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The time evolution of the one-particle distribution function of an N -particle classical Hamiltonian system with
long-range interactions satisfies the Vlasov equation in the limit of infinite N . In this paper we present a new
derivation of this result using a different approach allowing a discussion of the role of interparticle correlations on
the system dynamics. Otherwise for finite N collisional corrections must be introduced. This has allowed a quite
comprehensive study of the quasistationary states (QSSs) though many aspects of the physical interpretations of
these states still remain unclear. In this paper a proper definition of time scale for long time evolution is discussed,
and several numerical results are presented for different values of N . Previous reports indicate that the lifetimes
of the QSS scale as N 1.7 or even the system properties scale with exp(N ). However, preliminary results presented
here indicates that time scale goes as N2 for a different type of initial condition. We also discuss how the form
of the interparticle potential determines the convergence of the N -particle dynamics to the Vlasov equation. The
results are obtained in the context of the following models: the Hamiltonian mean field, the Self-gravitating ring
model, and one- and two-dimensional systems of gravitating particles. We have also provided information of the
validity of the Vlasov equation for finite N .
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I. INTRODUCTION

Long-range interacting systems are characterized by an
interaction potential decaying at long distances as r−α such
that α < d, with d being the space dimension. This may lead
to anomalous behavior such as non-Gaussian quasi-stationary
states (QSSs), negative (microcanonical) heat capacity,
ensemble inequivalence, and nonergodicity [1–6]. Exam-
ples of systems with long-range interactions include self-
gravitating systems (stars in galaxies and globular clusters),
non-neutral plasmas, and two-dimensional vortices [7–15].
The existence of nonequilibrium non-Gaussian QSSs have
been explained by identifying them with stationary states of
the Vlasov equation [1,16], which describes the dynamics of
the statistical states of such systems. We write the Hamiltonian
of an N -particle classical system with long-range interactions
as

H =
N∑

i=1

p2
i

2m
+ 1

N

N∑
i<j=1

Vij , (1)

with Vij ≡ V (|ri − rj |) and ri , pi are the position and
momentum vectors for particle i, respectively, and m the mass
of the identical particles. The Kac factor 1/N in the potential
energy term in Eq. (1) is introduced such that the total energy is
extensive [17]. In a seminal and quite intricate paper [18] Braun
and Hepp showed that the time evolution of the one-particle
distribution function f (r,p,t) for those systems satisfies the
Vlasov equation in the limit N → ∞:

∂f

∂t
+ p

m
· ∂f

∂r
+ F · ∂f

∂p
= 0, (2)

where the mean-field force and potential are given, respec-
tively, by

F(r,t) = − ∂

∂r
V (r,t),

V (r,t) =
∫

v(r − r′)f (r′,p′,t) dp′ dr′. (3)

For finite N Eq. (2) is valid only up to terms O(N−1),
and collisional corrections become relevant (see Ref. [1] and
references therein). The property of vanishing interparticle
correlations in the initial state is consistently propagated by
the Hamiltonian dynamics in the N → ∞ limit. For practical
purposes, the Vlasov equation is used as a good approximation
for sufficiently large N , its validity being limited to short
times. Although the lifetime of QSSs has been extensively
studied in the literature [19–27] many aspects of its physical
interpretation and phenomenology remain unclear. In the
present paper we discuss how to define properly a time scale
for its long-time evolution, which is governed by collisional
corrections to the Vlasov equation leading to the Landau or
Balescu-Lenard kinetic equations (see Refs. [28–31] and refer-
ences therein). For homogeneous one-dimensional systems the
collision terms of both Landau and Balescu-Lenard equations
vanish identically [28,32] and higher order corrections must
be considered in the kinetic equations, leading to an evolution
time scale of order Nδ with δ > 1 for homogeneous and
of order N for inhomogeneous states. For the Hamiltonian
mean field (HMF) model (see Sec. III) a value of δ = 1.7 was
claimed by Yamaguchi et al. [33] and by Bouchet and Dauxois
[34] for a homogeneous water-bag initial condition, while
Campa et al. [20] and Chavanis [35] have reported a time scale
of order exp(N ) for a semielliptic initial homogeneous state.
This is to be compared to a time scale of order N2 estimated
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numerically for one-dimensional plasmas [36,37] and to the
same scaling for the dynamics of a three-level homogeneous
initial state for the HMF model presented in Sec. V. Also,
as we argue below, for most of the QSS a lifetime cannot be
defined consistently. In such cases it must be replaced by the
notion of a characteristic time scale (relaxation time).

We also study the scope of validity of the Vlasov equation
for finite N and for some representative models with long-
range interactions, i.e., how the dynamics converges to the
mean-field (Vlasov) description as N increases and how
interparticle correlations arise and how the dynamics depends
on them. The representative models referred to are the Hamil-
tonian mean field (HMF) model [38], the self-gravitating ring
model [14], and one- and two-dimensional self-gravitating par-
ticles [8,39]. There are a few approaches to deduce the Vlasov
equation from first principles for long-range forces [1,18,40].
Here we choose the one by Balescu, which allows an explicit
estimation of the order of magnitude of many contributions,
and most importantly, that of interparticle correlations [41,42].
The Vlasov and Balescu-Lenard equations were previously
obtained by Balescu using the plasma constant as a (small)
parameter in the diagrammatic representation of the series
solution. Here we show that the Kac factor fulfills a similar
role. For sake of completeness and for the present paper to be
self-contained, we present this approach in the appendices.
It is shown that provided all interparticle correlations are
dynamically created, they do not alter the validity of the Vlasov
equation. This means that deviations from the solution of the
Vlasov equation are not due to the creation of correlations with
time (even though they are always present), since their order
of magnitude is preserved by the dynamics, but to the secular
accumulation of small collisional corrections of order 1/N

(see Sec. IV). The one-particle distribution function at any
point of the evolution can thus be used as the initial condition
to solve the Vlasov equation, which is valid for a given time
span starting at this value of time. This is important for the
interpretation of the QSSs and their characteristic lifetimes.

This paper is structured in the following way: Sec. II
presents the deduction of the Vlasov equation from Balescu’s
dynamics of correlations approach. In Sec. III we discuss the
effect of the explicit form of the interparticle potential on
the convergence of the N -particle dynamics to the solution
of the Vlasov equation. Sec. IV discusses the behavior of
interparticle correlation with time from simulation data and
Sec. V the physical interpretation of quasistationary states in
the light of previous sections. We close the paper with some
concluding remarks in Sec. VI. In Appendix A we briefly
present the dynamics of correlations formalism of Balescu,
and in Appendix B we discuss how it can be extended for
self-gravitating systems with different masses.

II. DYNAMICS OF CORRELATIONS
AND THE VLASOV EQUATION

The diagrammatic approach for the solution of the N -
particle Liouville equation was used by Balescu to deduce
the Vlasov equation for plasmas as a lower order evolution
equation in the plasma parameter [41,42]. In this section we
show that the Kac factor 1/N in the interaction potential leads
naturally to the Vlasov equation by allowing us to select the

diagrams contributing to the solution of the Liouville equation
[41]. We believe that the present approach is more physically
appealing and allows us to assess explicitly the different
relevant contributions to the Vlasov equation.

We consider here a system of identical particles with unit
masses m = 1 and the Hamiltonian in Eq. (1) with Cartesian
coordinates where Vij ≡ V (|ri − rj |) is the pair interaction
potential for particles i and j , ri denotes the position of particle
i, and vi its velocity. Thus in all that follows we have pi = vi .
Formally going from a probability density as a function of the
momenta to one written as a function of the velocities involves
a change of unit, but due to the choice m = 1 both are equal
up to a trivial multiplication by a constant equal to one times
the unit of mass. This equality is considered implicitly were
required. The probability that particle i is in the phase volume
dridvi for i = 1, . . . ,N is written as (we use the notation of
Ref. [16])

fN (1,2, . . . ,N ) d1 d2 · · · dN, (4)

where fN is the N -particle distribution function, and we write
1 for r1,v1, d1 ≡ dr1dv1, 2 for r2,v2, d2 ≡ dr2dv2, and so
on. We impose that fN is a symmetric function with respect
to particle interchange.The s-particle distribution function is
defined by

fs(1, . . . ,s) =
∫

fN (1, . . . ,N) d(s + 1) · · · dN. (5)

For a closed system fN satisfies the Liouville equation:

i
∂fN

∂t
= L̂NfN, (6)

with the Liouville operator given by

L̂N ≡ i {H,} = i

N∑
i=1

{
∂H

∂ri

· ∂

∂vi

− ∂H

∂vi

· ∂

∂ri

}

= L̂0 + δL̂. (7)

Replacing H from Eq. (1) and with our choice of units we
have

L̂0 =
s∑

i=1

vi · ∂

∂ri

,

δL̂ = 1

N

s∑
i �=j=1

∂Vij

∂ri

·
(

∂

∂vi

− ∂

∂vj

)
. (8)

A formal expression for the solution of the Liouville equation
is given by [41]

fN (t) = − 1

2πi

∮
dz e−izt (L̂ − z)−1fN (0) = e−iL̂N tfN (0),

t > 0. (9)

Using iteratively the identity

(L̂ − z)−1 ≡ (L̂0 − z)−1[1 − δL̂(L̂ − z)−1] (10)

results in a series solution of the Liouville equation:

|fN (t)〉 = − 1

2πi

∮
dz e−izt

∞∑
n=0

(L̂0 − z)−1

× [−δL̂(L̂0 − z)−1]n|fN (0)〉, (11)
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where we introduced a Bra-Ket notation for the distribution
function in phase space (see Ref. [16]). At this point it is
important to note that the series expansion in Eq. (11) cannot
be naively truncated at a given order of δL̂, since the latter
is of order N and thence each sum in Eq. (9) contributes a N

factor. Nevertheless different contributions to the infinite series
are grouped according to the diagrammatic representation in
Appendix A. The higher order terms in 1/N can then be
neglected consistently as we proceed to show.

Following the original approach by Balescu [42], we
introduce the Fourier transform of the spatial dependence of
fs (the velocity dependence is left untouched) in d spatial
dimensions, and the corresponding inverse transform:

ak1,...,ks
(v1, . . . ,vs ,t)

=
∫

fs(1, . . . ,s,t) exp

⎛
⎝i

s∑
j=1

kj · rj

⎞
⎠ dr1 · · · drs ,

fs(1, . . . ,s,t)

= 1

[(2π )d ]s

∫
ak1,...,ks

(v1, . . . ,vs)

× exp

⎛
⎝−i

s∑
j=1

kj · rj

⎞
⎠ dk1 · · · dks , (12)

or equivalently

|fs〉 =
∑

k1,...,ks

ak1,...,ks
(v1, . . . ,vs ,t)|k1, . . . ,ks〉,

ak1,...,ks
(v1, . . . ,vs ,t) = 〈k1, . . . ,ks |fs〉. (13)

For some systems, as the ring model or the HMF model
[14,15,38], the configuration space is periodic, and the Fourier
transform is replaced by a Fourier series. By integrating
Eq. (12) over particles 2 through N the only remaining
contributions are those with at most one nonvanishing wave
vector:

f1(r,v) = a0(v,t) +
∫

ak(v,t)e−ik·r dk, (14)

where we used the identity∫
eik·r dr = (2π )dδ(k), (15)

with δ(k) the d-dimensional Dirac delta function. Therefore
only the time evolution of coefficients with one or no
nonvanishing wave vectors must be determined in order to
obtain a kinetic equation. We explicitly obtain all diagrams
contributing to the leading order in 1/N as follows. First, any
possible diagram contributing to a0 must start with a vertex of
type C (see Fig. 16 in Appendix A), and it would necessarily act
on the right on a Fourier coefficient describing a correlation,
which is at most of order N−1. Since we already have a N−1

factor from the vertex, for such a diagram to be independent
of N we should sum over two particles (each sum contributing
a factor N ), but this would lead to vanishing surface terms.
Therefore the diagram is at most of order 1/N . Following
this reasoning, adding more vertices to the diagram cannot
result in a diagram independent of N . As a consequence

i1

i2
i2

i1 i3

i3

i4

i5

i4

i6

i7

FIG. 1. Example of diagram occurring in Eq. (A4) contributing
to the Fourier coefficient ak.

a0 is constant in time up to this order. Similarly, the only
nonvanishing contributions to ak are diagrams formed by any
combination of vertices of type D and F (Fig. 1 shows an
example of such diagrams). All N dependencies are taken into
account by considering the Kac factor 1/N in each vertex and
a N factor for each sum over a particle index.

All diagrams contributing to ak are put into two classes:
those beginning at left with vertex F (class F) and those
beginning with a vertex D (class D). Removing the first vertex
F on the left in class F results in diagrams contributing to
ak(vj ,t), and similarly removing the first vertex D on the left
in class D gives those contributions to ak′ (vα,t)ak−k′(vj ,t).
Thence the formal solution has the following general structure:

ak(vα,t) = − 1

2πi

∮
e−izt 1

i (k · vα − z)

×
⎡
⎣ak(0) − i

N

∑
j

Vk k · ∂αj Fk

− i

N

∑
j

∫
V|k−k′|(k − k′)∂αjDk′,k−k′ dk′

⎤
⎦ dz,

(16)

where Dk′,k−k′ and Fk represent the contributions from
class D and F above after removing the first vertex at its
left in each diagram, respectively, and ∂ij = ∂/∂vi − ∂/∂vj .
Differentiating both sides with respect to time introduces
a factor −iz = i(k · vα − z) − ik · vα in the integrand, and
yields after some manipulations:

∂

∂t
ak(vα,t)

= −ik · vα ak(vα,t) + Vk ik · ∂

∂vα

∫
ak(v′,t) dv′

+ ∂

∂vα

·
∫

dk
∫

dv′ iV|k − k′|(k − k′)ak′(vα,t)ak−k′ (v′,t).

(17)

Using Eq. (14) and the results in Appendix A we finally obtain
(after dropping out the index α):

∂

∂t
f (r,v; t) = −v · ∂

∂r
f (r,v; t) + ∂

∂v
f (r,v; t) · ∂

∂r

×
∫

dr′dv′ V (|r − r′|)f (r′,v′; t), (18)
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(a)     (b)

a

b

i
j

i’

j’

a

b

a

i
i

i’

j’

a a

b

FIG. 2. Examples of diagram contributing to the coefficient akα,kβ
.

where for simplicity we dropped the index in f1 ≡ f .
Equation (18) is the desired form for the Vlasov equation. It can
also be obtained in the same way for a system of nonidentical
self-gravitating particles as explained in Appendix B. In the
next section we discuss how to consider the contributions of
correlation (possibly) present in the initial state.

A. Order of magnitude of the correlations in N

Due to the linearity of the Liouville equation (6) and the
linear dependence of fN on the Fourier coefficients a{k}(v,t) in
Eq. (12) the order of magnitude of correlations for the initial
distributions is kept constant by the time evolution. Therefore,
if all correlations in the system are dynamically created, they
are expected to have the same dependency on N as in the
final state, i.e., the thermodynamical equilibrium (this point is
discussed at length in Refs. [41,42]). It was shown in Ref. [40]
that the microcanonical equilibrium distribution factorizes up
to terms of order N−1:

f
eq
N (1, . . . ,N) =

N∏
i=1

f
eq
1 (ri ,vi) + O

(
1

N

)
. (19)

The Fourier transform of the factorized equilibrium distribu-
tion function leads to

a
eq
k1,...,kN

(v1, . . . ,vN ) =
N∏

i=1

a
eq
1,ki

(vi) + O

(
1

N

)
. (20)

Therefore we assume that the correlation pattern a[k1,...,kl ] in
Eq. (A1) is at least one order of magnitude less than the purely
factored term ak1ak2 · · · akl

. Figure 2 shows two examples of
different contributions to the coefficient akα,kβ

with diagrams
composed of four vertices of type A, B, C, and D contributing
with a factor N−4. From property 4 in Appendix A2, we see
that in Fig. 2(a) either j ′ = α or j ′ = β in order to yield a
nonvanishing contribution, and three summations over particle
indices: i, j and i ′, contributing with a factor N3. The diagram
is thus of order N−1. A similar analysis for the diagram in
Fig. 2(b) implies that it is independent of N (four vertices
and four particle indices). Therefore in Fig. 2 diagram (a) is
negligible while (b) must be retained. Diagram (a) creates
a correlation among particles α and β while diagram (b)
does not.

From these examples it is straightforward to see that only
a succession of vertices of type D and F contributes to any

reduced distribution function fs , and therefore cannot create
any correlations among particles 1 through s. This proves that
the factorization of the distribution functions is maintained by
the dynamics up to terms of order N−1. More importantly,
this result implies that, provided all correlations are created
solely by the dynamics, the one-particle distribution function
at any stage of the time evolution can be used as the initial
condition for the Vlasov equation. Then from this new starting
point slowly deviates from the finite N dynamics due to the
cumulative secular effects of lower order collisional terms.

III. CONVERGENCE TO THE VLASOV LIMIT
FOR SOME REPRESENTATIVE MODELS

In order to show how different interaction potentials lead to
different convergence speed to the Vlasov (mean-field) dynam-
ics we consider three different one-dimensional models with
long-range interactions extensively studied in the literature:
the Hamiltonian mean field model (HMF), with Hamiltonian
[45]:

H = 1

2

N∑
i=1

p2
i + 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (21)

where θi is the position angle of particle i and pi its conjugate
momentum, the ring model [14]:

H = 1

2

N∑
i=1

p2
i − 1

2N

N∑
i,j=1

1√
2
√

1 − cos(θi − θj ) + ε
, (22)

where ε is a softening parameter introduced to avoid the zero
distance divergence in the pair interaction potential, and the
infinite sheet model in three dimensions, describing N infinite
planes with constant mass density and moving only along the
x axis [39]:

H = 1

2

N∑
i=1

p2
i + 1

2N

N∑
i,j=1

|xi − xj |, (23)

where xi is ith particle coordinate. The Hamiltonian in
Eq. (23) describes an effective one-dimensional model. We
also consider a two-dimensional system with N identical
particles with unit mass and unit gravitational constant with
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Hamiltonian [8]:

H = 1

2

N∑
i=1

p2
i + 1

2N

N∑
i,j=1

log(|rij | + ε), (24)

where rij is the vector from particle i to particle j and ε a
softening parameter. The so-called Kac factor N−1 is again
introduced with a change of time units (see Ref. [46] for a
discussion of its interpretation and formal results valid for
self-gravitating systems).

All simulations for the one-dimensional models were
performed starting from a water-bag initial condition defined
by

f0(p,θ )

=
{

1/(2p0 θ0), if −p0 < p < p 0 and 0 < θ < θ0,
0, otherwise,

(25)

for the HMF and ring models, and

f0(p,x)

=
{

1/(4p0 x0), if −p0 < p < p0 and −x0 <x <x0,
0, otherwise,

(26)

for the sheets model. Values chosen for p0, θ0 and x0 are
indicated in the respective figure captions. For the two-
dimensional self-gravitating systems the initial distribution
is given by all particles at rest and uniformly distributed
in a circular shell of inner and outer radius R1 and R2,
respectively, and commonly used in astrophysical simulations
[47]. Molecular dynamics (MD) simulations were performed
using a fourth-order simplectic integrator [48,49] for the HMF
and ring models and an event-driven algorithm for the sheets
model [50]. Time steps for simplectic integration are also
indicated in the figure captions. All Vlasov simulations are
performed using the approach described in Ref. [51] with a
numerical grid with 4096 × 4096 points in the p,θ or p,x

one-particle phase space. The force on particle i for the HMF
model can be written as

Fi = My cos θi − Mx sin θi, (27)

where the “magnetizations” components are given by

Mx = 1

N

N∑
i=1

cos θi, My = 1

N

N∑
i=1

sin θi . (28)

Since there are N forces to compute and the numerical effort
to compute the magnetization components scales with N , the
overall simulation time for MD simulations also scales with
N , and thence simulations with a great number of particles
are feasible. Figure 3 shows the kinetic energy for the HMF
model obtained from the solution of the Vlasov equation and
MD simulations with some different values of N , with a very
good agreement already for N = 10 000 up to t ≈ 20.0. The
time interval for which finite N and Vlasov solutions agree
increases with N , as expected. Simulations for the ring model
are shown in Fig. 4 for some values of the softening parameter
ε. Convergence toward the Vlasov values for the kinetic energy

0

0.1

0.2

0.3

0.4

t

K

0 20 40 60 80 100 120 140

Vlasov
MD N=10000
MD N=1
MD N

000
=10

000
000 000

FIG. 3. (Color online) Kinetic energy for Vlasov and MD simu-
lations for the HMF model as a function of time. Initial conditions
as given in Eq. (25) with p0 = 0.25 and θ0 = 4.0. Time steps are
	t = 0.01 for Vlasov simulation and 	t = 0.1 for MD simulations.

gets clearly slower for smaller ε, as the interaction gets stronger
at short distances where collisional effects are more important.
For the self-gravitating sheets model, an increasing agreement
with increasing N is also obtained as given in Fig. 5.

Although the results obtained here are qualitative, they point
to the fact that the convergence to a mean-field description
is thus strongly affected by the values of the force at short
distance. The stronger that the latter the more important are
the collisional effects, and the smaller is the agreement time
window of the Vlasov equation with the finite N dynamics.

IV. EVOLUTION OF INTERPARTICLE
CORRELATIONS WITH TIME

Even though the Vlasov equation can be deduced from the
BBGKY hierarchy by imposing uncorrelated particles, i.e.,
a fully factored N -particle distribution function, the results
in Sec. II stress the fact that the order of magnitude of the
correlations are preserved by the dynamics and, provided all
interparticle correlations are dynamically created (see also
Ref. [42]), that the Vlasov equation is valid at any stage
of the evolution with an error of order 1/N by considering
the one-particle distribution function at this given time as the
initial condition for the Vlasov equation. From this point on, its
solution will secularly deviate from the distribution function
for finite N due to collisional terms of order 1/N or lower
(see Sec. V). In order to illustrate this point, let us consider the
HMF model with a homogeneous (water bag) initial condition.
To measure interparticle correlations we remember that the
central limit theorem states that the distribution of a sum of n

identical uncorrelated random variables xi of the form

X(n) =
n∑

i=1

xi (29)

converges to a Gaussian distribution in the n → ∞ limit. A
simple and straightforward measure (among others) of the
deviation from the distribution of X(n) to a Gaussian is given
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t

K
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K
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K

t
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MD N=1000
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MD N=100
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(c) (d)

0.3

0.25

0.2

0.15

0.1

0.05

0

Vlasov
MD N=1000
MD N=10
MD N=100

000
000

Vlasov
MD N=1000
MD N=10
MD N=100

000
000

Vlasov
MD N=1000
MD N=10
MD N=100

000
000

FIG. 4. (Color online) Kinetic energy for Vlasov and MD simulations for the ring model with ε = 10−1 (a), ε = 10−2 (b), ε = 10−3 (c),
ε = 10−4 (d). The initial condition is a water-bag state with p0 = 0.25 and θ0 = 1.0. Time steps for Vlasov and MD simulations are 	t = 10−3.

by its kurtosis:

K =
〈

(X(n) − 〈X(n)〉)4

σ 4
X

〉
, (30)

where 〈· · · 〉 define the ensemble average and σX the standard
deviation of X(n). For all Gaussian distributions the kurtosis as
defined in Eq. (30) has the value K = 3 and is very sensitive
to any deviation from the Gaussian and converges to this value
as 1/n for uncorrelated identical variables. For a correlated
variable the distribution either does not converge to a Gaussian
(and therefore a different value for the Kurtosis) or converges
very slowly, requiring that one sum a very large number n

of random variables to approach a Gaussian distribution (see
Ref. [52] and references therein). This method is particularly

useful as the corresponding computer implementation scales
with the number of elements in the realization instead to its
square as for other correlation measures. This is particularly
important here to not spoil the optimizations in simulations for
the HMF model (that scale linearly with N ). For a realization
with a finite number of random numbers drawn from a uniform
distribution the kurtosis will fluctuate around the exact value
K = 3. The greater the realization, the closest it will be to this
value. As an illustration of this point the kurtosis for 100 and
10 000 realizations of the sum of M = 256 random numbers
obtained from a good random number generator [43] as a
function of n is shown in Fig. 6. Note that fluctuations around
the Gaussian value are always present for a finite realization
and decrease with increasing number of realizations Nr . In
what follows the value of Nr is limited for a given number N

t

K

Vlasov(a) (b)
0.25

0.2

0.15

0.1
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FIG. 5. (Color online) (a) Kinetic energy for Vlasov and MD simulations for the self-gravitating sheets model with Hamiltonian in Eq. (23).
(b) A zoom over a region where the MD simulation deviates significantly from the Vlasov solution.
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FIG. 6. (Color online) Kurtosis for a sum of M (uncorrelated)
random number variables for 1 � M � 256, with Nr = 100 and
Nr = 10 000 realizations.

of particles to Nr = N/256. In the results below we always
use the value M = 256 for computational convenience.

In this way we measure interparticle correlations by
partitioning the set of all N particles into N/M groups with M

particles each (we suppose N is divisible by M or just discard
the data for the few remaining particles). Then we define the
variables for k = 1, . . . ,Nr = N/M:

yk =
M∑
i=1

θ(k−1)M+i ,

(31)

zk =
M∑
i=1

p(k−1)M+i ,

and the reduced variables

ỹk = (yk − 〈y〉) /σy,
(32)

z̃k = (zk − 〈z〉) /σz,

where 〈· · · 〉 stands for the statistical average and σy and
σz are the standard deviations of y and z, respectively. If
particles are uncorrelated the central limit theorem states that
the distribution of yk and zk tends rapidly to a Gaussian
with increasing M . Figure 7 shows the kinetic and potential
energies per particle for a simulation of the HMF model with
N = 262 144 particles and a homogeneous initial water-bag
state with total energy per particle E = 0.5879, such that the
initial state is stable but close to the instability threshold (see
Sec. V). The crossover from the homogeneous water-bag state
to the final thermodynamical equilibrium is clearly visible.
Figure 8 shows the kurtosis Kp and Kθ for the variables
ỹ and z̃ with M = 256 along the time evolution including
the destabilization of the water-bag state for some increasing
values of N . Both kurtoses tend to the exact Gaussian value
at all instants of times as N increases, for two reasons: first,
correlations among particles become increasingly small as the
mean-field description becomes closer to the true dynamics,
and second, the number of realization Nr of the summed
variables also increases. A more pronounced variation is seen
in the initial stage of the evolution corresponding to the violent
relaxation [44], but even there it tends to the Gaussian values
as N increases.

t

K
V0.5

0.4

0.3

0.2

0.1

0
0 105 2 x105

FIG. 7. (Color online) Kinetic K and potential V energies per
particles for the HMF model with N = 262 144 particles water-bag
initial condition with p0 = 0.726 and θ0 = 2π , corresponding to
zero initial magnetization and total energy per particle E = 0.5879,
	t = 0.5.

Figure 9 shows the same kurtosis Kp and Kθ but for a
much longer simulation time for N = 100 000 such that the
final equilibrium state is attained at the end of the simulation.
As expected some deviations from the value corresponding
to uncorrelated particles is observed, but with a constant
amplitude indicating that once interparticle correlations are
created, their order of magnitude is conserved during all of the
time evolution, in accordance with the analytical analysis in
Sec. II. Indeed, Kp and Kθ oscillate around the value 3 for all
times.

Following the same reasoning we present now simulations
for the two-dimensional self-gravitating system with Hamil-
tonian given in Eq. (24). Figure 10 shows the time evolution
of potential and kinetic energies with N = 16 384 particles,
R1 = 1.0, R2 = 1.5, ε = 10−4, and all particles initially at
rest. The violent relaxation is clearly visible, with the final
state close to the Gaussian equilibrium. Figure 11 shows the
kurtosis Kr and Kv of the corresponding reduced variables in
Eq. (32) for the x components of the position r and velocity v,
respectively, with M = 256 for N = 16 384 and N = 131 072.
Again correlations are created, but the amplitude of oscillation
ofKv andKr is essentially the same all along the time evolution
and decreases as N increases, again in agreement with the
statement in Sec. II that interparticle correlations maintain
their order of magnitude with N .

V. QUASISTATIONARY STATES
AND VLASOV INSTABILITY

Quasistationary states of the N -particle dynamics of long-
range interacting systems are now identified with stable
stationary solutions of the Vlasov dynamics [2] with a finite
lifetime due to the loss of stability of the solution of the Vlasov
equation from the slow secular evolution of the one-particle
distribution function. Indeed, as at any considered time the
Vlasov equation gives an accurate description of the dynamics
up to terms of order N−1 (provided all interparticle correlations
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FIG. 8. Kurtosis for the variables in Eq. (32) for the HMF model corresponding to the same initial condition as in Fig. 7. (a), (c), and (e)
kurtosis Kp for the sum of momenta variables for N = 100 000, N = 1 000 000, and N = 10 000 000, respectively. (b), (d), and (e) kurtosis
Kθ for the sum of position variables corresponding to the panels at its left. The value M = 256 is used in Eq. (31) for all cases.

are dynamically generated), it is valid to consider as an initial
condition for the Vlasov equation the distribution at any given
time, and therefore the stability of the slowly varying state

is dictated by the Vlasov equation. In Ref. [33] it was shown
for the HMF model that a homogeneous QSS with one-particle
momentum distribution function f (p) is stable if the following
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1

0
0 107

K

t 2x107

6

5

4

3

2

1

0
0 107

FIG. 9. (Color online) Kurtosis for the variables in Eq. (32) for the HMF model and corresponding to the same initial condition as in in
Fig. 7 with N = 100 000 and M = 256 but for a total simulation time tf = 2.0 × 107 such that the system is at thermodynamic equilibrium at
the end of the simulation. (a) Kurtosis for the sum of momenta variables. (b) Kurtosis for the sum of position variables. The dashed line is used
for reference and is set at the Gaussian value K = 3.

032116-8



DYNAMICS AND PHYSICAL INTERPRETATION OF . . . PHYSICAL REVIEW E 89, 032116 (2014)

K
V

t

3

2

1

0

-1

-2

-3
0 20 40 60 80 100

FIG. 10. (Color online) Kinetic (K) and potential (V) energies
per particle for as a function of time for the two-dimensional self-
gravitating system with N = 131 072 particles, R1 = 1.0, R2 = 1.5,
and ε = 10−4 with all particles initially at rest.

condition is satisfied:

I [f ] ≡ 1 + 1

2

∫ ∞

−∞

f ′(p)

p
dp > 0. (33)

From the considerations above, the lifetime of a homogeneous
QSS is given by the value of time at which I [f ] becomes
negative, as a result of the cumulative effects of collisions
(graininess), irrespective of the presence of any correlations
created from collisions or the time elapsed since the (uncor-
related) initial state. This is illustrated in a simulation with
N = 10 000 000 particles in Fig. 12. The time value at which
the QSS looses its stability is also precisely the moment at
which I [f ] in Eq. (33) becomes negative.

t
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V
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0.4
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0
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0 1000 2000 3000 4000 5000

I[f]

FIG. 12. (Color online) Kinetic and potential energies and stabil-
ity parameter I [f ] as defined in Eq. 33, for a homogeneous water-bag
initial distribution, p0 = 0.355 and N = 10 000 000.

Even though the QSS has a finite lifetime due to small
collisional terms, the state after the loss of stability can still be
used as an initial condition for the Vlasov equation to describe
the time evolution of the system for another finite time span.
As an example we consider a MD simulation with the same
initial condition as in Fig. 12 but with N = 1 048 576 particles
and stopped just after the loss of stability of the QSS. Then the
one-particle distribution function is determined from simulated
data and used as the initial state for a Vlasov simulation. The
left panel in Fig. 13 shows the results for the kinetic energy
for both Vlasov and MD simulations starting from this same
initial state, and both agree quite well.

For finite N a QSS is continually changing with time due
to the cumulative effects of collisions. A lifetime can be
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FIG. 11. Kurtosis for the same initial condition as in Fig. 10 with N = 16 384 for panels (a) Kv and (c) Kr , and 131 072 for panels (b) Kv

and (d) Kr , respectively, and M = 256.

032116-9



T. M. ROCHA FILHO et al. PHYSICAL REVIEW E 89, 032116 (2014)

t

K

MD Simulation
Vlasov Solution

0.3

0.25

0.2

0.15

0.1

200 250 300 350 400

FIG. 13. (Color online) Same as in Fig. 12 but N = 1 048 576
and the Vlasov simulation stating from the distribution function
obtained from the final state of a MD simulation at t = 210. Both
oscillate at almost the same frequency, with a slight shift as time
evolves, and are very close to one another.

meaningfully ascribed only if a given property of the state
changes abruptly, as, for instance, in the case corresponding
to Fig. 12 where the magnetization changes from a vanishing
value associated with a homogeneous state to a nonvanishing
value. Nevertheless this abrupt change or dynamical phase
transition [21] is due to the loss of Vlasov stability of the
homogeneous QSS. These changes do not always occur, and

as an example let us consider the HMF model with a three-level
distribution initial condition given by

f0(p,θ ) =

⎧⎪⎨
⎪⎩

f1 if |p| � p1 and 0 < θ < θ0,

f2 if p1 < |p| < p2 and 0 < θ < θ0,

0 otherwise,

(34)

for p1, p2, f1 and f2 given constants. Figure 14(a) shows
the kinetic and potential energies per particle for a choice of
these constants. The nonhomogeneous state resulting from the
violent relaxation is stable (this is shown if the figure where
increasing values of N lead to slower variation of K and V ), but
effects of collisions are nevertheless pronounced, in such a way
that it is hardly possible to consider this state as quasistationary.
Figure 14(b) shows that the collisional evolution after the
violent relaxation scales with N as expected since in this case
the kinetic equation is given by the Landau or Balescu-Lenard
equations with a collisional integral proportional to N . For
homogeneous states the picture changes as can be seen in
Fig. 14(c). Since the kinetic and potential energies are almost
constant for the time interval considered, the slow secular
evolution of the velocity distribution function is better grasped
by considering its first moments Mk = 〈pk〉. Moments M4

and M6 are shown in Fig. 14(d) with the cumulative effects
of collisions clearly visible. As discussed in the introduction
the Landau and Balescu-Lenard collisional integrals vanish
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FIG. 14. (Color online) (a) Evolution of kinetic K (upper curves) and potential V (lower curves) energies per particle for the three
level initial condition in Eq. (34) with p1 = 0.3, p2 = 1.8, f1 = 0.0454, f2 = 0.165, θ0 = 4.25 corresponding for the values N = 100 000,
N = 200 000, N = 300 000, and N = 400 000. The greater the value of N the greater the time to attain the plateaus in the curves.
(b) Same as (a) but with a rescaling of time t → t/(N × 10−3) as expected for a nonhomogeneous state. (c) Fourth (lower curves) and
sixth (upper curves) moments of the velocity distribution function for a three-level initial condition with p1 = 0.3, p2 = 1.8, f1 = 0.061,
f2 = 0.041, θ0 = 2π and for N = 40 000, N = 60 000, N = 80 000, N = 100 000, and N = 200 000. The greater N the smaller the derivative
of the moments at a given time. (d) Same as (c) but with a time rescaling t/(N/40 000)2. All curves collapse in a single curve for each
moment.
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FIG. 15. (Color online) Left: Kurtosis K = 〈v4
x〉/〈v2

x〉2 of the x component of the velocity distribution function as a function of time for the
two-dimensional self-gravitating system with Hamiltonian in Eq. (24), with a virialized initial condition and a spatially uniform distribution on
a disk with unit radius, for different number of particles. Right: The same as the left panel but with a rescaling of time t → t/(N/10 240).

in the homogeneous states of one-dimensional systems, and
consequently the scaling of the time evolution with N must be
slower than for the inhomogeneous case. Fig. 14(d) shows
the same curves but with a rescaling proportional to N2,
resulting in a data collapse for all curves. This as important
result since it is at variance with the N1.7 and eN scalings
obtained in Refs. [19,20], respectively, but is in agreement with
the same scaling obtained for homogeneous one-dimensional
plasmas in Refs. [36,37]. For inhomogeneous states and higher
dimensional systems this scaling is predicted from well-
established physical theories, such as for the result shown in
Fig. 15 for the two-dimensional self-gravitating system where
a scaling proportional to N is evident, in accordance with the
results in Ref. [53] but at variance with those in Ref. [8].

There are some possibilities to explain those different
scalings in the time evolution for the homogeneous states
of the HMF model. Either the scaling is state dependent
since in our case we considered a three-level initial state,
while in Refs. [19,37] a water-bag and semielliptic initial
distributions were used, respectively. This would imply that the
N dependence of the collisional integral in the still unknown
kinetic equation would vary with the statistical state, which
in the authors’ opinion would be a quite awkward case.
Another possible explanation would be that since the author
of Refs. [19,37] considered only small numbers of particles in
their simulations (20 000 at the most) and much smaller than
the cases considered here, the N1.7 and eN scaling would be
due to the small size of their systems. A separate publication
will thoroughly explore such possibilities and discuss how
to obtain a kinetic equation valid for homogeneous states of
one-dimensional systems [54].

VI. CONCLUDING REMARKS

In order to show how different interaction potentials lead
to different convergence speeds to the Vlasov (mean-field)
dynamics we have considered three different one-dimensional
models with long-range interactions extensively studied in
the literature: the Hamiltonian mean-field model (HMF) and
the self-gravitating ring and self-gravitating sheets models.
All simulations for these models were performed starting

from a water-bag initial condition indicated in Eqs. (25)
and (26). The validity of the mean-field description was
assessed by comparing the results from MD simulations for
different particle numbers to numerical solutions of the Vlasov
equation.

Simulations for the ring model are shown in Fig. 4 for some
values of the softening parameter ε. Convergence towards the
values for the kinetic energy obtained from direct numerical
solutions of the Vlasov equation gets clearly poorer for smaller
values of this parameter, as the interaction gets stronger at
short distances where collisional effects are more important.
For the self-gravitating sheet model, an increasing agreement
with increasing N is also obtained as shown in Fig. 5.
The convergence to a mean-field description is thus strongly
affected by the force at short distances. The stronger the latter,
the more important are the collisional effects, and the smaller
the time window during which the particle dynamics agrees
with the Vlasov equation within small errors of order 1/N .

For sake of completeness and for the present paper to be
self-contained, we discuss in the appendices the derivation
of the Vlasov equation from a resummation of different
contributions of a diagrammatic expansion using the Kac factor
1/N as the relevant small parameter. It is shown that provided
all interparticle correlations are dynamically created, they do
not alter the validity of the Vlasov equation, since their order
of magnitude in N is preserved by the dynamics as seen from
the results and discussion in Secs. II and IV. This means that
deviations from the solution of the Vlasov equation are not
due to an increase in correlations with time, but to the secular
accumulation of small collisional corrections of order 1/N

(see Sec. IV). Again, although correlations are always present,
they contribute to the kinetic equation only at order 1/N (or
lower). The one-particle distribution function at any point of
the evolution can thus be used as the initial condition to solve
the Vlasov equation, which is valid for a given time span
starting at this specific value of time.

We also obtained a scaling proportional to N2 for the
dynamics of a homogeneous state of the HMF model, at
variance with previous results that used a smaller number
of particles than in the present work [19,20]. For a two-
dimensional system we obtained a scaling in agreement with
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Ref. [53] but at variance with Ref. [8]. This is a clear indication
that a more comprehensive study of this problem is still lacking
and is the subject of a separate publication [54].
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APPENDIX A: KINETIC EQUATION FOR LARGE N:
THE VLASOV EQUATION

Here we show that the one-particle distribution function of
long-range interacting systems satisfies the Vlasov equation
for a large number of particles N . The approach chosen
here, i.e., the dynamics of correlations, is fully developed in
Balescu’s monograph [42] (see Ref. [16] for the notations
used in this paper) and essentially follows the same steps
used in the original derivation by Balescu, but instead of
the plasma constant we use here 1/N as a small parameter
for the diagram selection leading to the Vlasov equation.
This is an alternative proof of the validity of the Vlasov
equation for the one-particle reduced distribution function
for long-range interacting systems in the N → ∞ limit. This
approach is succinctly present here, and its extension for self-
gravitating systems of nonidentical particles is discussed in
Appendix B.

1. Formal solution of the Liouville equation

A generic Fourier coefficient as defined in Eq. (12) can be
decomposed as

ak1,...,kl
= ak1ak2 · · · akl

+ a[k1,...,kl ], (A1)

as a sum of a completely factored part and a pure correlation
represented by a[k1,...,kl ]. The completeness relation for the
Fourier basis is given by

1

2πdN

∫
exp

⎛
⎝−i

N∑
j=1

kj · rj

⎞
⎠ exp

⎛
⎝i

N∑
j=1

kj · r′
j

⎞
⎠

= δ

⎡
⎣ N∑

j=1

(rk − r′
j )

⎤
⎦ , (A2)

or equivalently in the more concise Bra-Ket notation:∫
|{k}〉〈{k}| dNk = 1̂, (A3)

where {k} ≡ k1, . . . ,kN . Using Eq. (11) we obtain

a{k}(v,t) = 〈{k}|fN (t)〉

= − 1

2πi

∮
dz e−izt

[
Rk(z) δKr ({k − k′})

−Rk(z) 〈{k}|δL̂|{k′}〉 Rk′(z)

+
∑
{k′′}

Rk(z)〈{k}|δL̂|{k′′}〉 Rk′′(z)

×〈{k′′}|δL̂|{k′}〉 Rk′(z) + · · · ] a{k′}(v,0),

(A4)

with

Rk(z) = i

⎡
⎣z −

N∑
j=1

kj · vj

⎤
⎦

−1

, (A5)

〈{k}|δL̂|{k′}〉 =
∑
j<l

δLjl({k},{k′}),

δLjl({k},{k′}) = − i

N
V|kj −k′

j |(kj − k′
j ) ∂jlδ(kj + kl

− k′
j − k′

l)
∏

m�=j,l

δKr (km − k′
m), (A6)

where δKr ({k}) = ∏
j δKr (kj ), δKr (0) = 1, δKr (k �= 0) = 0

and the Fourier transform of the potential given by

Vk =
∫

V (r)eik·r dr. (A7)

Note that Vk depends only on k = |k| for a central potential.

2. Diagrammatic representation

Each term in the expansion (A4) can be represented by a
diagram according to the following rules:

(1) For each element Rk(z) we associate a set of lines
going from right to left. The number of lines are the same as
the number of nonvanishing wave vectors in the set {k};

(2) Each line has an index that represents the particle
associated to the wave vector.

(3) To each term δLij ({k},{k′}) we associate a vertex, with
in and out lines concurrent with those with index i and n in the
set {k} (if exists) and one of lines with index j and n in the set
{k′} (if exists).

(4) When considering the contribution to the reduced
distribution fs , for each vertex at least one of its two particles
index must belong to the set {1, . . . ,s} or appear at a line at its
left.

Rule 4 comes from the presence of the operator ∂ij in the
definition of δL in Eq. (A6), leading to a vanishing surface
term if this rule is not satisfied.

From Eq. (A6) the wave vectors change only two by two
such that k1 + k2 = k′

1 + k′
2. In this way there are six possible

vertices as shown in Fig. 16. To each line to the left and to the

A B C

D E F

FIG. 16. Different vertices representing the interaction term in
Eq. (A6).
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right of a vertex we associate a particle index. Some examples
of diagrams are given in Fig. 2.

In the arguments of a Fourier coefficient we write explicitly
only the velocities of those particles with a nonvanishing wave
vector, and for the Fourier coefficient of s-particle distribution
functions a vanishing wave vector for a given particle implies
an integration over the coordinates (but not the velocities) of
this particle.

APPENDIX B: SYSTEMS WITH NONIDENTICAL
PARTICLES: SELF-GRAVITATING SYSTEMS

For nonidentical particles the N -particle distribution func-
tion fN is not symmetric, and the above approach cannot be
used as such. Let us consider now a subset of s particles
denoted by {ik} ≡ {i1, . . . ,is}, with each ik different from the
other particle indices in the set and ranging from 1 to N . The
s-particle distribution function for the set {ik} is defined by

fs({ik}) ≡ fs(i1, . . . ,is) =
∫

fN (1, . . . ,N) dj1 · · · djN−s ,

(B1)

where {jl} is the set of particle indices from the N -particle
set not contained in {ik}. By integrating both sides of Eq. (6)
over the coordinates and momenta of particles in {jl}, and
discarding surface terms, we obtain[

∂

∂t
− L̂s

]
fs({ik})

=
s∑

k=1

N−s∑
l=1

∂

∂pik

·
∫

∂Vikjl

∂rik

fs+1({ik},jl) djl, (B2)

where L̂s is the Liouville operator for the s-particle subsystem
and fs+1({ik},jl) stands for fs+1(i1, . . . ,is,jl). At this point it is
important to notice that since we are considering the possibility
of a system with different masses, the reduced functions as
defined by Eq. (B1) are not symmetric by permutation of
two particles and Eq. (B2) is the final form of the BBGKY
hierarchy.

For a self-gravitating system of particles with different
masses, the potential energy is written as

Vij = V (|ri − rj |) = −Gmimj

ri − rj

|ri − rj |3 ≡ mimjh(ri − rj ),

(B3)

where h(ri − rj ) is the force between two particles of unit
mass at positions ri and rj . This particular form can be used
to further simplify the hierarchy in Eq. (B2). To illustrate how
to proceed we consider the case s = 1. We first define the
one-particle mass density in phase space:

F1(r,p) =
N∑

i=1

mif
(i)
1 (r,p), (B4)

where f
(i)
1 (r,p) is given by f1(ri ,pi) computed at ri = r and

pi = p. Similarly we define

F2(r,p,r′,p′) =
N∑

i �=j=1

mimjf2(i,j )

∣∣∣∣∣∣
i=r,p,:j=r′,p′

, (B5)

which as defined is symmetric by permutation of r,p and
r′,p′. Using Eq. (B2) for s = 1 and Eqs. (B4) and (B5), it is
straightforward to show that[

∂

∂t
+ v · ∂

∂r

]
F1(r,p)

= − ∂

∂v
·
∫

h(r − r′)F2(r,p,r′,p′) dr dp. (B6)

A similar simplification is not possible for s � 3 due to
the operator L̂s in the left-hand side of Eq. (B2). From
the discussion above on identical particles, it is reasonable
to suppose that correlations between particles are of order
N−1 and therefore negligible for large N . For a system of
self-gravitating identical particles this statement can be proved
using the diagrammatic method along the same lines as for a
plasma [42].
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