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Improved predictions of rare events using the Crooks fluctuation theorem
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This article explores the applicability of concepts from nonequilibrium thermodynamics to rare event
prediction. The Crooks fluctuation theorem is an equality constraint on the probability distribution of a
thermodynamical observable. We consider as a prediction target the exceedance of a threshold of such an
observable, where the magnitude of the threshold modulates the rareness of the event. A probability forecast is
constructed for this event based on a small observational data set. A simple method is proposed that exploits the
Crooks fluctuation theorem to estimate this probability. It is shown that this estimator has improved predictive
skill compared to the relative frequency of exceedance in the data set. We quantify this improvement in two
examples, and study its dependence on the threshold magnitude and sample size in different systems. Further
improvements are achieved by combining the Crooks estimator with the frequency estimator.
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I. INTRODUCTION

A. Motivation

Our highly structured and interconnected civilization is
quite vulnerable to a large diversity of rare but extreme
events. Weather extremes are the most evident threat, but
also earthquakes and other geophysical hazards have a much
bigger impact on human life when taking place in a large city
than when taking place in the sparsely populated countryside.
In addition, communication networks [1], traffic networks,
and the power grid [2] are such that local failure might have
long range and hence large scale effect. For a cost efficient
protection against natural hazards or other types of extreme
events, a precise knowledge of their frequency of occurrence as
a function of the magnitude of an event is needed. For example,
U. S. and German flood protection plans only consider events
up to magnitudes which occur at least once per 100 years on
average, so-called 100-year-floods [3]. In other terminology,
such a flood has a chance of 1% to occur within a given year
and is called to have a return level or return period of 100
years. While it is a political and societal issue to decide which
such return level is tolerable, it is a scientific issue to determine
the return levels, i.e., the average recurrence time, as a function
of the magnitude of a given event class.

It is evident that really extreme events are rare; they are in
the tail of the distribution. Hence, the average recurrence time
of events larger than a certain threshold τ is the inverse of
the weight of the tail of the underlying magnitude distribution
integrated over magnitudes larger than τ . Since data samples
are finite and most often small (not many really extreme events
have taken place within the observation period), it is a chal-
lenge to precisely estimate the weight of the tail of the underly-
ing distribution. Furthermore, in the context of climate change
there are hints that the frequency of extreme weather conditions
might increase [4]. A statistical verification of this requires
one to consider data on finite time windows (e.g., 10 years)
in order to prove a time dependence. In this case, the data
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set for estimation of the tail weight is small by construction.
In summary, the estimation of tail weights from finite data
samples is a relevant and widespread task. This paper explores
a method to improve such estimates from small data samples.

B. From observations to probabilistic predictions

Here, we rephrase the issue of rare events from the point of
view of predictions. One of the goals of statistical data analysis
is to make predictions of future observations of a physical
system. If the future event is uncertain, this uncertainty should
be reflected by the forecast. Uncertainty in the future can arise
due to inherent randomness (such as thermal noise), limited
observability of initial states and unknown parameters (such as
in weather and climate forecasting), or simply due to a limited
availability of observation data. The probabilistic calculus is
useful in this case because it makes possible the quantification
of uncertainty. Consider the simple case where a limited
number of independent observations of the system of interest is
available. A simple prediction problem would be the question:
“Will the next observation exceed the value τ?” If the event is
uncertain, such a prediction will take the form of a probability.
If past observations are available, a simple unbiased estimator
of the exceedance probability is k/N , where k is the number
of observed exceedance events among the total of N available
observations. Hence, observations from the tail of a probability
distribution are converted into a probabilistic forecast.

C. Fluctuation theorems

There are cases where not only past observations of the
system of interest are available, but also physical constraints.
The Crooks fluctuation theorem [5] is a particular example,
which relates two probability distributions pf (W ) and pb(W )
of a thermodynamical observable W . The distribution pf (W )
is obtained by driving the system out of equilibrium by
applying a certain protocol, and pb(W ) is obtained under the
reverse protocol. The Crooks theorem is usually stated as

pf (W )

pb(−W )
= eβ(W−�F ), (1)

1539-3755/2014/89(3)/032112(11) 032112-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.032112


JULIA GUNDERMANN, STEFAN SIEGERT, AND HOLGER KANTZ PHYSICAL REVIEW E 89, 032112 (2014)

where W is some mechanical work to be performed on the sys-
tem, �F is the free energy difference between the initial and
final macrostates, and β = 1/kBT is the inverse temperature.
There are examples where pf (W ) = pb(W ) =: p(W ). Since
Crooks fluctuation theorem is a constraint on the probability
distribution of the observable W , all probabilistic predictions
about W (such as exceedance events) should be compatible
with it. We will show that this relation offers a different
method to estimate the tail weight of probability distributions.
The Crooks relation and its usage will be discussed in
Sec. II. While the original setting of Crooks, nonequilibrium
thermodynamics, is quite far from our practical data analysis
problem, we could recently show that the Crooks relation
also holds for a process on a two-dimensional turbulent fluid
flow [6], which offers potential for a broader applicability of
this concept.

D. Evaluating probabilistic predictions

A provider or user of a probabilistic prediction f will be
interested in the quality of the forecast [7]. Such a quality
assessment should involve a comparison of the prediction f

and the actually observed event O, where the occurrence (and
nonoccurrence) of the event is coded by O = 1 (and O = 0).
Proper scoring rules are a useful tool for this purpose because
they encourage forecasters to communicate their probability
assessments honestly, and because they reward desirable
properties of probability forecasts, namely, calibration and
sharpness [8]. Arguably the most prominent example of proper
scoring rules for binary events is the (half) Brier score [9].
We will employ this score to demonstrate the superiority
of the Crooks estimate over the direct estimate k/N for the
probability of exceedance events. We will introduce the Brier
score, and concepts derived from it, in Sec. III.

E. Present study

We consider the problem of predicting the exceedance of a
threshold for a variable whose distribution obeys the Crooks
relation and for which a small number N of independent
observations is available. We propose a simple method to
translate the available data and knowledge about Crooks
relation into an exceedance probability. The Brier score is
used to compare this prediction to predictions that only use
the observed data, but also to another benchmark. We present
analytical results for the performance of the Crooks estimator
and illustrate them for Gaussian distributed random variables.
We apply the very same concept to numerically generated data
of hydrodynamic flow, where the observable relates to the
change of kinetic energy in a transformed two-dimensional
fluid field. The corresponding distribution satisfies the Crooks
relation, but is not given in closed form. The performance of
the Crooks estimator will be determined numerically. Both
examples will be elaborated in Sec. IV. The article concludes
with a discussion in Sec. V.

F. Terminology

We make frequent use of the words forecast and estimator.
Since we want to perform forecasts on sequences of indepen-
dent events, the predicted probability is unconditioned. Hence,

the forecast problem is identical to the estimation problem of
the tail weight of a probability distribution. We can therefore
either discuss the performance in terms of skill scores of
probability forecasts, or in terms of properties of statistical
estimators such as bias, consistency, and variance. The terms
forecast and prediction are used interchangeably.

II. GENERAL IDEA

Fluctuation relations are a subject of statistical physics and
give deeper insight into systems in a nonequilibrium state
[10–15]. They are equalities characterizing the distributions
of thermodynamic variables, e.g., work or entropy production.
The Crooks relation [5], which is of interest here, is a statement
about the distribution of the work pf (W ), which is performed
on a system when it is pushed out of equilibrium by changing
an external parameter L. This parameter could be, for example,
the position of the piston pushed into a volume filled with gas.
The probability can be related to the one of the corresponding
backward process pb(W ) (pulling the piston outwards) through
parameters given by the initial (equilibrium) state of the
system, i.e., inverse temperature β and free energy difference
�F of initial and final states. This relation is called the Crooks
fluctuation theorem and is given by Eq. (1). It was tested and
verified for a number of systems experimentally, e.g., [16–20],
which demonstrates its diverse applicability.

There are examples where the forward and backward
distributions collapse into the same distribution and the free
energy difference is zero. This is the case, for instance, if
the process is a thermodynamic cycle and symmetric under
time reversal. In the example we will present in Sec. IV B, the
equilibrium distribution of the final state is symmetric to that
of the initial state. The distribution of work in the forward and
backward process is then the same, p(W ), which leads to the
following relation:

p(W )

p(−W )
= e+βW . (2)

Here, we want to address the question of how the fact that
such a relation holds for a random observable can be used to
improve forecasts of this observable. To be precise: Given a
set of training data (i.e., N independent observations of W )
and the knowledge that they are drawn from a distribution
which satisfies the Crooks relation with a known β, we want
to estimate the probability of observing a value W < τ . We
can predict this by using two different forecasts:

(1) We count the number k of how often in our sample
Wi < τ . We call this approach, which is easy to implement and
needs no further information, the Basis forecast. Its prediction
is

fB = k

N
. (3)

(2) We use the knowledge that p(W ) satisfies Eq. (2). One
can show analytically

P (W < τ ) =
∫ ∞

−τ

dW p(W )e−βW

= E[e−βW�(W + τ )]. (4)
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FIG. 1. (Color online) Histogram of data sampled from a distri-
bution, which satisfies the Crooks relation with itself. One may ask
for the probability of W to be below −1. This can be approximated
by counting over the bins left of this threshold (in green). We call this
the Basis forecast [Eq. (3)]. Alternatively, applying the knowledge
about the Crooks relation, one can use the Crooks forecast [Eq. (5)],
and approximate the probability on the basis of the red-marked part
of the distribution. The values contributing to the Basis forecast (in
green, striped top left to bottom right) and the Crooks forecast (in red,
striped top right to bottom left), are 9 and 238 out of 500, respectively.

Here, �(x) is the Heaviside function, which is 1 for all x � 0
and 0 else, and E[X] denotes the expectation value of the
random variable X. Replacing the analytical expectation value
in Eq. (4) by the empirical average leads to the following
estimator:

fC = 1

N

N∑
i=1

�(Wi + τ )e−βWi , (5)

which we will name the Crooks forecast in the following.
We propose that the Crooks forecast offers an improvement

compared to the Basis forecast, particularly in the region τβ <

0. Intuitively, the Crooks forecast fC is a better estimator in
this region simply because it is calculated based on more data.
Figure 1 visualizes the idea. In this article, we want to make the
notion of “better” more explicit, and quantify how much better
the Crooks forecast is under different settings. In a typical
thermodynamic setup, where β refers to an inverse temperature
and thus is positive, fC should be better than fB for negative
thresholds. We will consider the case of positive β here for all
our derivations, except in Sec. IV B where we used a negative
β. We will see that for β < 0 one can predict exceedances
of positive thresholds τ > 0 in the same spirit. We further
show that the Crooks forecast does not improve compared to
the Basis forecast on the full range of thresholds. The reason
is that the empirical mean of e−βW is heavily influenced by
strongly weighted rare events from the diverging side of the
exponential function, and thus is sensitive to whether such
values are included in the sample or not.

III. FORECAST EVALUATION: BRIER SCORE,
RELIABILITY, AND BRIER SKILL SCORE

Assessing the quality of a probability forecast or estimator
requires a quantitative criterion that compares the forecast

f ∈ [0,1] to the corresponding binary observation O ∈ {0,1}.
For this study, we will use the quadratic criterion introduced
by Brier [9], given by

b = (f − O)2. (6)

This criterion is referred to as the half Brier score or simply
Brier score. It is always non-negative and it is the smaller
the better the forecast is. The perfect forecast, which predicts
f = 1 whenever the event happens, and f = 0 otherwise, has
a Brier Score of b = 0.

The Brier score has become a very popular scoring criterion
for several reasons: The Brier score is proper, which means
that a forecaster can not improve their score by issuing a
forecast which is different from their subjective probability for
the event O. This property of encouraging forecasters to be
honest is the one originally advocated by Brier. The Brier score
further rewards favorable attributes of probability forecasts
(reliability and resolution [8,21]). The mean of the Brier score
over a number of forecast-verification pairs is a mean squared
error between forecasts and observations, which makes it
interpretable in terms of estimator performance. Lastly, we are
going to use the Brier score out of mere convenience because
many of the calculations in this paper can be done analytically
using the Brier score. There are further proper scoring rules,
such as the Ignorance score − log2 |1 − O − f | [22], for
which this is not the case. Being a logarithmic criterion,
the latter penalizes the occurrence of an event missed by the
forecaster more severely than the Brier score. Due to limited
data, the Basis forecast fB = k/N can be zero, which causes
the Ignorance score to diverge if the event does happen.

The average Brier score, which we will denote by B,
can be decomposed additively into three components called
reliability, resolution, and uncertainty,

B := E[b(f,O)] = REL − RES + UNC, (7)

which was shown first for the empirical average by [21], and for
the mathematical expectation by [23]. Define the climatology
as � = E[O] and the calibration function as π (f ) = P (O =
1|f ). Then, the three terms are given by

REL = E[(f − π (f ))2], (8a)

RES = E[(� − π (f ))2], and (8b)

UNC = �(1 − �). (8c)

Reliability quantifies the agreement between the forecast
f and the conditional frequency of occurrence P (O = 1|f ).
Resolution, on the other hand, rewards meaningful variations
of the forecast f from the limiting frequency of occurrence of
the event. In systems where event probabilities change over
time (as, for example, the probability of rain for weather
forecasting), resolution is important, as it quantifies the
knowledge of a forecaster about state-dependent changes. In
our case, the “true” event probability P (W < τ ) is not going
to change, thus there can not be any meaningful variations of
f around �, and our forecasts can not have any resolution.
Since P (O = 1|f ) = P (O = 1) = �, any variability in f is
just noise. We will thus focus on the reliability of the forecast
f as a measure of predictive skill.

We are interested in asymptotic properties of our probability
estimators fB and fC . We would like to know which forecast
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TABLE I. Overview over the different forecast’s reliabilities and Brier scores.

Forecast Reliability (REL) Brier score (B)

Basis: f = 1
N

∑N

i=1 �(τ − Wi)
� − �2

N

N + 1

N
�(1 − �)

Crooks: f = 1
N

∑N

i=1 e−βWi �(Wi − τ )
E − �2

N

N + 1

N
�(1 − �) − � − E

N

Zero: f = 0 �2 �

can be trusted more, i.e., which forecast is on average closer
to the true event probability � under the distribution p(W ).
Given a specific value of the estimator, one way to assess this
difference would be to calculate average Brier scores of this
estimator over a large number of test cases. Another, much
more convenient way is to set up an experiment with artificial
data for which we know the true event probability which fB

and fC then try to estimate. For a binary event O, whose true
probability of occurrence is �, the conditional expected Brier
score, given an estimator f , is given by

B = E[(O − f )2|f ]

= �(1 − f )2 + (1 − �)f 2

= (f − �)2︸ ︷︷ ︸
REL

+�(1 − �)︸ ︷︷ ︸
UNC

, (9)

which was decomposed into its reliability and uncertainty
behind the last equals sign. The uncertainty of a forecast is

equal to the Brier score of the climatology (which predicts
the exact probability f = �). The Brier score of the Basis
forecast can be calculated analytically as the expectation value
of Eq. (9) over many realizations f (see [24] for a general
examination of this issue). These are discrete and restricted
to k/N . The random variable k is binomially distributed with
size N and probability �. Using this, one can calculate the
expectation value of f 2 by taking the expectation of Eq. (9)
over f , and the expected Brier score for the Basis forecast
becomes

BB = N + 1

N
�(1 − �) = UNC + 1

N
�(1 − �). (10)

The reliability term for the Crooks forecast, and thus its
Brier score due to Eq. (9), can also be calculated analytically:

RELC(τ,N ) = E

⎡
⎣(

1

N

N∑
i=1

e−βWi �(Wi + τ ) − �(τ )

)2
⎤
⎦

= 1

N2

N∑
i=1

E
[
e−2βWi �(Wi + τ )

] + 1

N2

N∑
i �=j=1

E
[
e−βWi �(Wi + τ )e−βWj �(Wj + τ )

] − �2

= N

N2
E[eβW�(τ − W )] + N (N − 1)

N2
�2 − �2

= E − �2

N
. (11)

Here, we used the Crooks relation (2) to get from second to
third line, and abbreviated the expectation value of eβW over
W < τ with E ,

E = E[eβW�(τ − W )]. (12)

Note that both the integrand and domain of integration differ
from those used to construct the Crooks forecast [see Eq. (4)].

As a third and very simple forecasting method, we introduce
the Zero forecast. It unconditionally predicts zero probability,
independent of the data set. The Zero forecast serves as a good
benchmark for events that happen with low probability. Its
Brier score is BZ = �, with reliability REL = �2.

See Table I for an overview of the information we collected
so far, from which we can already draw the following
conclusions:

(i) Both the Crooks and Basis reliabilities (and Brier score)
are inversely proportional to the training data set size
N . Their ratio will be independent of the sample size.

(ii) The expectation value E will be larger than or equal
to �2 because the reliability, derived in Eq. (11), is a
quadratic quantity.

(iii) The reliability of the Crooks forecast will be smaller
than for the Basis forecast if E < �. This is the case
for negative thresholds, as can be seen in Fig. 2: the
integrand for calculating E is smaller than the integrand
for � by a factor eβτ . Thus, in Fig. 2 in the region
of negative thresholds, the red (striped right to left)
area is always smaller than the green (striped left to
right) one. This means that, for negative thresholds,
the reliability of the Crooks forecast is always lower
than the reliability of the Basis forecast, and therefore
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FIG. 2. (Color online) Visualization of the curves used to calcu-
late the expectation value E(τ ) = ∫ τ

−∞ dτ ′p(τ ′)eβτ ′
(in red, striped

top right to bottom left) and the cumulative probability � =∫ τ

−∞ dτ ′p(τ )′ (in green, striped top left to bottom right). For
negative thresholds E will be lower than �. For positive thresholds,
this difference gets compensated by the now expanding effect of
the exponential weight. At a certain τ (depending on the exact
distribution) E = �. At this point, the Crooks forecast becomes worse
than the Basis forecast.

its Brier score is always lower, i.e., better. With this
finding, we confirm our main hypothesis.

(iv) There will be a value τ > 0, depending on the
distribution, but independent of N , where the Basis
forecast becomes better than the Crooks forecast. The
reason is that the effect explained in the item above
happens for positive thresholds in the opposite direction
and at a certain τ both parts compensate each other (see
Fig. 2). The behavior of the forecasts on the range of
positive thresholds is addressed further at the end of
Sec. IV A.

(v) The comparison of Crooks and Basis forecasts was
easy due to the fact that they both depend in the same
way on the sample size N . However, it is difficult
to make general statements for the comparison of the
Zero forecast versus Basis, respectively, Crooks. The
following can be said: All forecasts have zero reliability
for � = 0 and a reliability greater than zero otherwise.
For all finite τ (i.e., � > 0), there is a minimal sample
size NC(τ ), for which the Crooks reliability is smaller
than the Zero forecast reliability. Similarly, there is a
minimal sample size NB , for which the Basis reliability
is below the Zero reliability. The same holds for the
scores. The exact NC(τ ) and NB(τ ) depend on the
distribution; a general statement is not possible.

In the following, we use the Brier skill score as a normalized
measure of forecast skill that is less dependent on the event
rate � [25]. It is defined as

S = 1 − B

Bref
, (13)

where Bref is the Brier score of a suitable reference prediction.
A forecast has a positive Brier skill score if it is better than
the reference forecast, and a Brier skill score of one indicates
a perfect forecast with Brier score B = 0. The choice of the
reference forecast will not change the ordering of forecast
schemes with respect to their skill. However, whether or not a
forecast scheme has positive (or negative) skill can change.

We will choose the forecast scheme predicting the exact
probability (or the best approximation from a huge data
set, which we suppose to be exact), which we introduced
as climatology, as the reference. Forecast schemes without
resolution then will always have negative skill. This is the
case for all the forecast schemes introduced here. In general,
comparing with (well-approximated or exact) climatology
negatively biases the skill of any forecast scheme because the
former is calculated on the basis of a lot more knowledge (or
data) than the latter. This effect is very strong for small sample
sizes [26–28]. Correction proposals are available [24,29].
In [24], the authors suggest to use the expectation value of
the Brier score of the Basis forecast as the reference. This
is considered as a version of climatological score corrected
for the effect of the finite sample. Nonetheless, we choose
the climatology forecast predicting the exact probability as
the reference, to be deliberately independent of the sample
size, which makes comparisons between different sample sizes
easier, and visualizes better how well the exact probability �

can be forecasted.
From the skill of a forecast compared to climatology we

can also easily read its skill compared to the Basis forecast.
It is given by Sref=B = N+1

N
Sref=cl − 1

N
, and thus is only

a rescaling of the former. Interpreting forecasts P (W < τ )
as probability estimators for � we can use methods from
statistical estimation theory to evaluate their quality [30]. The
quality of estimators can be characterized by their consistency,
bias, and variance. Both Crooks and the Basis forecast are
consistent and unbiased, which follows from their definitions.
Because they are unbiased, their variance is equal to their Brier
score reliability (see Table I). The Zero forecast, however, has
zero variance and its bias is equal to �, independent of the
sample size N . Thus, it is not consistent.

To help interpreting the Brier skill score, consider for a
moment the Basis estimator for a data set that consists of
only one sample point. This estimator is equal to one with
probability � and zero with probability 1 − �. It is unbiased
and its variance is given by �(1 − �). From the definition
of the Brier skill score [Eq. (13)], with � as the reference
forecast, and the Brier score decomposition, the Brier skill
score of a forecast with zero resolution can be written as

S = − REL

�(1 − �)
. (14)

We can interpret the denominator as a normalization and read
the Brier skill score as the variance of an estimator (with
respect to the correct probability) normalized by the variance
of the one-point Basis estimator introduced above.

The ordering of forecasts in terms of their Brier skill score
is the same as in terms of their Brier score. One just has to keep
in mind that (for forecast schemes without resolution and the
climatology as the reference, as given here) the optimal skill
score is zero, and, the larger the skill score (i.e., the closer to
zero), the better is the forecast.

IV. TWO ILLUSTRATING EXAMPLES

In the following, we want to support our findings with
illustrative examples. We show two examples, first a Gaussian
distribution, and second, data from a numerical experiment,
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simulating the transformation of a two-dimensional fluid field.
Gaussian distributions with mean μ and variance σ 2 always
satisfy the Crooks relation with β = 2μ/σ 2. Here, we can
use the advantage that we have the expectation value E
and the cumulative density �, needed for the Brier (skill)
scores, available in closed form. We complement the analytical
results with numerical experiments, if necessary or if it helps
illustration. Further, we address the effect of different β to the
forecasts.

In the second, physically motivated example, the distribu-
tion is highly asymmetric, and not known in closed form. This
adds an error in estimating the cumulative density � because
all expectation values must be approximated by empirical
mean values. The parameter β is negative in this example,
leading to improved predictions in the range of positive
thresholds.

A. Gaussian distribution

1. Setup

We consider Gaussian distributions with the same standard
deviation σ = 1, and varying β = 2μ (1 � β � 7), because
increasing β moves the body of the distribution towards
positive values and changes the expectation value E and the
cumulative density � for a given threshold τ . Gaussian distri-
butions with different standard deviation can be transformed to
σ = 1 by changing β correspondingly. Further, we investigate
the effect of the training data set size N as well as the
effect of the calculation of empirically estimated expectation
values. The basis of our numerically obtained data are mean
values over n = 104 repetitions of the following, what we call
hereafter an “experiment”:

(1) Sample N training values from a Gaussian distribution,
parametrized by β.

(2) Calculate forecasts fB and fC of the probability that
W < τ , as given in Table I, first column. (The Zero forecast
fZ is always zero, anyway.)

(3) Calculate Brier scores BC and BB , BZ by inserting the
respective f into Eq. (9), using the analytical value of the
probability �.

Then, we calculate empirical mean values of the Brier
scores from the n = 104 experiments, and Brier skill scores
using Eq. (13) with the climatology score �(1 − �) as the
reference. These empirical averages will complement our
analytical results.

Figure 3 shows a histogram of forecasts for a training
data set of size N = 10. While the distribution of the Crooks
forecast is smooth, the Basis forecast is restricted to N + 1
discrete values, and the Zero forecast obviously predicts zero
in all 10 000 experiments.

2. Crooks vs Basis vs Zero forecast

As mentioned before, for the Gaussian distribution analyti-
cal results are available (at least in terms of the error function).
The numerical results confirm, by and large, the findings of
Sec. III. Figure 4 shows Brier skill scores of the Crooks, Basis,
and Zero forecasts (and weighted composites of forecasts that
will be explained later) for different training data set sizes N .
They are plotted logarithmically over threshold τ , respectively,
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FIG. 3. (Color online) Histogram of n = 104 Zero (brown resp.
long, plain, and interrupted column at f = 0), Basis (green, striped
top left to bottom right), and Crooks (red, striped bottom left to top
right) forecasts, each estimated using data sets of size N = 10. The
exact probability is � = 0.1252.

linearly over probability (to exceed this negative threshold) �,
which emphasizes different regions.

The green unfilled circles and (straight gray) lines at −1/N

show the Brier skill score for the Basis forecast, calculated
empirically, i.e., over n = 104 experiments, and analytically,
as given by Table I. The green lines give the reference for
the skill, which a forecast has to exceed to be better than
using only the relative frequency in the data set. This reference
increases towards zero for increasing training data set size, as
the approximation of the climatology can be made more exact
having more data points available.

The approximation of the analytical limit of the Basis Brier
skill score by the empirical estimate deviates strongly in the
range of very low probability, i.e., low threshold τ . Some of
the points lie on the line of the Zero Brier skill score [see
left column of plots, green (unfilled) circles on top of the
brown (short dashed) line]. The reason is that in none of the n

experiments was the Basis forecast nonzero, which illustrates
the rareness of the event we are predicting.

Forecasting zero for very low thresholds seems to be a
good strategy, as can be seen in the brown (short dashed)
curves, which show the Brier skill score for the Zero forecast.
There is a range of low probabilities where the Zero forecast
improves compared to the Basis forecast. This range is broader
for smaller training data sets. This is reasonable, as the lowest
nonzero Basis forecast that can be made is 1/N , which is
already too high for a certain range of probability �.

The red (dark gray solid) curves in Fig. 4 show the
Brier skill score of the Crooks forecast. We did not plot
the empirical mean values because they lie on top of their
analytic expectation values for the whole range plotted here.
As expected, the Crooks forecast improves compared to the
Basis forecast for the whole range of thresholds τ shown here.
It becomes better when decreasing the threshold. Neglecting
the range of the ordinate, the relative position of the Brier skill
scores for the Crooks and the Basis forecasts is the same in all
of the plots. The reason is that they are inversely proportional
to the sample size, and thus their ratio is independent of N . In
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FIG. 4. (Color online) Mean Brier skill scores for training data sets of size N (10,50,200), plotted logarithmically over threshold τ ,
respectively, linearly over probability � to be below the threshold τ . Samples are drawn from a Gaussian distribution with mean and standard
deviation equal to 1, i.e., β = 2. The color coding of the curves and points is as follows: red (dark gray solid) line: Crooks forecast; green (gray
solid) line and unfilled circles: Basis forecast, analytical and numerical values; blue (long dashed) line: composite 0.5; orange (light gray filled)
dots: composite cm; brown (short-dashed) line: Zero forecast.

the range of low thresholds (see left column), the Zero forecast
is even better than the Crooks forecast. This effect decreases
with increasing N .

Figure 4 describes the situation for one exemplary β.
Several facts still hold for the other values of β: There are
still jumps of the Basis skill onto the skill for the Zero
forecast for low thresholds because none of the experiments
ever provides a nonzero Basis forecast. The improvement of
the Crooks skill compared to the Basis skill increases with
decreasing threshold. The intersection of the curves, where
the Zero forecast becomes worse than Crooks, decreases
towards smaller thresholds with increasing β. For a given
τ , the Crooks forecast is the better the higher the parameter
β. For low β the distribution is closer to being symmetric
around zero, i.e., the number of points that are available for
the Crooks forecast are not much larger than for the Basis
forecast. Unexpectedly, for large β and small samples (e.g.,
β = 4,N = 10) the Zero forecast is better than Crooks not
only at very small thresholds, but starts to improve upon the
Crooks forecast again at thresholds close to zero. [The red
(dark gray solid) curve falls steeper than the brown (short
dashed) curve there.] This effect is not addressed further here,
but might be due to the unsuitability of the Brier skill score as
a criterion of predictive skill. (A logarithmic criterion, which
is −∞, when the forecast probability is zero, would not suffer
from this effect.)

One might ask in this special case as to how good a
prediction can be using the knowledge that we make forecasts
about a Gaussian variable. Therefore, we calculate mean and

standard deviation empirically for each training data set and
then obtain the prediction as an integral over the Gaussian
distribution with these parameters. The curves are not shown.
In general, the skill of this method is between the Basis’ and
the Crooks’ skill. For low β and low thresholds, this method
is better than the Crooks forecast (this happens in a region
where the Zero forecast is better, too). The reason is the same
as above: there is no great advantage by the amount of data
that is used to calculate the Crooks forecast.

3. Composites of Basis and Crooks forecasts

Each of the two estimators (Basis and Crooks) neglects that
part of the data, which is used by the other estimator. Therefore,
it seems likely that predictions can be further improved by
combining them. In the following, two composites of fC and
fB are proposed, both of which are of the following form:

fα = αfC + (1 − α)fB, α ∈ [0,1] (15)

(i) f0.5: arithmetic mean. Both predictions are equally
weighted α = 1

2 .
(ii) fcm: forecast weighted according to the number of

contributing sample members. The Crooks and the
Basis forecasts are weighted proportionally to the
number of sample members aC , respectively aB , that
are above −τ , respectively, below τ , i.e.,

α = aC

aC + aB

. (16)
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In general, if α does not depend on the exact forecast (like
in the first composite), the reliability of the fα forecast can be
calculated. It is

RELα = α2E + (1 − α)2� − �2

N
. (17)

With this, the Brier score and skill score are given as well.
In Fig. 4, the composites f0.5 and fcm are indicated by blue

(long-dashed) curves and orange (filled) dots, respectively.
If the deviations in the Crooks and the Basis forecasts are
to different sides of the perfect probability �, then the
arithmetic mean f0.5 can cancel these deviations. This happens
in the range of high thresholds, where the two forecasts
are anticorrelated because the data which is in one part of
the histogram is missing in the other. In the range of low
thresholds, the skill of the arithmetic mean forecast lies
between the Crooks and the Basis forecasts. There is no range
where this forecast is worse than the Basis forecast.

The Brier skill score of the composite fcm can only be
approximated empirically. It is better than the Crooks forecast
for thresholds close to zero. The range where it is better
increases with increasing sample size N . For low thresholds,
it jumps to the Crooks forecast, whenever all of the Basis
forecasts are zero. We conclude that combining the knowledge
of the two forecasts can lead to an even better prediction, but
it is important how much both forecasts are weighted.

The question appears as to what is the best possible
composite of the Basis and Crooks forecasts. Therefore, we
optimize the α in the composite such that on average this
forecast performs best. Keep in mind that for single realizations
of the experiment this optimized forecast can be worse than
either of the Basis or Crooks forecast. Further, notice that
the following calculation uses the knowledge of the exact
distribution, which is in general not available. Nonetheless, it
provides some helpful insights. We find the optimal composite
by minimizing the reliability [Eq. (17)] with respect to α. This
corresponds to minimizing the Brier score or maximizing the
Brier skill score. The optimal α is given by

αopt = �

� + E , (18)

where E is the expectation value of eβW over W < τ . It is
independent of the sample size. From the analysis above (see
items in Sec. III), we know that � > E � �2 (for negative
thresholds). It follows that 1

2 < αopt � 1
1+�

. This means that,
for an optimal composite, the Crooks forecast should always
be weighted stronger than the Basis forecast. On the other
hand, for a nonzero probability � the Basis forecast should
always be included because α < 1. The corresponding Brier
score is

Sαopt = − 1

N

E − �2 − �E
(� + E)(1 + �)

. (19)

It is larger (i.e., closer to zero) than the Crooks skill score
(see Table I) by having a smaller numerator and a larger
denominator than the latter.

Figure 5 shows the optimal α depending on the threshold,
for a Gaussian distribution with β = 1. For low β, the range,
where the Basis forecast is used to a considerable amount,
is quite broad. The higher the β, the faster the optimal α

0

0.25

0.50

0.75

1.00

threshold τ

optimal α

0−1−2−3−4

−10−1

−10−2

−10−3

τ

S

0−1−2−3−4

FIG. 5. (Color online) α parameter for the optimal composite of
Crooks and Basis forecast [see Eq. (15)] in order to maximize the Brier
skill score for a Gaussian distribution with β = 1. The inset shows
the Brier skill score for the optimal α forecast (violet, dashed-dotted
line) for training data set size N = 10. The color coding is like before:
Crooks: red (dark gray solid line); Basis: green (gray solid line at
S = −10−1); Zero: brown (dashed line).

approaches 1. The inset shows the corresponding Brier skill
scores. The optimal α forecast (violet curve) can improve by
up to 78% compared to the pure Crooks forecast (or 91%
compared to the Basis forecast) in the regime of thresholds
close to zero.

If the reliabilities of the Crooks and Basis forecasts are
not available as analytical expressions, one can estimate the
optimal α from empirical data. This is done by minimizing the
reliability of the forecast fα [Eq. (15)], given by E[(fα − �)2]
with respect to α. One finds

α = E [(fB − fC) (fB − �)]

E[(fB − fC)2]
. (20)

The expectation values can be approximated by empirical
mean values. In the range of low thresholds, where none of
the Basis forecasts were nonzero, the optimal α also makes
jumps from a value near to 1 down to below 1

2 . This is because
the Zero forecast usually is better in this range. Within this
unsteady behavior the empirical calculation should no longer
be trusted. The derivation of Eq. (20) seems rather artificial
here, as we could have already used Eq. (18) to calculate the
optimal composite. However, we will use Eq. (20) in Sec. IV B,
where the distribution is not given in analytical form and we
can only estimate the cumulative probability �.

4. Diverging side of the distribution

In the Introduction, we claimed that we can improve
forecasts if we use the knowledge that a distribution satisfies
the Crooks relation. We were interested in estimating the
probability that a value W is below a certain threshold τ . It can
be shown that the Crooks forecast we constructed improves
compared to the Basis forecast, if we measure their quality
with the Brier score. The above holds true if we have negative
thresholds τ (and a positive parameter β). There, the individual
contributions to the Crooks forecast, which are equal to e−βW ,
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FIG. 6. (Color online) Optimal α (top) and Brier skill scores
(bottom) plotted over threshold τ . Data basis are sets of size N = 10
drawn from a Gaussian distribution with σ = 1 and μ = β/2 with
β = 2. The lower plot shows familiar curves for the Crooks (red resp.
dark gray solid line), Basis (green resp. gray solid line at S = −0.1),
Zero (brown, short dashed line), composite 0.5 (blue, long dashed
line), and composite cm (orange dots) forecast. The latter can only
be given by empirical approximation and is thus not plotted as a
continuous line.

are small. For τ > 0, these contributions diverge exponentially.
In this paragraph, we extend the range of thresholds to positive
values (given that β > 0). Doing so, the two forecasts share a
set of values, namely, in the range −|τ | < W < +|τ |.

Figure 2 shows that there is a certain range of positive
thresholds, where the Crooks forecast is still better, i.e.,E < �,
but at some τ the reducing effect of the negative range on
the expectation value E is compensated. From this τ on the
Basis forecast is better. See Fig. 6 (lower plot), where we
show Brier skill scores of the different forecasts for thresholds
extended into the positive regime. Very quickly, the Crooks
forecast becomes worse than the Basis forecast. This affects
the composites as well. The Brier skill scores of the diverging
curves reach down to −10 in the regime shown here.

The analytical calculation of some quantities, which include
the covariance term E [fCfB], has to be extended because
the latter contains a term which is proportional to �(τ −
W )�(W + τ ). This term vanishes for negative τ , but does
not for positive. This affects the calculation of the reliability
of mean values with a fixed α such as the arithmetic mean, and
the optimal α. Equations (17) and (18) have to be modified in
this regime.

The forecasts fB and fC are strongly anticorrelated for
τ � 0 because a data point which was missing in one forecast
(and making its predicted value smaller) is included in the
interval used by the other forecast. At τ > 0 this changes
because of the commonly used regime the correlation gets
positive. The correlation and anticorrelation are stronger for
a low parameter β because then the values e−βW/N and 1/N

L = 2

M
=

1 2 L(t) = 2 − gt

M(t) =
1

L(t)

FIG. 7. Visualization of the transformation of the domain from a
lying rectangle to a standing one. This is done by linearly decreasing
the domain width L from 2 to 1

2 with a speed g. In the setup here
g = 100. (See Sec. IV B for details.)

included in the prediction fC and fB , respectively, become
closer to each other. The optimal α becomes

αopt = � − ξ�(τ )

� + E − 2ξ�(τ )
, with ξ =

∫ |τ |

−|τ |
p(W )dW

(21)
and �(τ ) being the Heaviside function. It is plotted in Fig. 6
(upper plot). The parameter α has a dip at τ = 0. One can show
that decreasing the denominator and numerator by ξ and 2ξ ,
respectively, pulls α away from 0.5. That is why it is increasing
again. At some point, this effect is outweighed by the strong
increase of the expectation value E in the denominator. The
curve starts decreasing, passes α = 0.5, where � = E , and
goes to zero for τ → ∞.

B. Experimental data

In this second example, we use data obtained from a
numerical experiment. We do not have the exact distribution of
the random variable available here, but we know that it satisfies
Crooks relation (2), and we know the parameter β. The random
variable used in this example is the work, i.e., the change in
kinetic energy that has to be imposed when deforming a rectan-
gular domain in which two-dimensional fluid flow evolves. The
fluid flow is approximated obeying two-dimensional truncated
Euler equations. The process of transformation is visualized
in Fig. 7. During the transformation work has to be imposed
on the field (or can be extracted, this is the general case here).
This work is dependent on the exact field composition. Here,
we take the distribution of work and the parameter β as given.
For details illustrating the system, numerical details and the
deduction of Crooks’ relation for this system and process
(see [6]).

The final and initial states of the transformation shown in
Fig. 7 are symmetric under a rotation by 90◦. That is why
the backward process [see Eq. (1)] is identical to the forward
process and the original Crooks relation collapses to a equation
for only one distribution p(W ) [see Eq. (2)]. This distribution
over various repetitions of the experiment is shown in Fig. 8.
It is highly asymmetric and satisfies Eq. (2) with a certain β

derived from the initial conditions of the fields, here β = −19.
Having a negative sign for β we can improve predictions

of work values being larger than positive thresholds τ , i.e.,
P (W > +τ ) because then the Crooks forecast does not use
the diverging side of the distribution. As we do not have
the exact distribution of work given in analytic terms, we
approximate the cumulative probability by using two million
data points. Despite this abundance of sample points, the
accuracy of the Brier skill score is affected, especially for
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prob. density p(W )

0 2−2−4−6−8
work W

FIG. 8. Distribution of the work imposed in the transformation
described in Sec. IV B.

very high thresholds, because there � is approximated poorly.
That is why we sampled the region of small τ denser than for
large τ . Figure 9 shows the Brier skill scores for the Crooks and
the Basis forecasts for different training data set sizes N . The
courses of the curves are in general the same as in the previous
example. For all sample sizes, the Crooks forecast improves
compared to the Basis forecast. This improvement is better the
further one is in the tail of the distribution. However, for small
training data set sizes (e.g., N = 10), the Zero prediction is
still better.

We did not include the skills for the composites here.
The general behavior is like for the Gaussian distribution
in Sec. IV A. For the calculation of the optimal α forecast
we used Eq. (20) with the approximated cumulative density.
This forecast gives some improvement for low thresholds
τ , where the Basis forecast is weighted with up to 40%.
For high thresholds, the pure Crooks forecast gives the best
prediction, indicated by α increasing up to one. Again, this
effect is independent of the sample size. This time, the forecast
composite weighted by the number of contributing members
is very close to the pure Crooks forecast. The reason is the
high asymmetry of the distribution (see Fig. 8); the probability
to have a nonzero Basis forecast is considerably low. The
arithmetic mean, however, improves a lot compared to the
Crooks forecast in the range of low thresholds.

−10−1

−10−3

−10−5

0 0.10 0.20 0.30 0.40

threshold τ

Brier Skill Scores S

FIG. 9. (Color online) Brier skill scores for the Crooks forecast
(in red, solid line) and the Basis forecast (in green, dotted line) plotted
over threshold values τ . The colors vary from light colored to dark
for increasing training data set size N = 10,20,50,100,200,500. The
training data are taken from the distribution introduced Sec. IV B.
As the absolute number of values W for the training data sets was
5 × 105, the number of experiments n varied from 5 × 104 down to
103. The Zero forecast (brown dashed line) is included as a reference.

V. CONCLUSIONS AND DISCUSSION

By the analytical derivations in this paper, and the support-
ing examples, we found that we can improve predictions of rare
events using the Crooks fluctuation theorem. We confirmed
our main hypothesis: If we use the knowledge that a random
variable is drawn from a distribution which satisfies the Crooks
fluctuation theorem with itself, we can give an estimate of the
probability to exceed a threshold which is better than simple
histogram counting. We measured the notion of “better” in
terms of the Brier score reliability and Brier skill score and
were able to show that the Crooks forecast always improves
compared to the Basis forecast, if τβ < 0. This improvement
is universal, independent of the exact distribution of the
prediction target. We explored the strengths and limitations
of this new estimator for two examples over a wide range
of parameter values (such as threshold and sample size), and
proposed further improvement by combining the estimators.

Throughout the article, we assumed the parameter β to
be given. In the nonequilibrium thermodynamic framework,
where the Crooks relation originates, this parameter is a
quantity given by the equilibrium description of the system. It
is known a priori, for example, as the inverse temperature of
a heat bath. To the authors, no report about any experiment or
process is known, which provides a density fulfilling Eq. (2),
but is not intrinsically thermodynamic. Maybe this is due
to the fact that no one has ever looked for this outside the
thermodynamic framework. Estimating the parameter β only
from the data could then be an issue. One simple way is to
estimate the distribution p(W ) by a histogram, and plotting
the ratio of p(W ) and p(−W ) logarithmically. The fitted
slope approximates the parameter β [see Eq. (2)]. For small
data set sizes (like the ones considered here), this method
underestimates the absolute value of β. We refer the interested
reader to [6], where this effect of underestimating the slope
of the curve is addressed. Anyway, the underestimated β will
lead to biased estimates of the exceedance probability. As a
topic for future investigation, more sophisticated techniques
have to be devised, which turns out to be a difficult task, if one
wants to estimate β from data set sizes as small as considered
here (e.g., N = 10).

Like the issue of knowing or estimating the parameter β, the
question appears as to what extent this method could be applied
to the prediction on densities, which are Crooks-like, in the
sense that they fulfill the Crooks relation approximately. This
question can not be answered in a short sentence. It contains
the issue to define how Crooks-like is Crooks-like enough, and
depends on the thresholds and sample sizes considered.

The logarithmic ratio of a density ln p(W )
p(−W ) fulfilling

Crooks’ relation (2) fits a line with slope β. In general, the
logarithmic ratio of any distribution is to first order around
W = 0 a linear function of W . From this linear slope one could
read the parameter β. But, for any non-Crooksian distribution,
the higher order terms of this probability ratio are nonzero.
Thus, for values W , which are not in the vicinity of the origin,
the slope of the curve deviates from a linear function. It is easy
to show that this deviation leads in any case to a biased Crooks
forecast. Exactly this can be seen for p(W ) ∼ exp{− (W−μ)4

2σ 4 },
a distribution which at first sight looks similar to a Gaussian.
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As it falls steeper than a Gaussian distribution in the tails,
the logarithmic probability ratio is pulled away from a linear
behavior towards lower values for positive W (and higher
for negative). The Crooks forecast, naively calculated for this
distribution (with the parameter β obtained from the slope of
the logarithmic ratio in the vicinity of W = 0), is a biased
estimator, predicting a probability which is too high. Even
though its variance might be smaller than the variance of the
Basis estimator at thresholds close to zero, this is not the
case for thresholds in the tail of the distribution. Thus, such a
forecast is in general inferior to the Basis estimator.

We quantified the predictive skill of the forecast by the Brier
score. The choice of a scoring rule is crucial for the ranking of
forecast schemes. Using the Brier score made the Zero forecast
appear like a favorable choice, as its skill can be larger than the
skills of the Crooks or the Basis forecast. However, predicting
zero probability simply ignores the possibility of an event
to happen. If this event is extreme, possibly associated with
life-threatening dangers for people or devastating damages
or losses to properties, then its predicted impossibility may
cause strong consequences, e.g., high monetary compensation

costs, if the event does happen. A scoring criterion, which
penalizes false zero forecasts more heavily than the Brier score,
would certainly be favorable in such a scenario. The problem
of suitable evaluation criteria for predictions of rare events is
addressed in, e.g., [31].

A well established mathematical tool for extrapolation
from extremes in a finite data set to an infinite data set is
(generalized) extreme value theory (GEV) [32]. Universality
of asymptotic distributions yields a way to determine, by
fitting three parameters to an empirical histogram, the return
level of events of a magnitude which are larger than all
observed events. There is no need to make any quantitative
comparison between this method and the one of this article
since sample sizes needed to apply GEV are by orders of
magnitude larger than those used here, so that GEV would
not make any meaningful statement in setups like those
considered in this article. However, the improvement of
methods from GEV in situations where the Crooks fluctuation
theorem is valid (and sufficient data are available) is an
interesting subject that will be considered in forthcoming
studies.
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