and the friction force
exerted by the surrounding liquid. We first choose A = xi and
the physical observable of interest B = ui , where ui is the drift
velocity of the interfacial particle i within a plane parallel to
the solid wall. By substituting Eq. (7) into Eq. (6) and taking

032119-2



GREEN-KUBO RELATION FOR FRICTION AT LIQUID- . . . PHYSICAL REVIEW E 89, 032119 (2014)

a Fourier transform, one can show that ui is proportional
to the velocity autocorrelation function (or the mobility μ)
determined in the equilibrium system,

〈ui〉ω(t) = f eiωt

kT

∫ ∞

0
〈ui(0)ui(t)〉ECe−iωtdt, (8)

μi(ω) = 1

kT

∫ ∞

0
〈ui(0)ui(t)〉ECe−iωtdt. (9)

In the next step, we choose B to be the friction force Fi

exerted by the solid wall on a single interfacial particle i while
retaining A = xi . One can then show that Fi is related to
the correlation between the particle’s velocity and the friction
force experienced by the particle at equilibrium,

〈Fi〉ω(t) = f eiωt

kT

∫ ∞

0
〈ui(0)Fi(t)〉ECe−iωtdt. (10)

By definition, the friction coefficient η̄i is equal to the ratio
between the friction force and the slip velocity. Using Eqs. (8)
and (10), we can write

η̄i(ω) ≡ −〈Fi〉ω(t)

〈ui〉ω(t)
= −

∫ ∞
0 〈ui(0)Fi(t)〉ECe−iωtdt∫ ∞
0 〈ui(0)ui(t)〉ECe−iωtdt

. (11)

We can now sum up the microscopic friction coefficients η̄i in
Eq. (11) and normalize the sum by the area S of the interface
to obtain the macroscopic friction coefficient,

η̄(ω) = − 1

SkT μi(ω)

∑
i

∫ ∞

0
〈ui(0)Fi(t)〉ECe−iωtdt. (12)

The order of the sum and the integral can be switched without
affecting the results. It should be noted here that the sum in
Eq. (12) can be taken over all of the liquid particles since
the liquid particles away from the interfacial region have no
contribution to the integral due to the short-range nature of
friction force (Fi = 0). The friction force between the liquid
and the solid is either intrinsically short range (as in the case
of hydrogen or covalent bonding) or it is screened by water
(for electrostatic interactions). So far, we assumed that there is
only one type of particle in the liquid. It is straightforward to
generalize Eq. (12) to a mixture of liquids, A,B,C, . . ., based
on the additive property of the friction coefficient shown in
Eq. (5). One can simply use the same method to evaluate the
friction coefficient for different types of particles separately
and then sum them up to get η̄ = η̄A + η̄B + η̄C + · · · . For
instance, to calculate the friction coefficient for particles of
type A, one first needs to determine mobility μA using Eq. (9),
plug it into Eq. (12), and take the summation in Eq. (12) over
all liquid particles of type A (

∑
i∈A).

C. Reformulation using the generalized Langevin
equation (GLE)

Equation (12) shows that the friction coefficient is inversely
proportional to the liquid interfacial mobility μ. However,
unfortunately, this equation is not particularly practical for
simulations because μ needs to be calculated for particles at
the L-S interface. Liquid particles are free to diffuse away from
the interface and it turns out that the finite amount of time a
particle spends near the interface is not necessarily sufficient

to obtain a well-converged estimate for μ. In addition, the
evaluation of the interfacial mobility could be sensitive to
the definition of the interfacial region. The uncertainty in the
width of the interface will be transferred to the uncertainty in
η̄. Lastly, to obtain a reliable η̄, one will need to repeat the
calculation for various interfacial widths to find a best fit or
average. To avoid the above issue, we will rewrite Eq. (12)
using the generalized Langevin equation (GLE) formalism
[35,36]. The GLE generalizes the Brownian motion by taking
into account the memory of the particle, which means that
the friction force experienced by a liquid particle depends
on the history of the particle’s motion [37,38]. Because we
are interested in calculating the L-S friction force Fi , in our
formulation of GLE Fi is represented explicitly instead of
being adsorbed into the random force Ri and/or the memory
kernel γi . Thus, the extended GLE reads

miu̇i(t) = −
∫ t

0
γi(t − t ′)ui(t

′)dt ′ + Ri(t) + Fi(t), (13)

where mi is the mass of the particle i, γi stands for the memory
kernel, and Ri represents the random force. We assume the
following three properties that are associated with the GLE:

〈u(0)R(t)〉i = 0, t > 0, (14)

〈F (0)R(t)〉i = 0, t > 0, (15)

〈R(0)R(t)〉i = kT γi(t), t > 0. (16)

Because u and F are antisymmetric and symmetric, respec-
tively, under time reversal, the correlation between them is an-
tisymmetric under time reversal, which leads to 〈u(0)F (t)〉i =
−〈F (0)u(t)〉i .

Now we can use the GLE to derive a relation between
different time correlation functions. It is straightforward to
show that any two of the three properties of the GLE above
[Eqs. (14)–(16)] can lead to the third one. Here, we start with
the GLE [Eq. (13)] and Eqs. (14) and (15). For simplicity of
the expression, we introduce the following abbreviation:

〈AB〉(ω) ≡
∫ ∞

0
〈A(0)B(t)〉ECe−iωtdt. (17)

By applying 〈A . . .〉 with A being u,R,F,u̇ to both the
left-hand side (LHS) and the right-hand side (RHS) of the
GLE [Eq. (13)], we obtain the following four equations,
respectively:

〈uF 〉i(ω) = [iωmi + γi(ω)]〈uu〉i(ω) − kT , (18)

[iωmi + γi(ω)]〈Ru〉i(ω) = 〈RR〉i(ω) + 〈RF 〉i(ω), (19)

〈FF 〉i(ω) = [iωmi + γi(ω)]〈Fu〉i(ω), (20)

mi〈u̇u̇〉i(ω) = γi(ω)〈uu̇〉i(ω) + 〈RR〉i(ω)

+〈FR〉i(ω) − iω〈uF 〉i(ω). (21)

To derive the above equations, we used 〈u̇u〉i(ω) =
−〈uu̇〉i(ω) = 〈u2〉i − iω〈uu〉i(ω), 〈u̇u̇〉i(ω) = iω〈u̇u〉i(ω),
and 〈u̇F 〉i(ω) = −iω〈uF 〉i(ω). With Eqs. (18)–(21) and

032119-3



KAI HUANG AND IZABELA SZLUFARSKA PHYSICAL REVIEW E 89, 032119 (2014)

〈u(0)F (t)〉i = −〈F (0)u(t)〉i , one can show the following:

〈Fu〉i(ω) = kT − [iωmi + γi(ω)]〈uu〉i(ω), (22)

〈RR〉i(ω) = miγi(ω)〈u2〉i = kT γi(ω), (23)

〈Ru〉i(ω) = γi(ω)〈uu〉i(ω), (24)

〈RF 〉i(ω) = γi(ω)〈uF 〉i(ω). (25)

Having derived a close set of the relations between various
time correlation functions, we will briefly comment on
some of them. First of all, Eq. (24) can be rewritten as
γi(ω) = 〈Ru〉i(ω)/〈uu〉i(ω). This expression is a counterpart
of Eq. (11), which described the friction coefficient of particle
i, where friction originates from the surrounding liquid.
Equation (22) can be rewritten as kT /〈uu〉i(ω) = iωmi +
η̄i(ω) + γi(ω), which simply means that the total friction
coefficient (LHS of the above equation) is the sum of inertia
(first term on the RHS of the above equation), the L-S friction
coefficient (second term on the RHS of the above equation),
and the liquid-liquid (L-L) friction coefficient (third term on
the RHS). Typically, for the case of slip-boundary conditions,
we expect |η̄i(ω)| 	 |γi(ω)|. Finally, one should note that
Eq. (23) is just the Fourier transform of Eqs. (16) and (23)
shows that the fluctuation-dissipation relation is the result of
the lack of correlation of the random force R [Eqs. (14) and
(15)] to the velocity and friction force.

We are now ready to derive the final expression for η̄i and η̄.
As Eq. (18) relates the L-S friction force-velocity correlation
to the mobility of the liquid particle, and Eq. (20) connects the
L-S friction force autocorrelation function to the L-S friction
force-velocity correlation, we can rewrite Eqs. (11) and (12)
as

η̄i(ω) = 〈FF 〉i(ω)

kT − 〈Fu〉i(ω)
, (26)

η̄(ω) =
∑

i〈FF 〉i(ω)

SkT [1 − α(ω)]
, (27)

where α(ω) ≡ 〈Fu〉i(ω)/kT . At zero frequency ω = 0, one
can show from Eq. (22) that η̄i(0)/γi(0) = α(0)/[1 − α(0)].
For slip-boundary conditions, this ratio is expected to be very
small, leading to α(0) 	 1, which will be shown later to
be true in our simulations. Equation (27) is the Green-Kubo
(GK) relation for the macroscopic coefficient of the friction
coefficient that does not require calculation of the interfacial
mobility and can be directly evaluated from EMD simulations.
To numerically evaluate Eq. (27) at ω = 0, the only parameter
one needs to choose by hand is the number density n of
interfacial liquid particles, as there is no clear boundary
of the L-S interface. Since n enters Eq. (27) only through
α(0) = ∑

i〈Fu〉i(0)/kT Sn, the uncertainty in Eq. (27) from
n will be suppressed by the fact that α 	 1 or η̄i 	 γi for a
slip-boundary condition.

η̄i and η̄ are, in general, complex numbers for a finite
frequency ω and they become real numbers for ω = 0. It is
worth pointing out that the macroscopic friction coefficient
obtained in this way is not limited to a certain geometry (e.g.,
the curvature of area S is not required to be zero) since it is
not calculated from the macroscopic correlation defined on

the area S, but from the microscopic correlation that is not
dependent on the global geometry. This property allows our
method to be applicable to curved interfaces, such as surfaces
of nanotubes or even nanoparticles [39].

The GLE formalism, used to derive Eq. (27), merits a few
additional comments. First of all, the GLE written in the form
of Eq. (13) has many applications. For example, it has been
utilized to explain the diffusion of impurities and defects
in crystals [40], the superionic conductance [41], and the
fluctuations of the Josephson supercurrent through a tunneling
junction [42,43]. Similar GLE has also been implemented
in the Brownian dynamics simulations [44]. The physical
meaning of the last term of Eq. (13), F (t), varies from case to
case. It is important to note that in most of the applications,
the memory function γ (t) is approximated as a δ function,
γ δ(t − t ′), where γ is a constant and is no longer a function of
time. Such treatment of coarse graining the memory function
constitutes a compromise between a mathematical rigor and
practicality of the applications (which requires a simple form
of the memory function for computational efficiency) because
the exact form of the memory function is often difficult or
impossible to obtain. Nevertheless, in our case, one does not
need to know the exact form of the memory function in order
to be able to reformulate Eq. (11) into Eq. (26). Therefore,
irrespective of the exact form of the memory function, our GK
relation for the coefficient of friction expressed in Eq. (27) is
formal and exact as long as the GLE given in Eq. (13) can
formally describe the motion of an interfacial liquid particle.
In fact, one can formally construct Eq. (13) for 
F = −∇U (
r)
(where U is an arbitrary external potential) using the projection
operator approach [35,36,45]. Proof of this statement is given
in the Appendix. In the derivation of the extended GLE, we
found that the memory kernel and the friction coefficient are,
in general, two-dimensional tensors. This is not surprising,
since due to the perturbation of the solid wall, the memory
and the transport coefficient of the interfacial particles could
be anisotropic [46–48]. As a result, Eq. (13) is generalized as

mi 
̇ui(t) = −
∫ t

0
γ i(t − t ′) · 
ui(t

′)dt ′ + 
Ri(t) + 
Fi(t), (28)

where 
̇ui,
ui, 
Ri , and 
Fi are two-dimensional vectors that lie
parallel to the solid wall and γ i is the tensorial memory
function with the generalized fluctuation-dissipation relation
kT γ i(t) = 〈 
Ri(0) ⊗ 
Ri(t)〉. In the same spirit, Eqs. (14) and
(15) are generalized to 〈
ui(0) ⊗ 
Ri(t)〉 = 〈 
Fi(0) ⊗ 
Ri(t)〉 = 0
at a finite time t . Consequently, the friction coefficient becomes
a tensor and the reformulation of the GK relation reads

η̄i(ω) = [kT μi(ω)]−1〈 
F ⊗ 
u〉i(ω)

= 〈 
F ⊗ 
F 〉i(ω)[kT I − 〈 
F ⊗ 
u〉i(ω)]−1, (29)

where μi(ω) = 〈
u ⊗ 
u〉i(ω)/kT is the tensorial mobility. If the
x and y axes parallel to the solid wall are chosen to align with
the crystallographic symmetry axes of the solid surface, then γ i

and η̄i could be diagonalized. For simplicity, we will limit the
discussion in the simulation section to such a situation because
we choose to adapt this particular alignment. In addition to the
formal proof in the Appendix, the validity of the GLE equation

032119-4



GREEN-KUBO RELATION FOR FRICTION AT LIQUID- . . . PHYSICAL REVIEW E 89, 032119 (2014)

FIG. 2. (Color online) Friction coefficients calculated from
Eq. (12) (the GK relation, GK1) and Eq. (27) (the reformulated GK
relation by GLE, GK2) calculated as a function of bond strength
between liquid and solid atoms. σ is a reduced unit of length, as
explained in the main text. Inset: Density profile of a hard-sphere
liquid confined between two solid walls located at z = ±1.2σ .

will be further tested against results of MD simulation in the
next section.

III. MD SIMULATION RESULTS AND DISCUSSIONS

A. Simulation test of the generalized Langevin equation (GLE)
for interfacial liquid particles

We carried out MD simulations to numerically validate
our GK relation. First, in order to test whether or not the
extended GLE with the assumption 〈F (0)R(t)〉i = 0 captures
the physics of interfacial liquid particles, we compare pre-
dictions of the friction coefficient from Eqs. (12) and (27).
One of the challenges of using Eq. (12) was the calculation
of local liquid mobility at the L-S interface. To overcome this
challenge, we designed a simulation system, where the liquid
is confined between the two solid walls to the extent that almost
the entire body of the liquid becomes interfacial (see the inset
of Fig. 2). The solid walls are face-centered cubic crystals
with a constant surface area of 48σ × 48σ , where σ is the
unit of length in reduced Lennard Jones (LJ) units. There are
8000 hard-sphere liquid particles confined between the walls.
Using this setup, we calculated the friction coefficient from
both Eqs. (12) and (27) and the results are shown in Fig. 2.
The excellent agreement between the two ways to calculate
the friction coefficient numerically justified our application of
the extended GLE with the form of Eq. (13).

B. Agreement between EMD and NEMD results

The next and most important examination of our proposed
GK model is to see if it can predict the friction coefficient
measured in a direct way, which in our case is the NEMD
method. Explicitly, we calculate the friction coefficient η̄(ω)
from the EMD simulations combined with Eq. (27) and from
NEMD simulations in the limit of low sliding velocities. The

FIG. 3. (Color online) L-S frictional force autocorrelation func-
tion (FAF) and its time integral I (t) (inset). Solid, dashed, and
dot-dashed lines (red, blue, and green, respectively) correspond to
the hard-sphere, 12-bead polymer, and 100-bead polymer liquids,
respectively. Here the bond strength between liquid particles and the
solid is 0.3ε.

simulated system consists of a liquid confined between two
solid walls. The simulation boxes for EMD and NEMD are
identical except that in EMD the solid walls are stationary,
while in NEMD the walls are sliding against each other to
build a shear rate in the confined liquid. To ensure that our
conclusions are general, we use both a hard-sphere liquid and
a spring-bead polymer melt [for the polymer liquid, index i in
Eq. (27) runs over the beads]. We also choose two different
lengths of the polymer liquid with the short one being 12 beads
and the long one being 100 beads per particle. The number of
liquid particles in each simulation is 48 000, which means 4000
molecules for the 12-bead polymer melts and 480 molecules
for the 100-bead polymer melts. The solid walls are again face-
centered cubic crystals with a constant surface area of 48σ ×
48σ . The distance between the two walls is kept around 20σ ,
varying with the liquid type to keep zero-pressure conditions.
Periodic boundary conditions are applied within the plane of
the solid wall. To explore a range of slip boundaries, we choose
three different bond strengths (0.1ε,0.3ε,0.6ε) between the
solid wall and liquid particles, where ε is the unit of energy
in LJ units. Temperature is kept at 1.1 (in LJ units) during
the production run. Temperature is controlled with the Nose-
Hoover thermostat coupled only to one direction, which lies
within the plane of the solid surface and is perpendicular to the
direction of sliding. The time step is set to be 0.002τ , where
τ = (mσ 2/ε)1/2 and m is the mass of the liquid particle in LJ
units. For the EMD simulation, the production simulation is
5000 time steps long (10τ ), while the production simulation
of NEMD simulation is as long as 106 time steps (2000τ ).

It is found in simulations that α in Eq. (27) is generally
small compared to 1, which, as discussed earlier, is expected
in the case of slip-boundary conditions. As a result, the
autocorrelation of the L-S friction force (

∑
i〈F (0)F (t)〉i) is the

dominant contribution to the friction coefficient η̄. In Fig. 3,
we show the behavior of this force autocorrelation function
(FAF) and its time integral [I (t) = 1

S

∫ t

0

∑
i〈Fi(0)Fi(t ′)〉ECdt ′]

as a function of time. The latter is important for the evaluation

032119-5



KAI HUANG AND IZABELA SZLUFARSKA PHYSICAL REVIEW E 89, 032119 (2014)

FIG. 4. (Color online) Comparison between friction coefficients
at zero frequency calculated from EMD (filled symbols) and NEMD
(open symbols) simulations as a function of the bond strength between
the liquid particles and solid atoms. Circles, triangles, and squares
(red, blue, and green, respectively) in the main figure correspond to
the hard-sphere, 12-bead, and 100-bead liquids, respectively. Data in
the inset is calculated for interfacial bond strength of 0.6ε for 12-bead
polymer melts. The dashed horizontal line in the inset corresponds to
the friction coefficient calculated from EMD simulations.

of the friction coefficient at the zero-frequency limit, which is
of most interest and can be compared directly to our NEMD
results. For both the hard-sphere and polymeric liquids, the
FAF decays dramatically at short time scales and exhibits a
hydrodynamic tail at longer time scales. The short time decay
largely determines the growth of the time integral I (t) and
the hydrodynamic long tail barely contributes to the friction
coefficient. One important consequence of this fast decay of
FAF and the corresponding fast convergence of its time integral
is that calculations of the L-S friction coefficient in EMD are
two orders of magnitude faster than the NEMD calculations of
the friction coefficient at a single value of the sliding velocity
(simulations with multiple values of sliding velocities are
needed to determine the low-velocity limit). In general, the
convergence of I (t) slows down as the molecular weight of
the polymeric liquid increases.

In Fig. 4, a comparison is made between the results
from the EMD and NEMD simulations. Excellent agreement
is found between the friction coefficient predicted by our
GK relation from EMD results and the friction coefficient
calculated from NEMD in the limit of low sliding velocities
(shear rates). Convergence of the NEMD simulations to the
low-velocity limit is illustrated in the inset of the figure. The
agreement between the EMD and NEMD results is found
for all types of liquids considered in our study and for a
range of interfacial bond strengths, which indicates that our
relationship is universal. We did not show the error bars
of the EMD results in Fig. 4, as they are smaller than the
symbol size. The high efficiency and accuracy of the EMD
method based on our GK relation enables a comprehensive
exploration of the fundamentals of L-S friction, such as the
dependence of the friction coefficient on pressure, wettability,
surface morphology [49], liquid confinement [4,25], etc. Here,
as an example, we only briefly discuss the dependence of

the friction coefficient on the bond strength between liquid
and solid molecules and atoms and on the properties of the
liquid. From Fig. 4, we can see that η̄ increases roughly
exponentially with the bond strength for a relatively wide
range of liquids that we tested. For all types of liquids, we
found that η̄, in general, increases nonlinearly with the length
of the polymer chain that the liquid is made of. Interestingly,
for the 12-bead and 100-bead polymer melts, the difference
in η̄ is very small. This trend is consistent with the finding
in Ref. [13] that beyond chain lengths of about 10 beads, the
molecular weight dependence of the slip length l is dominated
by the bulk viscosity η [see Eq. (1) for the relation between η̄, l,
and η].

Once the friction coefficient η̄ is known, one can use it
to calculate the lateral (i.e., in the plane of the solid wall)
mobility μ of the interfacial liquid using Eq. (12). We found
in our hard-sphere simulation that the μ/μ0 values for L-S
bond strengths of 0.1ε, 0.3ε, and 0.6ε are 1.72, 1.38, and 0.86,
respectively, where μ0 stands for the bulk liquid mobility,
which is calculated using Eq. (9) in a simulation system
consisting of liquid only. The observed trend of decreasing
interfacial mobility with increasing L-S bond strength is
not surprising, but the ability to evaluate this interfacial
property can be valuable to a number of other studies, such
as those focused on understanding the fundamental nature of
hydrophobic interactions [50–52].

C. Frequency dependent L-S friction coefficient

For any GK relation, one shall be able to get the dy-
namic transport coefficient from the Fourier transform of
the corresponding memory function. Here we demonstrate
that our GK relation provides access to information about
dynamic properties of the L-S friction. Knowing the frequency
dependent friction coefficient and mobility is of particular
importance in high-frequency resonators, such as those based
on quartz crystal microbalance [53,54]. This is because, at high
frequencies, transport coefficients can significantly deviate
from their static (zero-frequency) values [55]. From Eq. (27),
one can extract the frequency dependent friction coefficient
by Fourier transforming the time correlation of the friction
force. This coefficient connects the frequency dependent L-S
friction and the slip velocity, explicitly, F (ω) = −η̄(ω)u(ω).
At finite frequency, η̄(ω) is, in general, a complex number,
meaning that there exists a phase difference between the
friction and slip velocity. Figure 5 shows the details of the
frequency dependence of the complex friction coefficient η̄(ω).
While the real part (solid lines) decreases monotonically, two
peaks are found in the imaginary part (dashed lines). These
peaks correspond to the relaxation times of the two regimes of
exponential decays visible in Fig. 3 (the first regime extends in
time from 0.01τ to 0.1τ and the second regime from 0.1τ

to 1τ ). In Fig. 5, the left peak, which corresponds to the
slower structural relaxation, is much higher in the polymeric
liquid than in the hard-sphere simple liquid. The positions of
peaks in the η̄(ω) plot (Fig. 5) depend on the properties of the
liquid and these peaks could be used to design sensors based
on high-frequency resonators for the characterization of soft
matter (especially thin films with large slip lengths).
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FIG. 5. (Color online) Complex friction coefficient η̄(ω) normal-
ized by the zero-frequency value η̄(0) as a function of frequency.
Solid and dashed lines correspond to the real (r) and imaginary
(i) parts of the friction coefficients. Red, blue and green colors
represent hard-sphere, 12-bead, and 100-bead liquids, respectively.

D. Comparison to the earlier Green-Kubo relation

Lastly, it is instructive to compare the numerical perfor-
mance of our model to the one reported earlier by BB in
Refs. [17,21] and to discuss the differences and similarities be-
tween the models. In Fig. 6, we plot the behavior of the time in-
tegral of two friction force autocorrelation functions (FAFs). In
Fig. 6(a), we plot I1(t) = 1

SkT [1−α(0)]

∫ t

0

∑
i〈Fi(0)Fi(t ′)〉ECdt ′,

which is a time integral derived in our model to predict the
coefficient of friction from EMD. In Fig. 6(b), we show
I2(t) = 1

SkT

∫ t

0 〈Ftot(0)Ftot(t ′)〉ECdt ′, which is the equivalent
time integral proposed in Refs. [17,21]. The results are
compared to coefficients of friction predicted in NEMD
simulations in the limit of low sliding velocities (red dashed
lines). One can see that predictions from EMD calculations
based on our Green-Kubo relation fall within the range of
error bars (gray area) of NEMD calculations. In contrast,
the EMD results in Fig. 6(b), although on the same order

of magnitude, do not agree with the NEMD results very
well. In addition, we see that the disagreement becomes
worse as the size of the sampling interface increases (i.e., the
decay of the integral of the correlation function decays faster).
This is the opposite trend than expected given the fact that
as the system size approaches the thermodynamic limit (i.e.,
the the sampling size is increased), the time integral that
defines the transport coefficient should decay more slowly
[30,56,57]. We also point out that our GK relation allows a
high numerical efficiency. Despite the fact that our simulations
based on Eq. (27) are one order of magnitude shorter than those
based on BB theory and Eq. (3), the former approach provides a
much smoother well-converged curve than the latter approach
does. Specifically, the data in Fig. 6(a) are obtained in 5000
time steps, while it takes 50 000 time steps to obtain the data
in Fig. 6(b).

Although it is not the goal of our paper, one can speculate
on the possible sources of the discrepancies between the BB
model and the results of the NEMD simulations. We find
that there are a number of assumptions in the derivations
of the BB model that need to be further justified: (i) In the
first derivation in the main text of Ref. [17], an external
perturbation Hamiltonian defined with a shear rate and a
reference position z0 was constructed in order to apply the
linear response theory and to calculate the friction and slip
length. As the slip length is constrained by the quantity
zwall − z0, where zwall is the position of the solid wall, such
a choice of external perturbation could have overspecified
the problem. (ii) In the second derivation in the appendix of
Ref. [17], contributions from higher (more than 2) order terms
of k in the normal direction to the solid wall are ignored, where
k is the wave vector. This truncation of higher order terms
relies on the assumption that any spatial inhomogeneities are
smoothly varying in the hydrodynamic (long time-scale) limit.
However, due to the presence of the solid wall, properties of
the liquid (e.g., the liquid density and viscosity) can have
pronounced inhomogeneities at the nanometer length scales
along the direction normal to the wall surface [58]. Higher
order terms with respect to k may be needed to capture such

FIG. 6. (Color online) Convergence of the time integral of friction force time correlation function (a) proposed in this work and
(b) defined in Refs. [17,21]. In (b), the total friction force is calculated on samples with surface areas of 12σ × 12σ (blue), 24σ × 24σ

(green), and 48σ × 48σ (black). The red dashed line represents the NEMD prediction in the limit of low velocities. The height of the gray
domain corresponds to the size of the error bar. Simulations were performed for a 12-bead polymer melt liquid with the bond strength between
the liquid and the solid being 0.6ε.
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small inhomogeneities. Therefore, the approximation of using
only second-order terms in the expansion with respect to k

needs to be carefully justified. (iii) In the third derivation of
the BB formalism in Ref. [21], a Brownian model is utilized
to describe the motion of the solid wall. In this model, BB
tracked the behavior of two dynamic variables, namely, the
wall velocity and the slip velocity, in one Langevin equation
and applied the fluctuation-dissipation relation to derive their
GK relation of Eq. (3). One should note that, in general,
if multiple variables are of interest, the dynamics of these
variables is described by a set of coupled Langevin equations
with the generalized fluctuation-dissipation relation written in
the matrix form [45]. Simultaneous monitoring of two dynamic
variables in the framework of a one-variable Langevin equation
(as done in the BB model) is possible if there is a linear
relationship between the two dynamic variables. BB assume
a linear relationship between the slip velocity and the wall
velocity; however, in general, this linear relation holds only
if the slip velocity is ensemble averaged. In BB’s model, the
slip velocity corresponds to an instantaneous value, which
is reflected in the fact that it appears in Eq. (4) of Ref. [21]
which also has a nonzero random force (for ensemble averaged
properties, the random force would be zero). Furthermore,
the memory kernel in a single-variable Langevin equation is
not necessarily identical to the memory kernel that connects
two dynamic variables. Therefore, the fluctuation-dissipation
relation employed by BB in Ref. [21] needs to be further
justified.

IV. CONCLUSIONS

In conclusion, we have developed a general GK relation
for liquid-solid friction and verified its validity by numerical
simulations based on the molecular dynamics technique. This
relation provides access to dynamic properties of the L-S
friction and overcomes the challenge of limited time scales
typical for NEMD simulations. We show that in the limit
of low shear rates, the coefficient of friction is not infinite
(corresponding to no-slip boundary conditions), but instead
has a finite value. Consequently, the coefficient of friction is
an intrinsic property of the system. The friction coefficient
was also shown to be a tensor, which implies that, in general,
it can be anisotropic. In addition, the friction coefficient has
additive properties, which means it can be calculated locally.
Finally, because calculations with the method presented here
are significantly faster (2 to 3 orders of magnitude) than
traditional NEMD simulations, our GK relation opens up an
opportunity for the computational exploration of L-S friction at
the molecular level and for the rational design of L-S interfaces
optimized for their slip and friction.
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APPENDIX: DERIVATION OF THE EXTENDED GLE
BASED ON THE PROJECTION OPERATOR APPROACH

In the main text, we showed that Eq. (11) can be refor-
mulated into Eq. (26) if the motion of the interfacial liquid
particle can be described by an extended GLE [Eq. (13)]. Here
we construct an extended GLE using the projection operator
technique [35,36,45] for a diffusive particle moving in an
external potential U (
r) with the resulting external force being

F = −∇U (
r). We show that under the condition 〈 
F 〉 = 0, one

can retrieve the properties in Eqs. (14)–(16).
Motivated by connecting different correlation functions,

we extended the original GLE by keeping the Fi term out of
the memory kernel and the random force. Therefore, we first
decompose the acceleration 
̇ui of an interfacial particle into
two parts: due to the external potential (the solid wall) and due
to the surrounding liquid, that is,


̇ui = iL
ui = iA
ui + iB
ui = 
FA + 
FB, (A1)

where L is the Liouville differential operator, and 
FA, 
FB are
forces exerted on the particle by the surrounding liquid and the
solid wall, respectively. Here we have normalized the mass to
be 1. In this formulation, we use the symbol 
FB , but the reader
should be aware that its physical meaning is the same as that of
the symbol F used in the main text (here we are dealing with
the generalized three-dimensional case, while for the equations
in the main text, it is one dimensional). At t = 0, the interfacial
particle of interest i is at position 
ri and has velocity 
ui . We
now introduce projection operators P = |
ui〉〈
ui |〈
ui 
ui〉−1 and
Q = 1 − P, so that

eiLt = eiQLt +
∫ t

0
eiL(t−t ′)iPLeiQLt ′dt ′, (A2)

where the inner product between two vectors a,b in the
Hilbert space 〈ab〉 is defined as the ensemble average at
equilibrium. Since we are interested in the interfacial particle
i, we only average the position 
ri over the interfacial region
that we defined. In a three-dimensional system in space,
infinite-dimensional vectors a and b in the Hilbert space are
also three-dimensional vectors in space, and 〈ab〉 is therefore
a tensor in space.

Using the operator identity [Eq. (A2)], we can rewrite
Eq. (A1) as


̇ui(t) = − 1

kT

∫ t

0

ui(t − t ′) · 〈iL
ui ⊗ eiQLt ′ iA
ui〉dt ′

+ eiQLt iA
ui + eiLt iB
ui. (A3)

We define 
R(t) = eiQLt iA
ui to be the random force. Then,
kT γ (t) = 〈iL
ui ⊗ eiQLt iA
ui〉 = 〈 
R(0) ⊗ 
R(t)〉 + 〈 
F (0) ⊗

R(t)〉 defines the memory kernel tensor. More explicitly,

〈 
R(0) ⊗ 
R(t)〉 = 〈iA
ui ⊗ eiQLt iA
ui〉, (A4)

〈 
F (0) ⊗ 
R(t)〉 = 〈iB
ui ⊗ eiQLt iA
ui〉. (A5)

At equilibrium, we have 〈
ui ⊗ 
FA〉 = 〈
ui ⊗ 
FB〉 = 0 as the
result of antisymmetries under time reversal. This means
that |iA
ui〉 and |iB
ui〉 are both orthogonal to |
ui〉. Ap-
plying the projection, we have P|iA
ui〉 = P|iB
ui〉 = 0 and
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Q|iA
ui〉 = |iA
ui〉,Q|iB
ui〉 = |iB
ui〉. Therefore, the operator
QL is Hermitian in the subspace of |iA
ui〉 and |iB
ui〉.

If 〈 
F (0) ⊗ 
R(t)〉 = 0, then kT γ (t) = 〈 
R(0) ⊗ 
R(t)〉 re-
covers the fluctuation-dissipation theorem. This assumption
is not formal under all conditions. In fact, whether or not
〈 
F (0) ⊗ 
R(t)〉 equals zero depends on the properties of 
FA and

FB or, equivalently, on the properties of the operators A and

B. In our case, we show that every element of 〈 
F (0) ⊗ 
R(t)〉 is
zero except 〈Fz(0)Rz(t)〉 (z is the norm direction of the wall)
in the following way. Let us take the time derivative

d

dt
〈 
F (0) ⊗ 
R(t)〉 = d

dt
〈iB
ui ⊗ eiQLt iA
ui〉

= 〈iB
ui ⊗ iQLeiQLt iA
ui〉
= −〈iLQiB
ui ⊗ eiQLt iA
ui〉
= −〈iLiB
ui ⊗ eiQLt iA
ui〉
= −〈iL 
FB ⊗ eiQLt iA
ui〉
= −〈(∇ 
FB · 
ui) ⊗ eiQLt iA
ui〉
= −〈[∇ 
FB] · [
uie

iQLt iA
ui]〉, (A6)

where ∇ 
FB and 
ui ⊗ eiQLt iA
ui are tensors.
Since 
FB depends only on the position of the particle of

interest 
ri and iA
ui only on 
rj − 
ri (j �= i), we can take the
ensemble average by first integrating over the subspace �
ri

=
(
r1,
r2, . . . ,
ri−1,
ri+1, . . . ,
rN , 
p1, 
p2, . . . , 
pN ), then integrating
over 
ri . We introduce the following abbreviation for simplicity:

〈ab〉
ri
=

∫
d�
ri

f
ri

(
�
ri

)
a
(
�
ri

)
b
(
�
ri

)
, (A7)

where f
ri
is the equilibrium distribution of the system when

particle i is fixed at 
ri . Thus, the time derivative reforms as

d

dt
〈 
F (0) ⊗ 
R(t)〉 = −

∫
d
rif (
ri)[∇ 
FB(
ri)]

· 〈
ui ⊗ eiQLt iA
ui〉
ri
. (A8)

If we define P
ri
| . . .〉 = 〈
ui . . .〉
ri

〈
ui 
ui〉−1

ri

|
ui〉
ri
, where |
ui〉
ri

is the subspace of |
ui〉 with 
ri fixed, we will have 〈
ui ⊗
eiQ
ri Lt iA
ui〉
ri

= 0 where Q
ri
= 1 − P
ri

. This is because
P
ri

|
ui〉
ri
= |
ui〉
ri

and Q
ri
|
ui〉
ri

= 0. Due to the property of
the operator Q
ri

, eiQ
ri iLt will keep the vector it operates
on to be orthogonal with |
ui〉
ri

if the vector is orthog-
onal with |
ui〉
ri

at time zero, which is true for |iA
ui〉
ri
.

Since P
ri1 |
ui〉
ri2 = δ(
ri1 − 
ri2)|
ui〉
ri2 and P = ∑

ri

P
ri
, we have

P|
ui〉
ri
= |
ui〉
ri

. Based on the projection property of P on
|
ui〉
ri

, one gets 〈
ui ⊗ eiQLt iA
ui〉
ri
= 0, which means that

〈 
F (0) ⊗ 
R(t)〉 would remain constant as t goes to infinity. As
in the infinite time limit, 
F (0) is not correlated with 
R(t),
〈 
F (0) ⊗ 
R(t)〉 = 〈 
F 〉 ⊗ 〈 
R〉. At equilibrium, the net forces
〈Fx〉 (〈Rx〉) and 〈Fy〉 (〈Ry〉) that are parallel to the solid
wall vanish, but 〈Fz〉 (〈Rz〉), in general, does not. Therefore,
except for 〈Fz(0)Rz(t)〉, all of the elements of 〈 
F (0) ⊗ 
R(t)〉
are zero. Due to spatial symmetry under reversals in the x and
y axes, one can show that 〈Rx(0)Rz(t)〉 = 〈Rz(0)Rx(t)〉 = 0
and 〈Ry(0)Rz(t)〉 = 〈Rz(0)Ry(t)〉 = 0. As a result, one can
decouple the motion equation norm direction z from the one
parallel to the wall.

In summary, rearranging Eq. (A1) using the projection
operator we defined, we finally have an equation with the
form of extended GLE:


̇ui(t) = − 1

kT

∫ t

0

ui(t − t ′) · 〈iA
ui ⊗ eiQLt ′ iA
ui〉dt ′

+ eiQLt iA
ui + iB
ui(t), (A9)

with the fluctuation-dissipation relation generalized to be

kT γ (t) = 〈iA
ui ⊗ eiQLt iA
ui〉 = 〈 
R(0) ⊗ 
R(t)〉, (A10)

and Eqs. (14) and (15) generalized to be

〈
ui(0) ⊗ 
Ri(t)〉 = 〈 
Fi(0) ⊗ 
Ri(t)〉 = 0, t > 0. (A11)

One should be aware that the vectors and tensors in Eqs. (A9)–
(A11) are two dimensional and parallel to the solid wall.
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