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Relaxation of the thermal Casimir force between net neutral plates containing Brownian charges
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We investigate the dynamics of thermal Casimir interactions between plates described within a living conductor
model, with embedded mobile anions and cations, whose density field obeys a stochastic partial differential
equation which can be derived starting from the Langevin equations of the individual particles. This model
describes the thermal Casimir interaction in the same way that the fluctuating dipole model describes van der
Waals interactions. The model is analytically solved in a Debye-Hiickel-like approximation. We identify several
limiting dynamical regimes where the time dependence of the thermal Casimir interactions can be obtained
explicitly. Most notably we find a regime with diffusive scaling, even though the charges are confined to the
plates and do not diffuse into the intervening space, which makes the diffusive scaling difficult to anticipate and

quite unexpected on physical grounds.
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I. INTRODUCTION

The quantum Casimir effect is the first and most famous
example of what are commonly referred to as the fluctuation in-
duced interactions [1]. The idea behind the original calculation
by Casimir is quite straightforward to describe, in principle,
but is at the same time mathematically quite technical and,
in addition, rather subtle to interpret physically [2]. The basic
point is nevertheless clear: The presence of two conducting
plates modifies the ground state energy of the electromagnetic
field [3]. The ground state, or zero point energy, then has a finite
component which depends on the plate separation, but also a
divergent contribution which is fortunately independent of the
plate separation, thus leading to a finite force. A physically
measurable force is therefore derivable from %hu), the quantum
ground state energy. This is somewhat embarrassing as physics
students are often confidently told that the ground state energy
can be thrown away in condensed matter and quantum field
calculations, since only differences in energy should count.
The question as to whether zero point energy has physically
measurable consequences is an important one in cosmology as
it is a possible candidate for dark energy [4].

Another query arising from Casimir’s computation, based
on zero point energy, is why is the effect then usually referred
to as a fluctuation induced interaction? One computes the
ground state energy E, of a system of harmonic oscillators
which, up to an infinite but constant term, is a function
of the plate separation L and the ensuing force is simply
f=- % What is fluctuating here? The uncertainty principle
tells us the local electromagnetic field fluctuates but it is not
clear, physically, why such fluctuations should give rise to a
force. The fluctuation aspect of Casimir interactions and their
generalization, the van der Waals forces, has been worked
out particularly in detail by Lifshitz. In his landmark paper,
Lifshitz used Rytov’s fluctuating electrodynamics to derive
the average stress tensor in a planar geometry bounded by
two dielectric and/or conducting bodies [5]. This represents
the field view of fluctuation induced electromagnetic forces,
in distinction to the matter view where these interactions

1539-3755/2014/89(3)/032117(8)

032117-1

PACS number(s): 05.40.—a, 02.50.—r, 05.10.Gg, 77.22.Ej

are caused by correlated dipolar fluctuations, yielding the
long range van der Waals interactions. It is thus natural and
unsurprising to call van der Waals interactions fluctuation
induced interactions [6]. Indeed, Schwinger was unhappy
about the zero point energy interpretation of the Casimir
interaction to such an extent that this led him to formulate the
effect in terms of the currents and sources alone [7]. Physically,
and in analogy with the van der Waals dipolar fluctuation case,
this leads to the realization that a conductor has free charges
which move in such a way to effectively impose conducting
boundary conditions in Maxwell’s equations and the Casimir
effect is thus due to the correlation of the charge fluctuations
between the two plates in just the same way as van der
Waals forces are due to correlations of the dipole fluctuations.
Even with these deep insights into the nature of the Casimir
effect, and van der Waals and fluctuation induced interaction in
general, the discussion about zero point energy versus charge
and current fluctuations continues unabated to this day [8,9].

Recently, the representation of dielectric bodies in terms
of thermalized dipoles has been exploited to study the
classical high temperature behavior of van der Waals forces
[10]. The dipole field representation is also useful because
it allows one to study the dynamics of how the van der
‘Waals interactions evolve in time, as correlations between two
initially uncorrelated dielectric slabs set in (the fluctuations
of the force in equilibrium may also be studied [11]). The
input into such a theory is a local Langevin dynamics for
the dipole field. The classical equilibrium thermal interaction
between two semi-infinite planar slabs of area A separated by
a distance L is given by [6]

kpT AH,,
-

where H,, is the Hamaker coefficient measured in units of
kpT . Two initially uncorrelated slabs are then found to have a
time dependent interaction of the form [10]
kgTAH(t)
D

f= (D

2)
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where H(t) is a time dependent Hamaker coefficient with
H(0) = 0, corresponding to zero force for initially uncor-
related slabs, and lim;_. H(t) = H.,. One should note,
however, that the factorization of the temporal and spatial
dependence in Eq. (2) is particular to planar geometries and
does not have straightforward analogies in other geometries.

Few other results are known about the temporal evolution
of fluctuation induced forces. Most results on the electromag-
netic Casimir effect concern steady state, out of equilibrium
situations where the temperatures of the bodies in interaction
are taken to be different [12—19]; these systems are thus in
nonequilibrium but steady states. In addition, the quantum
Casimir-Polder interaction between atoms and surfaces has
been studied in a number of out of equilibrium contexts
[20-23]. Here one can also study the evolution of a quantum
state of the system which is not a stationary state, as well as the
Casimir friction effect due to the motion of the atom [24,25].
These studies are more closely related to the one presented
here in that we study the evolution of the Casimir force in an
initially out off equilibrium state to its equilibrium value.

In soft matter type systems, where a multitude of fluctuation
induced interactions exist, there are only analytical results for
simple Gaussian models of binary mixtures with stochastic
nonconserved order parameter (model A) dynamics. Here the
temporal and L dependencies of the force are mixed via a
diffusive scaling dependence L?/t [26,27]. In principle, near
critical binary liquid mixtures are ideal systems to observe out
of equilibrium Casimir interactions, due to the critical slowing
down of dynamics as a critical point is approached. However,
in such systems, hydrodynamics needs to be taken into account
and the problem becomes very difficult, even in the regime of
low Reynolds number, where flows can be treated as Stokes
flows. The first results for such systems have been obtained
only very recently and require quite sophisticated numerical
techniques [28]. As is the case for the electromagnetic Casimir
effect, the critical Casimir effect out of equilibrium can also be
studied via the induced drag and diffusion on insertions which
interact with the fluctuating field [28,29].

In this paper we examine the interaction between two model
conducting surfaces that contain mobile cations and anions
interacting via the three dimensional Coulomb interaction
and whose dynamics is governed by a Langevin equation.
This model describes two dimensional (2D) electrolyte layers
or thin colloidal layers when hydrodynamic effects can be
neglected, but can be also viewed as a generic classical model
of 2D conductors. The dynamics of the system is treated
analogously to the Debye-Hiickel (DH) approximation, where
fluctuations of the local density of anions and cations about
the average density are taken to be small. The statics of this
model in the DH approximation has been studied in Refs.
[30,31] and the model is called the /iving conductor model by
the authors of [31]. The motivation for these studies was, in
fact, how to better understand the role of charge fluctuations in
conductors and their effect on the Casimir interaction in order
to understand the extrapolation of the quantum Casimir effect,
based on perfectly conducting boundary conditions, to the high
temperature limit. The choice of terminology living conductor
was chosen by the authors of [31] to emphasize the presence of
real charge distributions in the plates as opposed to conducting
boundary conditions imposed on the electromagnetic field.
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In this model, and under the DH approximation, we study
how the Casimir force between two initially uncorrelated
plates evolves in time. The basic model consists of diffus-
ing ions confined to both plates, each plate representing a
confined 2D electrolyte. The electrolytes have a screening
length beyond which electrostatic interactions are weak. For
plate separations much larger than this screening length the
equilibrium interaction has a universal, perfect conductor,
limit. For separations smaller than the screening length, the
interaction is nonuniversal and depends explicitly on the
screening length. We present analytical results for the evolution
of the Casimir interaction in both the long range and the
short range regimes. The temporal evolution for the force is
surprisingly rich and is quite different in the short and long
distance regimes. In the long distance universal regime we also
see that the temporal evolution of the force is quite different
from that of the dipole model studied before [10], despite the
fact that the same universal static limit can be realized in the
two models.

The paper is organized as follows. We first describe the
basic model in terms of its statics and dynamics and also give
a simple and explicit expression for the force between the
two plates in terms of the charge densities of the system.
The dynamics of the system is then solved by expanding
the density fields about their mean values to first order. In
terms of statics this approximation corresponds to the DH
approximation. Expressions are then given for the Laplace
transform of the time dependent force between two initially
nonconducting plates which pass through an insulating to
conducting transition. From this expression we can easily
extract the equilibrium value of the force. We identify two
static limits: a long distance universal limit, where the thermal
Casimir force is independent of the microscopic model for
the charges in the plates, and a short distance nonuniversal
regime, where the scaling of the force with separation changes
and a dependence on the microscopic parameters of the model
appears. There then follows a rather technical passage where
we carry out an asymptotic analysis of the Laplace transform
of the force to extract its short and late time behaviors in both
the universal and the nonuniversal regimes. We conclude by
discussing the difference between the results found here and
those in other studies of the relaxation of thermal Casimir
forces and further perspectives in this line of study.

II. THE LIVING CONDUCTOR MODEL
AND ITS DYNAMICS

We consider two parallel plates S; and S, of area A
separated by distance L in the direction we denote by z. A
schematic of the system is shown in Fig. 1. We set S; at
z1 =0and S; at z; = L. In the problem we consider cations
and anions of several types denoted by «. The ions of type «
have a charge g, and are in the plate S, (S, = S if the ions
of type « are in the plate 1, etc.). Furthermore, the ions are
Langevin particles with diffusion constant D,,. Each particle
is thus subjected to a thermal white noise plus the electric
field generated by the other particles (including those not in
the same plate). The density field for the particles obeys a
stochastic partial differential equation which can be derived
starting from the Langevin equations of the individual particles
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FIG. 1. (Color online) Schematic of system studied. Brownian
anions and cations are contained in two parallel plates separated by
distance L in a medium of dielectric constant €.

[32] or, as was originally done, from phenomenological
arguments [33]. For a system of different particle types the
derivation of [32] can be easily extended to give

9pa(X) Dy

SF
=2V paV)— + V) - V2Dypan,(x), (3
Y 7 vIP ”8/)0,+ I Pally(X),  (3)

where x is the 2D coordinate in the plane of the plates and V
is the corresponding 2D gradient operator. The functional F is
an effective free energy functional for the density fields given
by
F=23%" / dxdX'quqp pa(X)pp(XVG(X = X .24 — 2p)
o S xSp

+1 Y [ dxpuomip,con. @)
o« VS

The first term above is the electrostatic energy of the system
and G is the Green’s function obeying

eVG(x — X,z —7) = —8(x —x)8(z — 7)), &)

with e the background dielectric constant of the system. The
second term in the functional F' corresponds to the entropic
contribution —7' S due to the ionic distributions.

The term 5, is spatiotemporal Gaussian white noise with
correlation function

(Nai (X, )0 (X', 1)) = 80p8i;8(x — X)8(r — 1'). (6)

Note that the diffusive dynamics above conserves the total
particle number of each species. In what follows we assume
that each plate is electroneutral. The force between the two
plates as a functional of the densities p, is then given by

1 , )
f=-5 X dXdX 4o po(X)pp(X)
aB:Sy=S,, Sp=5, Y Sa* S
8 !
X 8_LG(X —X 7L)9 (7)

where only interactions between charges on different plates
contribute to the normal force between the plates.
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Finally, we need to specify the initial conditions from
which the system evolves. Quickly moving the plates in close
proximity and then observing the evolution of the force seems
difficult to achieve. A different initial condition would be to
start with plates which initially have no free charges and then
pass through an insulator-conductor-like transition by tuning
an external parameter such as the temperature. The initial
condition we consider is therefore one where the local charge
density is initially zero in both plates. More specifically, if
the system is initially made up of bound ion cation pairs,
we assume that the initial density of pairs is uniform and
the corresponding ionic distributions upon unbinding are thus
initially uniform.

III. RESOLUTION OF DYNAMICS IN THE
DEBYE-HUCKEL APPROXIMATION

In order to proceed we expand the density field for each
species about its mean value, writing

,Oa(X) = ﬁa + na(X)s (8)
the equation of motion for the density fluctuations n, is given
by

0ny(x)
ot

Dy _
= DaViina®) + ==V 1 4alBy + na()]

X Z/ dx'V | G(x — X',z4 — 2p)qpnp(x’)
oS

+VH Y, 2D(Jt(ﬁa + not)ﬂa(xat)v (9)

where we have assumed that each plate is electroneutral, i.e.,
ZQ:SFSW qopy, = 0. The dynamical equivalent of the DH
approximation amounts to keeping only terms which are first
order in n,/p,. In the second noise term this amounts to
keeping only the term p,,, as the first linear term has average 0
and will only enter corrections quadratically. The dynamics in
this approximation becomes equivalent to model B conserved
dynamics employed in the study of phase ordering kinetics
[34].

The effective equation thus becomes linear and can be
written as

an 1

— =——=RAn+§, 10
5 T +é (10)
where n is the vector with components n,. By RA we denote
the composition of operators. The noise & has correlation
function

<$a(xat)$ﬂ(x/7t)>

—28(t — 1")8up Da Py Vji8(x — X')
28(t — 1")Rap(x — X)). (11)

From this the dynamical operator R can be read off as
Rop = —8up Do D, V. (12)

and we also find that

T8,88(x — X /
Agp = # +quqpG(x — X' ,z0 — 2p5).  (13)

o
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It is easy to see that one has

8Fpy
Sngy

Aaﬁ}’l B = , (14)
where Fpy is the DH approximation to the free energy
functional in Eq. (4), where it is expanded to second order
inny/p,. The equal time correlation function Cyp(x — X',1) =
(ne(x,t)ng(x',1)) is straightforward to compute and we find (in
operator notation where we suppress the spatial dependence
of the operators for notational succinctness)

C(t) = exp (—%RA) C(0)exp <—%AR>

+TA™! [1 —exp (—2%AR>}, (15)

where C(0) is the initial correlation function. In the case
considered here we start with an initial insulator condition with
ne = 01in both plates, this means that the initial distribution of
each charge type is uniform at the moment where the dynamics
begins. We therefore set C(0) = 0. The average force as a
function of time is given by

(f(0) = —% >

[ dxdx'qqqp
aB:Sy=5), Sy=8,  SuxSp
0
X Caﬁ(x—x’,t)ﬁG(x—x’,L). (16)

Here the only terms present are from charge distributions in
different plates so we have

>

aB:Sy=S), Sp=S,  Su*Sp

X {TA1 |:1 — exp <—2LAR>]} (x —X)
T f

X %G(x—x’,L). a7

1
(@) = =3 dxdX guqs

As seems to be generic with the dynamics of Gaussian
fluctuation induced forces [10,26], the analysis is greatly
simplified by working with the Laplace transform of the
average time dependent force,

fals) = / exp(—st)(f(1)). (18)
0
This gives in operator notation
fus) = — Ll (ag Lorro R (19)
=T L 2’ ’

where we have used Eq. (13) in which only the second term
on the right hand side depends on L. We can now write, as in
previous studies [26],

~ T _ 0A,  _,

fals) = P Tr oL A7, (20)
where A; = A + %TR‘l as the second term dependent on s is
independent of L. Note that this result is formally similar to that
found in [26] for general Gaussian fluctuating fields confined
between (and not in) the surfaces; however, the physical
models and assumptions made are somewhat different.
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Finally, we can write

o) =~ LAy = L nz), @
Ja) = =5 g Trin(A) = o In(Z). )

where we have introduced the functional integral

Z, = /d[n] exp

B

X | ——

> / dxdX'ny(X) A (X,X)ng(x') |. (22)
af SuxSp

The functional integral is easily evaluated by introducing
a scalar field ¢ which decouples the nonlocal Coulomb
interaction and, up to a factor of i, corresponds to the
electrostatic field, whereby up to an overall constant

Z, = /d[n]d[qb] exp {—22/ dx
o Va

L a0? = = 0V ()
X | —ng(X)* — ——nq(x ng(X
ﬁa 2Dotpo( .

+iBy /S dXP(X)gane(X) — § / dre[%(r)}z} :
(23)

Note that in the above functional integral the last term in the
exponential is a volume integral over all space, where as the
other integrals are surface integrals over the planes containing
the charge distributions. The integral over the fields n, can be
performed in terms of their Fourier transforms with respect to
the in plane coordinates x. This yields

Zs = H/d[¢(k,z)] exp [_%/dzd‘p(_k,Z) d(ﬁ(k,z)
k

dz dz

+E2¢(—k,2)¢(k,2) — %¢(—k,0)¢(k,0)m1(k,8)
- %qﬁ(—k,LM(k,L)m(k,S)} (24)

and where the m; (k,s) are k and s dependent inverse effective
Debye lengths for the ions in each plate given by

mik.s) =)

a:S,=S;

Pode 1

€T 1+ 55 ’

(25)

and in the static limit, where s = 0, they are the usual
static inverse Debye lengths for systems restricted to two
dimensions.

The functional integrals in Eq. (24) having surface terms
can be evaluated using a variety of path integral or functional
integral techniques [35]. This gives an effective free energy
F; = —In(Z;)/ T which, up to bulk and surface terms inde-
pendent of the separation of the plates, is given by

Fo— E/kdk In {1 B my(k,s)my(k,s) exp(—2kL) } ’
4 [2k 4+ my(k,s)][2k + m,(k,s)]
(26)
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which gives the Laplace transform of the time dependent force to be

my(k,s)mo(k,s)exp(—2kL)

TA [

Ja =

This is the main result of this paper. In what follows we analyze
this result and notably carry out the inversion of the Laplace
transform to deduce the temporal evolution of the force.

IV. STATIC LIMIT

In the static limit s — O the equilibrium force is given via
the pole at s = 0, we thus find

Freg = =2 [ 12ak
“4T o
—2kL
o mmy exp( ) 08
2k +m )2k + my) — mym, exp(—2kL)
where
— 2
Paly
= —. 29
mi= ) (29)

a:8,=S;

The m; represent the inverse of length scales /; beyond
which the interaction between ions in the same plates are
screened. These fix length scales which determine the Casimir
interaction between the plates, the large distance limit where
L > I; and the short distance limit where L < [;.

A. Long distance universal limit

In the limit where Lm; >> 1 we find that

ammiI [
mimy exp(—u)
x (u +mLYu + myL) — mimyL? exp(—u)
TA
A funi = — P £@3). (30)

This is the universal limit for conductors in the classical limit.
Its value is half that obtained by taking the high temperature
limit of the ideal conductor Casimir limit; however, it is the
same result as that given by Lifshitz theory. This subtlety of
the high temperature limit of the Casimir effect was, in fact,
what inspired the authors of Refs. [30] and [31] to study this
living conductor model. The finite distance corrections are
easily computed to first order, giving

A -[1—3 L2 } 31
(f)eq’\’fum Z(m_] m_2> ) ( )

which agrees with the correction given in [31], where the case
m = m, is considered.

B. Short distance nonuniversal limit

Now in the opposite limit where the plate separation is
smaller than both their individual screening lengths, Lm; < 1,
we find
T Amim,

Feo ==TerL

, (32)

21s [2k + my(k,s)|[2k + mo(k,s)] — my(k,s)ma(k,s)exp(—2kL)’

27)

(

giving a completely different scaling form when compared
with the long distance limit. We first note that the interaction
force in this limit is not universal, but depends on m,m;. The
intersurface distance scaling can be understood as follows:
Monopolar charge fluctuations between two pointlike charge
distributions give a free energy that goes as the inverse first
power of the separation squared, just as the dipolar fluctuations
scale as the inverse third power of the separation squared; a
Hamaker-like summation of the inverse second power forces,
distributed uniformly over two apposed planar surfaces, then
yields a net force that scales as the inverse first power of the
separation between the planar layers. A crucial point leading
to Eq. (32) is, however, that the monopolar charge fluctuations
are correlated leading to an attractive force.

V. EARLY TIME RELAXATION OF THE FORCE

The very short time behavior of the force is easy to
extract. In this limit we assume that for all « that L?/D,t ~
sL?/D, > 1. This means that we can take m;(k,s) < 1 in
Eq. (27) and we find

. TA
POl L' f K dk exp(—2kL), (33)
8ms3
where u; = Za:sazs,- w’;—g‘*qi and, thus,
x 3TAp 2
P i Ly 34
328315 (34

The inversion of the Laplace transform in this large s limit
corresponds to short times and we find

3T Apypat?

() ~ ==

(35)

As is seen for systems of interacting dipoles, the growth of the
force as ¢ is a signal of the fact that it is correlation induced
and, thus, in a sense is second order in time. However, the
short time scaling with L is quite different to the dipole case
as is seen in Eq. (2). We also see straight away that, in contrast
with the dipole case, the time scales for the evolution of the
force are dependent on L. This is somewhat surprising as,
in common with the dipole case, the effective interaction is
again generated by an instantaneous Coulomb interaction (in
the dipole case the interaction between the partial charges on
the dipoles is, of course, Coulombic).

VI. LATE TIME RELAXATION OF THE FORCE

Here we consider how the force evolves at late times to its
static value. As there are two distinct regimes for the statics
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determined by the relative values of L and /; we need to
consider them separately.

Late time evolution in the short distance regime

As in the static case we consider the change of variables
k = u/L and we recall that s ~ 1/¢ so that late time, or large
t, dynamics corresponds to small s. The dynamical inverse
screening lengths behave as

3 Pade 1
sL?
a:S,=S; €T 1+2Dau2

— 2

Py 1
~ ¥ Ple ——. (36)

a:S,=S; 1+ 2Dgu’t

m;(k,s) =

An expansion taking m;(k,s) small is thus valid if

= 2
u Puldy 1
T ) (37)

The presence of the exponential in the integrand, and the fact
that the integral vanishes for small ¥ means that the integral is
dominated by u ~ O(1) and thus we must have

L Z p"q“— <1 (38)
+2Dt

a:Sy=

Now in the late time regime defined by D,¢/L? > 1 the above
reduces to the condition to be in the short range static regime
Lm; < 1. In this regime the Laplace transform of the force is
given by

~ TA

fa & ~Zms / dk my(k,s)my(k,s)exp(—2kL). (39)

In this form the Laplace transform for the time derivative of
the force can be inverted to give

A mamﬂD Dﬂ
dt<f(t) a /dkz Dg — D,

— exp(—2Dgk*t)] exp(—2kL), (40)

[exp(—2D, kzt)

the prime in the sum indicating that « and g are species
in different plates and we have defined m, = p,q2/€T.
Fortunately, the right hand side of Eq. (40) can also be written
as a temporal derivative and so we obtain

R (feg /dkzmg:ﬁ_D «Dp

1 1
X [D— exp(—2Dy k1) — s exp(—ZDﬂkzt)]

o

(f()

x exp(—2kL). 41

The integral over k can be expressed in terms of the
complementary error function

erfc(u) = % /Oodu exp(—uz) 42)
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as

mam,gD Dﬁ

FO) X (Fheg + by

T
0 (3 ) ()
X | —exp| —— Jerfc| ——
DE 2Dyt 2Dt

7o (s ) ()| @
— —5 €X CriC| —— .
D] P\2Dy 2Dyt

The late time correction term is positive so the magnitude
of the average force approaches its equilibrium value from
below with diffusive scaling. The appearance of diffusive
scaling is interesting in itself. Even though D,t represents
the distance diffused by an ion of type «, the ions diffuse
in the plates, not across the gap between the plates, and the
Coulomb interaction is instantaneous. The ions thus have to
diffuse a distance of the order of the distance between the
plates in order for the force to reach its equilibrium value;
however, this distance, in this limit, is less than the screening
length.

In the limit where L//Dyt <1 we can use Taylor
expansion of ercf(u),

~1_ 2 2
erfc(u) ~ 1 ﬁu + O(u), (44)
to find
™ mamﬂD Dﬁ
(PO % (g + fz Dy
o) LIS (45)
D; D]

so the late time correction is independent of L and decays
as 1/4/t. This is reminiscent of the late time correction
for Gaussian binary liquids where the force decays to its
equilibrium value with a power law in time, independent of
the plate separations [26,27].

VII. LATE TIME EVOLUTION IN THE LONG RANGE
REGIME FOR THE PERFECTLY SYMMETRIC CASE

The asymptotic inversion of the Laplace transform is quite
subtle in the long range limit where Lm; > 1. In order to
consider a system with only one intrinsic length scale and one
intrinsic time scale, we consider a perfectly symmetric system
where all ions and anions have the same value of m, = m
and the same diffusion constant D, = D. Hence, we consider
the case where all the ions and cations are identical up to a
change in the sign of their charge. As a consequence we can
write

m;(k,s) = , (46)

1+ 550
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where m = Nym( with N, the number of cations and anions in the (identical) plates. In this case we find

P TA [, m?D? exp(—2kL) @
‘T 2ms {s + 2Dk> + mDk[1 + exp(—kL)|}{s + 2Dk* + m Dk[1 — exp(—kL)]}’
and the Laplace transform develops poles which are easy to find analytically and so it can be inverted to give
TA )
(f@)=—— [ k°"dk mexp(—kL)
4
1 —exp{—Dtk[2k + m — mexp(—kL)]} 1 —exp{| — Dtk[2k + m + m exp(—kL)]} 48)
[2k +m — mexp(—kL)] [2k + m + m exp(—kL)] )

From this we can easily verify the results for short time
regime in this special case. As the final static result is known,
it is easiest to study the force dynamics via the temporal
derivative

d{f®) _ TADm

KBdk —kL
dr Ar f exp(—kL)

x (exp{—Dtk[2k + m — mexp(—kL)]}
—exp{—Dtk[2k + m + mexp(—kL)]}). (49)

If we measure both the distance between the plates and the
diffusion constant in terms of the screening length 1/m; i.e.,
we write L = L/m and D = D/mz, then we find

d(f®) _ TAm> [ o
e 471D3t4/” dufexp[—g—(u,Dt,a)]
— exp[—g4(u,Dr,a)]}, (50)

where
_ 2u
g+(u,Dt,a) =u |:D_t +a+1x exp(—ua)] , (28

and o = L/Dt. In the late time limit D¢ >> 1 the functions g+
simplify to

g+(u,a) = ula + 1 £ exp(—uw)], (52)
and so the temporal derivative of the force has the scaling form
d(f () TAm’
= —— . 53
dt 47 D34 o ©9)

We see that in this limit the behavior of the force evolution
is not diffusive and is determined by the ballistically scaled
parameter « = L/m Dt rather than the diffusively scaled one

L?/Dt.
In the limit « — 0 one can show
Q(a) ~ 1/2a, (54)
which leads to
d{f(t T Am?
(f())%_ Am~ (55)
dt 8w Dt2L?
Subsequently, at late times
)~ -3y - & (56)
g |f mDt |’

In the opposite limit « — oo we find asymptotically

(o) ~ 48/(1 4 2a)° ~ 3/2a°, (57)

(

the first term being a much better approximation for o ~ 10 for
numerical verification of our analytical asymptotic estimates.
In the regime of « large we thus find

3T Am?D?*?

()~ ==

(58)
This agrees with the general short time result given by
Eq. (35).

In this large distance regime we see that while the static
behavior has a well defined universal limit, independent of
the microscopic details of the charges in the plates, the
temporal behavior is strongly nonuniversal and depends on
the parameters of the surface charges.

VIII. CONCLUSION

We have studied the thermal fluctuation induced interaction
between two plates that are modeled as 2D conductors
containing mobile anions and cations. We analyzed the
static limit as well as the dynamical approach to this limit.
The attractive interaction is found to be not surprisingly a
consequence of the buildup of correlations between the charge
distributions on the two plates. Our results are, however,
significantly different from those found between dielectric
slabs studied in detail before [11]. While the static thermal
Casimir interaction in the universal limit can also be obtained
by approximating the interaction between dielectric slabs
with diverging dielectric constants, the dynamics of the two
systems is radically different and cannot be extracted from
this simplification. The late time relaxation of the van der
Waals force between dielectric slabs is typically given by
a simple exponential relaxation of the effective Hamaker
coefficient (unless one invokes a power law distribution of
dipole relaxation times), while the dynamics of the ther-
mal Casimir effect in the model here has a much richer
phenomenology.

In fact, for plates with mobile anions and cations the
behavior of the force is a complicated function of plate
separation L and time ¢. Several regimes were identified. In
the short distance regime, where effective charge fluctuations
appear monopolar, the relaxation to the equilibrium force
exhibits diffusive scaling. In the large separation regime the
static result is universal, and the dynamical behavior exhibits
a ballisticlike scaling. Results obtained from the model A
(nonconserved order parameter) dynamics for Gaussian binary
mixtures exhibit a diffusive scaling in the evolution of the
Casimir force to its equilibrium value [26,27]. However, the
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dynamics in this case occurs in the medium between the two
plates; the only influence of the plates is to impose boundary
conditions. The appearance of the scaling variable L2/t is
thus natural as the fluctuations of the order parameter in the
z direction between the plates obey a randomly (thermally)
forced diffusion equation and relax over a region of size L.
In the model considered here, nothing actually diffuses in the
medium between the plates, all diffusion being confined within
the plates and so in the living conductor model the diffusive
scaling is not as easy to anticipate and is quite unexpected on
physical grounds.

Finally, we note that the dynamics of the living conductor
model is also a possible test bed for other nonequilibrium

PHYSICAL REVIEW E 89, 032117 (2014)

studies of the Casimir effect. For instance, one could model
plates held at different temperatures by taking a different
amplitude of the thermal noise in each plate. One could also
explore the effect of nonthermal driving on the dynamics of
the ions in the plates. The influence of hydrodynamics, due
to the presence of a solvent, on the dynamics of the charges
would also be interesting to examine.
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