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Static and dynamical properties of a hard-disk fluid confined to a narrow channel
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The thermodynamic properties of disks moving in a channel sufficiently narrow that they can collide only
with their nearest neighbors can be solved exactly by determining the eigenvalues and eigenfunctions of an
integral equation. Using it, we have determined the correlation length ξ of this system. We have developed an
approximate solution which becomes exact in the high-density limit. It describes the system in terms of defects in
the regular zigzag arrangement of disks found in the high-density limit. The correlation length is then effectively
the spacing between the defects. The time scales for defect creation and annihilation are determined with the help
of transition-state theory, as is the diffusion coefficient of the defects, and these results are found to be in good
agreement with molecular dynamics simulations. On compressing the system with the Lubachevsky-Stillinger
procedure, jammed states are obtained whose packing fractions φJ are a function of the compression rate γ .
We find a quantitative explanation of this dependence by making use of the Kibble-Zurek hypothesis. We
have also determined the point-to-set length scale ξPS for this system. At a packing fraction φ close to its
largest value φmax, ξPS has a simple power law divergence, ξPS ∼ 1/(1 − φ/φmax), while ξ diverges much faster,
ln(ξ ) ∼ 1/(1 − φ/φmax).
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I. INTRODUCTION

Glasses and supercooled liquids have attracted a great
deal of attention from both experimentalists and simulators,
but despite this no totally satisfactory description of them
is available. There is a suggestion that there is a connection
between glassy behavior and jammed states [1]. In this paper
we shall examine a model, a system of hard disks confined to
move in a narrow channel, which is sufficiently simple that we
can calculate analytically quantities which in two- and three-
dimensional systems have not yet been satisfactorily studied
despite extensive numerical efforts. Bowles and colleagues
[2–4] have studied this model primarily by numerical methods
and have elucidated many of its features, including the
numbers and properties of the jammed states and the dynamics
of the fluid states. In this paper, we continue their studies, but
our approach is primarily analytic. This has the advantage of
providing physical insights as to what is going on.

The model consists of N disks of diameter σ , which move in
a narrow channel consisting of two impenetrable walls (lines)
spaced by a distance Hd such that 1 < Hd/σ < 1 + √

3/4
(see Fig. 1). The upper limit is imposed so that only nearest-
neighbor disk interactions can arise; also the disks cannot pass
each other, so their initial ordering is preserved at all times. The
disks and the walls are hard, so that configurations of the disks
where the centers approach by a distance less than σ cannot
occur, and the center of each disk must be at a distance of at
least σ/2 from each wall. It is useful to introduce the following
notation, which is also illustrated in Fig. 1. Let the Cartesian
coordinates of the center of disk i be denoted by (xi,yi), where
the x axis coincides with the centerline of the channel. A
configuration is a set of disk positions (xi,yi), i = 1, . . . ,N ,
that is consistent with the constraints of no overlap. Let h =
Hd − σ . Then, because of the hard walls, the allowed range
of yi is −h/2 � yi � h/2. The packing fraction or occupied
volume is φ = Nπσ 2/(4LHd ), where L is the length of the
channel along the x direction. The maximum possible value

of φ will be called φmax. It is given by

φmax = πσ 2

4Hd

√
σ 2 − h2

. (1)

The numerical work described in this paper has been done
for the case when h = √

3/4 σ , for which φmax � 0.8418. A
possible configuration of the disks is shown in Fig. 1, while the
configuration associated with the maximum possible packing
fraction φmax is the zigzag configuration [shown in Fig. 9(a)].
Note that when h = √

3/4 σ , the centers of the disks form
a regular array of equilateral triangles in this case, the most
densely packed state.

In Sec. II we describe the transfer matrix formalism
that enables us to calculate exactly the equilibrium static
properties from the eigenvalues and eigenfunctions of an
integral equation. One can determine the equation of state
of the system from the largest eigenvalue and its associated
eigenfunction, and the correlation length ξ of the system
is given by the logarithm of the ratio of the largest and
next-largest eigenvalues. The transfer matrix formalism gives
few insights as to what is going on, so in Sec. III we
discuss an analytical approximation which becomes exact in
the high-density limit φ → φmax. This leads us to understand
the nature of the order that is growing in the system at high
density. This order is the zigzag arrangement of the disks,
which, for φ < φmax, can be interrupted by defects, like the
blue shaded disks in Fig. 1 and also in Figs. 7 and 9. It
is shown that the correlation length ξ is a measure of the
distance between the defects. We shall calculate θ , which is the
average concentration of defects, as a function of the packing
fraction φ.

In Ref. [4] it was found that, just as for two- and three-
dimensional hard-sphere systems, there is a packing fraction
φd above which the dynamics becomes activated, and the
activated dynamics was studied as a function of the packing
fraction φ. In Sec. IV we shall show that this dynamics
can be understood analytically in the limit φ → φmax. The
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FIG. 1. (Color online) Geometry of the disks in a narrow channel.
The disks are of diameter σ , and the channel is of width Hd . h =
Hd − σ is the width of the channel which is available to the centers
of the disks. The coordinates of the center of the ith disk are (xi,yi),
where yi is measured from the centerline of the channel. The blue
shaded disks are a defect in the zigzag arrangement of the disks that
is favored at high density.

same approximation is fairly good over the entire range of
φ between φd and φmax. The correlation length ξ grows
rapidly for φ < φd but does not diverge at φd . We are
able to make analytical progress using the transition-state
approximation for those aspects of the dynamics associated
with the creation and annihilation of defects and their diffusion.
The configurational entropy associated with the jammed states
has been calculated analytically [3], and the same authors have
used the Lubachevsky-Stillinger algorithm [5] to determine
how φJ , the packing fraction at jamming, depends on the
compression rate. In this paper we shall show that this
dependence can be modeled by using the Kibble-Zurek [6,7]
hypothesis.

In Sec. V we calculate the point-to-set length ξPS . It is
much smaller than ξ and has a quite different dependence on
φ. This might suggest that not all length scales in glasses are
fundamentally equivalent when they become large, but we also
point out that our system has some properties (most notably
a growing crystalline order) which are thought not to be of
importance in three-dimensional glasses.

II. EQUILIBRIUM PROPERTIES VIA
THE TRANSFER MATRIX

In this section we set up the formalism by which the
equation of state and correlation length ξ can be obtained,
at least numerically, from study of an integral equation. We
follow the procedure used in Ref. [8]. The canonical partition
function is

exp(−βAL) = 1

	Nd

N∏
i=1

∫
dxi

∫ h/2

−h/2
dyi I, (2)

where (xi,yi) are the coordinates of the disk centers, with
the ordering 0 < x1 < · · · < xN < L, where L is the length
of the channel available to the disk centers. The integrand I

is 1 if the configuration of (xi,yi) is allowed but is zero if
any two disks overlap. d is the dimensionality of the channel,
i.e., d = 2. 	 = (2πβ�

2/m)1/2 is the thermal wavelength. For
given values of the coordinates yi the system is isomorphic
to a mixture of one-dimensional hard rods of various lengths,
which allows the integrations over the xi to be performed [9].

Then

exp(−βAL)

= 1

	2NN !

N∏
i=1

∫ h/2

−h/2
dyi

⎡
⎣L −

N−1∑
j=1

σ (yj ,yj+1)

⎤
⎦

N

I ′,

where σ (yi,yi+1) is the distance of closest approach of
neighboring disks i and i + 1 in the direction along the axis,
i.e., [σ 2 − (yi − yi+1)2]1/2. The sum

∑N−1
j=1 σ (yj ,yj+1) is the

total excluded volume of the “hard rods,” which must be
smaller than L; this constraint is imposed by the integrand
I ′, which can be either 0 or 1.

It is convenient to perform a Legendre transform of the
Helmholtz free energy AL by calculating the partition function

exp(−β
) = βf

∫ ∞

0
dL exp(−βAL) exp(−βf L), (3)

where f can be regarded as the force exerted by a piston at
the end of the channel; the longitudinal pressure P is given
by P = f/h, as h is the width of the channel accessible to
the particle centers. A prefactor βf has been introduced in
(3) to ensure dimensional homogeneity; it is irrelevant to the
thermodynamics. The integral over L can now be performed,
giving

exp(−β
) = 1

(βf 	2)N

×
N∏

i=1

∫ h/2

−h/2
dyi e

−βf
∑N−1

j=1 σ (yj ,yj+1) . (4)

The calculation of the potential 
 now manifestly involves
only nearest-neighbor interactions. When N is large, 
 is
given by [8]

β
 � N ln(βf 	2/λ1), (5)

where λ1 (with the dimensions of length) is the largest
eigenvalue of the integral equation

λn un(y1) =
∫ h/2

−h/2
e−βf σ (y1,y) un(y) dy . (6)

Equation (6) can be solved numerically by approximating
the integral by a sum, which leads to a symmetric matrix
eigenvalue problem [8]. When βf σ is large, most of the
variation in the functions un is concentrated near the walls
of the channel, so that it is helpful to make a transformation of
the variable y before discretizing [10].

All of the equilibrium properties of the system can, in prin-
ciple, be determined from the eigenvalues and eigenfunctions
of (6). For example, the equation of state, i.e., the relation
between f and the packing fraction φ, can be found from [8]

L/N = 1

βf
+ 1

λ1

∫ h/2

−h/2

∫ h/2

−h/2
u1(y1) u1(y2)

× σ (y1,y2) e−βf σ (y1,y2) dy1 dy2 , (7)

which avoids the numerical differentiation that would be
required to calculate L directly from L = ∂
/∂f .

The plot of βf σ versus φ is shown in Fig. 2. We suspect
that the “shoulder” that appears near φ � 0.5 could be the
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FIG. 2. (Color online) The equation of state of the narrow-
channel system, that is, βf σ vs the packing fraction φ. The solid
line results are from the transfer matrix and are essentially exact.
Also shown (red dashed line) are the results from our analytical
approximation, Eqs. (18) and (20). Note that at large φ there is
excellent agreement between the two.

remnant of the first order transition which is seen in genuine
two-dimensional systems [11]. The pressure (or force) goes
to infinity as the density of the system approaches φmax. The
form of this divergence will be discussed in Sec. III.

The logarithm of the ratio of the two largest eigenvalues
of the integral equation gives a correlation length ξ , which is
plotted in Fig. 3. The meaning of ξ is that it is the number of
disks that typically form the zigzag pattern seen in the defect-
free regions of Fig. 1. More precisely, it measures the decay
of the correlation between the y coordinates of well-separated
disks i and i + s,

|〈yi yi+s〉| ∼ exp(−s/ξ ) , (8)
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FIG. 3. (Color online) The logarithm of the correlation length
ln(ξ ) vs βf 
a obtained from the transfer matrix (solid line). 
a

is the extra length associated with a defect, which is discussed in
Sec. III at Eq. (22). It is given by 
a = σ − √

σ 2 − h2. The red
dashed line is the prediction of our analytical work, Eq. (26).
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FIG. 4. (Color online) The reciprocal correlation length 1/ξ vs
the packing fraction φ (blue solid curve). The red dashed line is a
straight-line fit to highlight the rapid growth of ξ as φ → φd � 0.48.
There is no true divergence of ξ at the dynamical transition packing
fraction φd and the “transition” is rounded off.

where s 
 1. Notice that ξ is dimensionless because s is an
integer; of course, if one knows the packing fraction, one
can convert ξ into a distance by multiplying by the average
separation of neighboring disks. Figure 3 shows that as φ →
φmax, ξ grows rapidly, reflecting the fact that ξ is essentially the
spacing between the defects, which becomes very large in this
limit. This observation will be made quantitative in Sec. III.

The behavior of ξ at smaller packing fractions is also of
interest. In Fig. 4 we have plotted the reciprocal of ξ versus
the packing fraction. The fitted straight line extrapolates to
a value φd � 0.48. This packing fraction was identified in
Ref. [4] as the density above which the dynamics becomes
activated (see Fig. 8). Similar behavior arises for hard spheres
in three dimensions at φ = φd � 0.58 and is attributed there
to the onset of caging. In the mode-coupling approximation
this is accompanied by a diverging length scale, but in a better
approximation this length scale would be expected to remain
finite [12]. The same features seem to be present in this system
of disks in a channel. The data in Fig. 4 show that between
φ = 0.1 and φ = 0.4 the growth of ξ is approximated well by

ξ ∼ a

1 − φ/φd

. (9)

Figure 4 shows that there is not a true divergence of ξ at
φd : the apparent divergence is rounded off and at φ = φd , ξ

is approximately 4. This just means that at this density the
growth of zigzag order has grown to involve four adjacent
disks, so that the disks will typically no longer be able to
bounce from one wall to another unless they first push other
disks away. In other words, above φd the disks are caged.
Escape from the cage requires the collective motion of several
disks, a process which will be studied in more detail in
Sec. IV. We believe also that the onset of caging behavior
is also ultimately responsible for the strong fluid to fragile
fluid crossover behavior described in Ref. [2]. For φ > φd the
dynamics is fragile, as the caging causes relaxation times to
increase faster than would be expected on a simple Arrhenius
picture.
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If the analogy with hard spheres near φd � 0.58 is appro-
priate, then a suitable autocorrelation function for studying
glassy behavior in our system would seem to be

A(t) = 〈yi(0)yi(t)〉〈
y2

i

〉 . (10)

A(t) will equal unity at t = 0, and as φ → φd , one would
expect a plateau to develop for larger times. After a time
τα , the “alpha” relaxation time, A(t) starts to decay to zero
as the disks escape their cages and 〈yi(t)〉 approaches zero.
The study of this autocorrelation function will be published
separately [13].

Several groups have extracted a dynamical length scale
from the four point dynamical susceptibility of bulk colloidal
matter or via simulations of it for hard spheres and disks
[14–16]. In these studies the length scale relates to the
average number of particles that are cooperating in a dynamic
heterogeneous event. We suspect that this dynamical length
therefore might relate to our length scale ξ , which is also a
measure of the number of particles which move cooperatively,
but see Ref. [12].

III. RESULTS FOR LARGE DENSITIES

Using the integral equation (6) to solve for the equilibrium
properties gives little insight as to what is going on, and
it becomes increasingly difficult as φ → φmax. Analytical
progress is, however, possible in that limit because every disk
is typically found within a small distance of order 1/(βf ) from
a wall. The disks form the zigzag pattern shown in Fig. 1 with
relatively few defects, where a defect is a pair of disks (like
those shaded in Fig. 1) that lie close to the same wall of the
channel. We begin by calculating θ , the concentration of these
defects present in the system at equilibrium.

When βf is large, the largest contributions to the partition
function (4) come from the neighborhoods of jammed states
in which every disk is in contact with its two neighbors and
a wall of the channel. Each jammed state is a local minimum
of the excluded volume

∑
j σ (yj ,yj+1), which is the reason

its neighborhood makes a relatively large contribution to the
partition function. We calculate these contributions below.

It is convenient to introduce new integration variables to
parametrize a configuration in the neighborhood a jammed
state. We define zi to be the distance of disk i from its confining
wall at y = ±h/2.

For neighboring disks 1 and 2 on opposite sides of the
channel, the contribution to the excluded volume is

σ (1,2) =
√

σ 2 − (h − z1 − z2)2

�
√

σ 2 − h2 + h√
σ 2 − h2

(z1 + z2). (11)

Neighboring disks on the same side of the channel make a
contribution σ (1,2) � σ + O[(z1 − z2)2/σ ]; in this case, there
is no term linear in z1 or z2.

The jammed states can be more fully specified by stating the
number and arrangement of defects within them. We suppose
that there are M defects in a particular jammed state. Any one
of the disks in this state will have either both of its neighbors
on the opposite side of the channel if it forms part of the

zigzag pattern or one neighbor on the same side of the channel
and the other on the opposite side if it is part of a defect.
(Configurations in which three or more disks lie adjacent at
the same wall need not be considered, as they are unstable
under compression: there is no barrier to moving the central
disk to the opposite side of the channel.) We can renumber the
disks k = 1 to 2M for those belonging to defect pairs and k =
2M + 1 to N for those which do not. With this renumbering
and in terms of the new variables zk , the excluded volume can
be written

N−1∑
i=1

σ (yi,yi+1) � (N − M)
√

σ 2 − h2 + Mσ

+
2M∑
k=1

hzk√
σ 2 − h2

+
N∑

k=2M+1

2hzk√
σ 2 − h2

(12)

to first order in the variables zk . We insert this expression into
Eq. (4) and integrate from zk = 0 to ∞ ; formally, zk should
always be smaller than h, but when βf is large, the error due
to extending the range of integration is exponentially small.
The resulting contribution to (4) is

1

(βf 	2)N

(√
σ 2 − h2

βf h

)2M (√
σ 2 − h2

2βf h

)N−2M

× e−βf [(N−M)
√

σ 2−h2+Mσ ], (13)

which depends only on M and not on the detailed arrangement
of the defects. To obtain the total contribution from all states
with M defects, we must multiply (13) by the number of these
arrangements, which is approximately

WM = (N − M)!

M! (N − 2M)!
. (14)

The combinatoric factor WM has a simple explanation. Each
of the M defects consists of a pair of neighboring disks. This
accounts for 2M disks; the remaining N − 2M “free” disks
are not part of any defect. The defect configurations can be
regarded as arrangements of M defect pairs and N − 2M free
disks, in which adjacent objects (defect pairs or free disks)
occur alternately on opposite sides of the channel. The number
of arrangements of N − M objects, M of one kind and N −
2M of another, is the factor WM given in Eq. (14).

The preceding argument for WM ignores the facts that,
in a rectangular channel, the first and last disks must, for
stability, be free disks and that, for any given M , there are two
possible arrangements for this pair. The remaining N − 2 −
2M free disks and M defect pairs can be permuted arbitrarily,
which leads to 2 × (N − 2 − M)!/[(N − 2 − 2M)! M!] as the
correct combinatoric factor. The difference compared with
(14) is unimportant in the application below, in which we use
the thermodynamic limit of ln WM . It may be noted that we
have also ignored the special nature of the first and last disks
on the right-hand side of Eq. (12). Treating these correctly
would change the exponents in (13) by ±2, which again is
unimportant in the thermodynamic limit.
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After combining the results of Eqs. (13) and (14) we find

exp(−β
) = 1

(βf 	2)N
∑
M

WM e−βf [(N−M)
√

σ 2−h2+Mσ ]

×
(√

σ 2 − h2

βf h

)N
1

2N−2M
. (15)

In the thermodynamic limit we can convert the sum over M to
an integral over θ , where M = θN , and write

exp(−β
) = N

∫
dθ exp[−β
∗(N,βf,θ )] . (16)

The effective free energy 
∗ is given by

β
∗(N,βf,θ )

= −N

{
(1 − θ ) ln(1 − θ ) − θ ln θ − (1 − 2θ ) ln(1 − 2θ )

− βf [(1 − θ )
√

σ 2 − h2 + θσ ]

+ ln

√
σ 2 − h2

h
− 2 ln(βf 	) − (1 − 2θ ) ln 2

}
, (17)

in which we have used Stirling’s approximation for the
logarithms of factorials. For large N the integral in Eq. (16)
can be done by steepest descents by finding the solution
of ∂
∗(N,βf,θ )/∂θ = 0. This yields an equation for the
equilibrium value of the defect density θ ,

θ (1 − θ )

(1 − 2θ )2
= 4 exp[βf (

√
σ 2 − h2 − σ )]. (18)

From the relation L = ∂
∗/∂f we can obtain the equilibrium
length of the system,

L = N [(1 − θ )
√

σ 2 − h2 + θσ ] + 2N

βf
. (19)

This can be rearranged to give the approximate equation of
state

βf = 2N

L − N [(1 − θ )
√

σ 2 − h2 + θσ ]
. (20)

From Eqs. (18) and (20) we can calculate βf σ and θ in terms
of φ, as shown in Figs. 2 and 5. In the high-density limit, the
agreement is excellent, as would be expected, but what is more
surprising is that the agreement is fairly good down to quite
low values of the packing fraction, φ � φd .

In the limit when βf σ is large, θ is small, and Eq. (18)
simplifies to

θ � 4 exp[−βf (σ −
√

σ 2 − h2)]. (21)

The exponential can be understood as an ordinary Boltzmann
factor. The extra length 
a involved in inserting a single
defect into the system over the length in the state of maximum
density is


a = σ −
√

σ 2 − h2 . (22)

The work done increasing the length against the applied force
is 
E = f 
a , so the exponential in Eq. (21) is just the usual
Boltzmann expression exp(−β
E).
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FIG. 5. (Color online) Plot of θ = 〈M〉/N , the average density
of defects, against φ. The data points are from the simulations in
[4], while the red dashed line is from solving Eqs. (18) and (20).
This analytical solution is expected to be an increasingly good
approximation as φ approaches φmax.

The equation of state, Eq. (20), can be simplified in the
limit of large βf σ when θ → 0, giving

βf � 2N

L(1 − φ/φmax)
, (23)

which is consistent with the general results of Salsburg and
Wood [17] for the limit φ → φmax.

Intuitively, one would expect there to be a relation between
the density of defects θ and the correlation length ξ , with
θ ∼ 1/ξ : the correlation length should be comparable with
the spacing between the defects. Figure 6 bears this out and
further suggests that as φ → φmax the product θξ → 1/2. This
result can be understood as follows. In the limit φ → φmax,
the defects are very dilute and are almost independent of one
another. The probability Pk(r) that there will be k defects
between disks i and i + r should therefore follow a Poisson
distribution,

Pk(r) = 1

k!
(θr)k exp(−θr). (24)
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FIG. 6. (Color online) θξ vs βf σ . Here θ was obtained from
the solution of Eqs. (18) and (20), and ξ was obtained from the
transfer-matrix solution. As βf σ becomes large, Eq. (25) predicts
that θξ → 1/2.
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In the high-density limit, the disks are pressed tightly against
the walls, so each yi is approximately ±h/2. The probability
that yi yi+r � +(h/2)2 is then the probability that there is an
even number of defects between i and i + r , which is equal to
the sum

Peven =
∞∑

k=0

P2k(r) = [1 + e−2θr ]/2 ,

while the probability that yiyi+r � −(h/2)2 is the probability
that there is an odd number of defects between i and i + r ,
which is the sum

Podd =
∞∑

k=0

P2k+1(r) = [1 − e−2θr ]/2 .

From these,

〈yiyi+r〉 � (h/2)2[Peven + (−1)Podd]

= (h/2)2 exp(−2θr)

≡ (h/2)2 exp(−r/ξ ). (25)

Thus 2θ = 1/ξ , or θξ = 1/2 at high density. The form of ξ as
φ → φmax is therefore

ξ � 1
8 exp(βf 
a). (26)

This result is clearly consistent with the numerical results
shown in Fig. 3. The argument of the exponential can also
be understood by calculating the defect free energy δF �
f 
a − kBT ln ξ . The first term is the energy cost of creating
the defect; the second is the reduction in its free energy by the
entropy of placing it at any of ξ positions. Equating the defect
free energy to zero gives the exponential in Eq. (26).

While the system of disks in a narrow channel has been
studied for the insight it could provide on glass behavior in
three dimensions, there is one striking difference between it
and typical three-dimensional glasses. It is that we understand
the origin in the narrow channel system of its growing static
length scale ξ : it quantifies the growth of the zigzag order
as φ → φmax. This growth would also be expected to be
visible in the structure factor S(qx,qy) as Bragg-like peaks
at the wave vectors corresponding to that of the zigzag pattern
(i.e., multiples of qx = 2π/

√
σ 2 − h2 and qy = 2π/h) which

would grow as φ → φmax. This feature of the narrow-channel
system reflects the fact that the most dense state has crystalline
order, and at lower densities the growing length scale ξ is
a measure of the extent of the short-range crystalline order.
The crystalline order is broken by the (topological) defects,
and the correlation length ξ is basically the spacing between
the defects. In three dimensions it is found that the structure
factor hardly alters at densities close to φd , but it is sometimes
suggested that glass behavior might be associated with changes
in more subtle correlations (see, e.g., [18,19]). We suspect that
higher correlation functions will describe the onset of caging
and must therefore contain a growing length scale. But these
correlation functions have yet to be identified, and they may
turn out to depend on the details of the intermolecular potential.

FIG. 7. (Color online) The transition state for motion of a defect.
In the top diagram, the two blue shaded disks are a defect in the
zigzag arrangement of disks. The defect can move when one disk
crosses the channel by squeezing between its neighbors: the system
passes through the transition state shown in the middle diagram to
reach the defect state shown in the bottom diagram. In the top diagram
the defect involves disks 3 and 4; in the bottom diagram the defect
involves disks 4 and 5 when the disks are numbered from the left.
The net motion of the defect is to the right, and 
b is the extra length
needed to allow this motion.

IV. DYNAMICS

Glass behavior is largely a dynamic phenomenon, and in
this section we shall analyze a few aspects of the dynamics of
our system which are sufficiently simple to permit an analytical
treatment.

We begin by calculating the typical time it takes for a defect
to hop to its neighboring site. This was studied in Ref. [4] by
means of molecular dynamics, but we shall use transition-state
theory [20], which works best when the motion is inhibited
and the transition rate is small. The transition state is the state
through which the system has to squeeze during the course of
a transition: Fig. 7 shows the transition state that our system
of hard disks must pass through in order for a defect to move.
When the dynamics is not dominated by just the transition
state, the more general approach of studying the complete
landscape as in Ref. [21] might be useful.

At the transition state, the extra length of the system 
b

over the length which just contains the defect is


b =
√

4σ 2 − h2 − σ −
√

σ 2 − h2. (27)

The transition rate associated with this saddle is

1/τ = 1/τ0 exp(−βf 
b), (28)
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FIG. 8. (Color online) ln(τ ), where τ is the time scale on which
defects move, plotted against βf 
b. 
b is defined in Eq. (27) and is
the extra length associated with the transition state through which the
system must pass to allow a defect to move. The red dashed line is
the prediction of our analytical approximation, Eq. (28), which would
be expected to be exact only for large βf 
b. Data points are from
Ref. [4].

where τ0 is of the order of a disk collision time. In Fig. 8 we
have plotted data on τ from Ref. [4] as a function of βf 
b.
The agreement with (28) is excellent for βf 
b > 3.5, that is,
for φ > 0.6, while at densities closer to φd the agreement is
less satisfactory. But it should be noted that the transition-state
approximation is only expected to be good under the same
set of circumstances that make our approximations for the
equation of state good, that is, for φ → φmax.

We next calculate the transition rate associated with
the creation of a pair of defects. (With periodic boundary
conditions, as used in Ref. [4], defects can be created only
in pairs.) By detailed balance, this rate of creation must equal
the rate at which defects move together and annihilate. The
transition state for creating a pair of defects is shown in
Fig. 9(c). The extra length 
c required to reach this transition
state is


c =
√

4σ 2 − h2 + σ − 3
√

σ 2 − h2. (29)

The transition rate for nucleating two defects or for the rate at
which pairs of defects annihilate is then

1/τD = 1/τ0 exp(−βf 
c). (30)

The motion of the defects towards each other so that they
might annihilate is probably diffusive. They typically have to
diffuse a distance of the order of their spacing ξ to meet, so
that one might expect that

τD/τ ∼ ξ 2, (31)

where τ is the time scale for a defect to hop to a neighboring
site by the process illustrated in Fig. 7. Our results for ξ , τ ,
and τD , are consistent with Eq. (31). Note that this implies that
the diffusion coefficient for defects varies as 1/τ .

FIG. 9. (Color online) The creation of a pair of defects, starting
from the most densely packed state (a). The intermediate state shown
in (b) is unstable, as the middle of the three disks in a line can escape
upwards. Squeezing through the transition state shown in (c) leads
to the two-defect state of (d). 
c is the extra length occupied by the
transition state.

Unfortunately, there seem to be no direct studies of τD in
the molecular dynamics literature. We can, however, use our
expression for τD to understand the results of the simulations
described in Ref. [3].

In this paper, the authors applied the Lubachevsky-
Stillinger (LS) algorithm [5] in which the diameter of the
disks was increased at a rate γ = σ−1 dσ/dt in the course of
a molecular dynamics simulation starting from a small initial
value of σ . They kept the ratio Hd/σ fixed and investigated the
γ dependence of the jammed packing fraction φJ . Their results
for φJ (γ ) (shown in Fig. 10) indicate that φJ is a decreasing
function of γ . To understand this, it should first be noted that
jammed states with smaller values of φJ contain more defects,
the relationship being [2]

φJ = Nπσ 2

4Hd [Mσ + (N − M)
√

σ 2 − h2]

= πσ 2

4Hd [θσ + (1 − θ )
√

σ 2 − h2]
. (32)

The hypothesis we shall make, following the ideas of Kibble
[6] and Zurek [7], is that when the rate of compression γ

exceeds the rate at which defects can annihilate 1/τD , the
defect density θ is frozen in and is not changed in the last
stages of the LS procedure. Thus by equating 1/τD to γ we
get an estimate of βf from Eq. (30). This in turn can be
used in Eq. (18) to obtain θ , which then leads via Eq. (32) to
φJ . These estimates of φJ as a function of γ are plotted in
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FIG. 10. (Color online) The jammed-state packing fraction φJ

plotted against log10(γ ), where γ is the quench rate. The data points
are taken from Ref. [3]. The red dashed line is our prediction of φJ (γ )
from the Kibble-Zurek mechanism; see the discussion following
Eq. (32).

Fig. 10, together with the simulation data of Ref. [3]; there is
reasonably good agreement between the two.

Equation (32) also shows that φJ can be regarded as a
function of φ, which we shall call φJ (φ), via the dependence
of θ on the equilibrium value of φ. We can use φJ (φ) to rewrite
Eq. (20) as

βf = 2N

L[1 − φ/φJ (φ)]
. (33)

Equation (28) expresses a relaxation time τ in terms of βf

and so provides, in conjunction with Eq. (33), an illustration
of the Stillinger map idea that was used in Ref. [20] to explain
the relaxation times of systems of hard disks and hard spheres.
The Stillinger map of a configuration at packing fraction φ is its
nearest inherent (jammed) state, with packing fraction φJ (φ).
In the narrow-channel system, the nearest jammed state is what
is obtained in an extremely rapid compression [3]. Notice that
for this system βf (and hence τ ) diverges only at φ = φmax: it
is only at φ = φmax that φ = φJ (φ).

V. POINT-TO-SET LENGTH

In recent years it has been argued that the point-to-set length
scale ξPS is an important length scale in glasses [22,23]. It is
determined in, say, three dimensions by first equilibrating the
system of particles and then freezing all those lying outside a
spherical cavity of radius R. One then studies the correlation
function C(t) = 〈n(t)n(0)〉 as t → ∞, where n is the number
of particles in a small box at the center of the sphere. If
the cavity radius R is greater than ξPS , then C(t) decays to
the value it would have if the particles moved randomly
over the volume of the cavity. However, when ξPS > R, this
does not happen, and so by varying R one can estimate ξPS .
Basically, ξPS is a measure of the size of the smallest cavity
for which the particles can escape their initial positions when
the particles on the boundary are frozen.

In our narrow-channel system we can mimic this procedure
by simply freezing all but P disks, with the P disks all adjacent
to each other. Because in our system each disk interacts only
with its nearest neighbors, one only needs to fix the two

disks at the ends of the region which contains the P disks in
typical configurations drawn from an equilibrium distribution.
If the packing fraction is φ, then the length of the region will
be R = Pπσ 2/(4Hdφ). Provided R − P

√
σ 2 − h2 > 
c, the

“cavity” will be large enough to allow the creation of the
defects which are needed to enable the system to relax.
This fixes a lower bound on P . Setting ξPS = P

√
σ 2 − h2

gives

ξPS ∼ 
cφ

φmax − φ
. (34)

Note that ξPS grows as a simple power law as φ → φmax,
whereas the correlation length ξ grows exponentially rapidly
as φ → φmax, as can be seen from Eqs. (26) and (23). As we
pointed out earlier, ξ (or rather ξ

√
σ 2 − h2 ) is also the typical

distance between defects. Thus a region of size ξPS is unlikely
to contain any defects in equilibrium, which justifies the use of
the relation ξPS = P

√
σ 2 − h2. It also justifies the use of 
c

(rather than 
b) as the additional length needed for relaxation,
as there will be no defects present to disrupt the zigzag order
by their motion.

Activated dynamics is associated with the point-to-set
length via

τ = τ0 exp[(ξPS/ l)ψ ], (35)

where l is a length scale of order σ . For agreement with the
expressions for, say, τD or the τ of Eq. (28), we would require
the exponent to be ψ = 1.

The two length scales ξ and ξPS relate to different phe-
nomena. In the literature relating to glass-forming materials,
ξPS is popular [22,23], as it does not require the identification
of the growing structural features which must be behind the
onset of caging. In three dimensions, identifying the important
clusters is difficult, and they may be dependent on details of
the interatomic potentials [18,19]. But a full treatment of glass
behavior without such an understanding may be impossible.

VI. DISCUSSION

All of the equilibrium properties of the model of hard disks
in a channel can, in principle, be determined from the transfer
matrix integral equation, but solutions of this equation can only
be obtained numerically. One of the purposes of our paper was
to show the utility of the analytical approximations which can
be found for the limit when φ → φmax. In the same limit, the
dynamics of the system is essentially that of a dilute gas of
defects. We have discussed some of its basic features, such as
the time scales for the creation and annihilation of defects and
their diffusion rate.

As is often the case with exactly soluble models, it is hard to
calculate some particular quantities. For example, the structure
factor S(qx,qy) is the natural function to study to discuss the
growth of (say) zigzag order, but we do not know how to obtain
it. The dynamics of the model is nontrivial, and here much
remains to be done via simulations and analytical approaches.
We have in mind here the study and understanding of the
autocorrelation function of Eq. (10).

One of the pleasing features of this model is that it has
features that mimic the behavior of three-dimensional spheres
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at the packing fraction φ � 0.58; that is, it has an avoided
dynamical transition at φd . Above this density the dynamics
involves cooperative movements of the disks and is activated.
The approach to φd from lower densities is accompanied
by the growth of the length scale ξ , and when this is large
enough, caging appears. We suspect that such a feature might
be present in higher dimensions, but the growth of the cage may
require study of more subtle correlations than those captured

by the structure factor; for example, the correlations studied in
Ref. [18].
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