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Critical behavior of a relativistic Bose gas

P. N. Pandita
P-30, North Eastern Hill University, Shillong 793 022, India

(Received 25 June 2013; revised manuscript received 22 September 2013; published 11 March 2014)

We show that the thermodynamic behavior of relativistic ideal Bose gas, recently studied numerically by
Grether et al., can be obtained analytically. Using the analytical results, we obtain the critical behavior of the
relativistic Bose gas exactly for all the regimes. We show that these analytical results reduce to those of Grether
et al. in different regimes of the Bose gas. Furthermore, we also obtain an analytically closed-form expression
for the energy density for the Bose gas that is valid in all regimes.
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Bose-Einstein condensation (BEC) of an ideal Bose gas has
been a subject of extensive studies. In particular, Bose-Einstein
condensation in a relativistic ideal Bose gas with nonzero
chemical potential has been studied by several authors [1–5].
In earlier papers [1,6] on relativistic ideal Bose condensation,
antiboson production was not taken into account. The necessity
of the antiboson contribution to the thermodynamics of Bose
gas at relativistic energies was pointed out in [3], and a high-
temperature expansion for various thermodynamic quantities
was established and studied. At sufficiently high temperatures,
antibosons are expected to be pair-produced in sufficient
numbers so that their contribution cannot be neglected.

In a recent paper, Grether et al. studied Bose-Einstein
condensation in a relativistic ideal Bose gas, and calculated its
thermodynamic properties numerically [7]. In this paper, we
point out that the model can be solved exactly in a closed form,
including antibosons, without making any approximations,
and we show that an analytic expression for thermodynamic
quantities can be obtained at all temperatures and the critical
behavior studied in general. The analytical study is physically
more transparent, and sheds light on the connection between
relativistic and the nonrelativistic ideal Bose gas by showing
that the critical behavior is the same for the two systems. It is
only the overall amplitude that is different for the two systems.
We also show that our exact results reduce to the results of
Ref. [7] in different regions studied by these authors.

The ideal Bose gas is characterized by three basic length
scales, namely the thermal wavelength λT , the mean interpar-
ticle spacing λ, and the Compton wavelength λC. From these,
one can obtain two independent ratios which we consider to
be R1 = λ/λT and R2 = λC/λT . For quantum (classical) gas,
we have R1 � 1(� 1), whereas for R2 � 1 and R2 � 1 we
will have nonrelativistic or ultrarelativistic gas, respectively.
Clearly, it is important to understand the connection between
different regions, characterized by different length scales, and
have a unified treatment for all the regions involved. In this
paper, we solve the model exactly in general, which includes
all the cases corresponding to all the length scales and without
making a high-temperature expansion. We show analytically
that the critical behavior of the model is the same as that
of standard nonrelativistic Bose gas. The difference between
nonrelativistic and the ultrarelativistic gas, where antiparticles
are important, arises only in the values of critical amplitudes.

The net “charge” or number density, assumed positive
without loss of generality, for a relativistic Bose gas of N

bosons and N antibosons, each of mass m, can be written as

(the notation is standard, and we choose units � = c = kB =
1,β = T −1; g is the spin degeneracy factor)

n = g

∫
d3k

(2π )3

[
1

exp[β(k2 + m2)1/2 − βμ] − 1

− 1

exp[β(k2 + m2)1/2 + βμ] − 1

]
, (1)

where we have enclosed the system in a cubic box of volume
L3, with L being the length of an edge in each of the three
spatial dimensions. This can be further written as

n = m3g

2π2

∫ ∞

0
dx x2 sinh(α − φ)

cosh a(x) − cosh(α − φ)

≡ m3g

2π2
W3(α,φ), (2)

where α = βm, a(x) = α(1 + x2)1/2, and φ = −β(μ − m).
The parameter φ is defined so as to reduce to its nonrelativistic
counterpart in that limit. For d spatial dimensions, this
generalizes to

n = g

∫
ddk

(2π )d

[
1

exp[β(k2 + m2)1/2 − βμ] − 1

− 1

exp[β(k2 + m2)1/2 + βμ] − 1

]
, (3)

which can be written as

n = a−1
d Wd (α,φ), (4)

where

ad = 2d−1πd/2�(d/2)m−dg−1, (5)

Wd (α,φ) =
∫ ∞

0
dx xd−1 sinh(α − φ)

cosh a(x) − cosh(α − φ)
. (6)

The results (4), (5), and (6) agree with the result (8) of Ref. [7].
Similarly, we can write the energy density as

u = g

∫
d3k

(2π )3

[
(k2 + m2)1/2

exp[β(k2 + m2)1/2 − βμ] − 1

+ (k2 + m2)1/2

exp[β(k2 + m2)1/2 + βμ] − 1

]
, (7)

which in n dimensions can be written as

u = ma−1
d Yd (α,φ), (8)

1539-3755/2014/89(3)/032110(3) 032110-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.032110


P. N. PANDITA PHYSICAL REVIEW E 89, 032110 (2014)

where

Yd (α,φ) =
∫ ∞

0
dx xd−1 α−1a(x) cosh(α − φ) − sinh(α − φ) − α−1a(x)e−a(x)

cosh a(x) − cosh(α − φ)
. (9)

To study the critical behavior of relativistic Bose gas, it is
useful to perform the integrals in (3) in a closed form by
expanding the integrands in infinite series and introducing
modified Bessel functions in the resulting integrals [8,9]. To
do this, we use the expansion

1

exp[(t2 + α2)1/2 − rα] − 1
=

∞∑
p=1

erαpe−p(t2+α2)1/2
, (10)

in the integrand of (3), where r = βμ = (α − φ). Inserting
(10) in (3), and integrating term by term, we obtain

Wd (α,φ) = bd

∞∑
p=1

p−(d ′−1) sinh(pα − pφ)Kd ′(pα), (11)

where Kd ′ (pα) is a modified Bessel function of order d ′ and
the real argument pα,

Kν(x) = (x/2)2�(1/2)

�(ν + 1/2)

∫ ∞

1
dt(t2 − 1)ν−(1/2)e−xt , (12)

and

bd = π−1/22d ′
�(d/2)α(d ′−1), d ′ = 1

2 (d + 1). (13)

Similarly, for the energy density (8) and (9), we obtain

Yd (α,φ) = bd

∞∑
p=1

p−(d ′−1)[cosh(pα − pφ)Kd ′+1(pα)

− sinh(pα − pφ)Kd ′ (pα) − (pα)−1

× cosh(pα − pφ)Kd ′(pα)]. (14)

We can study the critical behavior of the relativistic Bose gas
by studying the variation of μ, or equivalently φ, as a function
of T . By standard argument of keeping charge density positive,
μ must satisfy the condition −m � μ � m. The parameter φ

is, therefore, defined to be positive. From Eqs. (6) or (11),
it is clear that as β → 0,μ → 0, or φ → βm. Decreasing β

increases μ until it reaches its limiting value m. The critical
temperature is thus obtained from (4) for φ = 0. Thus,

adn = Wd (αc,0) = bdc

∞∑
p=1

p−(d ′−1) sinh(pαc)Kd ′(pαc),

(15)

where bdc is the value of bd at αc = βcm = m/Tc. Using the
large argument form of the function Kν(z),

Kν(z) ≈
[

π

2z

]1/2

e−z

[
1 + 4ν2 − 1

8z
+ · · ·

]
, (16)

we see that the ratio of the successive terms of the series (15)
can be written as

ur+1

ur

= 1 − d

2r
+ O

(
1

r2

)
, r → ∞, (17)

so that by ratio test the series converges for d > 2. We therefore
conclude that a nonzero Tc exists. It is important to note that
this result is independent of αc [≡ mc2/(kBTc)].

Using (4) and (6), we can determine the behavior of φ in
the critical region. To do so, we expand Wd (α,φ) near φ = 0,
which can be obtained by calculating ∂Wd (α,φ)/∂φ at φ = 0.
We obtain

∂Wd (α,φ)/∂φ|φ=0 = −bd

∞∑
p=1

p−(d ′−2) cosh(pα)K ′
d (pα).

(18)

This sum converges only for d > 4. The behavior for 2 < d <

4 as φ → 0 can be obtained by calculating the derivative

∂Wd (α,φ)/∂φ = −bd

∞∑
p=1

p−(d ′−2) cosh(pα − pφ)K ′
d (pα),

(19)

from which we get, asymptotically,

∂Wd (α,φ)/∂φ ≈ −1

2
(2/α)d/2�(d/2)F(d−2)/2(φ), (20)

Fn(φ) =
∞∑

p=1

p−ne−pφ, (21)

Fn(φ) ≈ �(1 − n)φn−1, n < 1,φ → 0. (22)

Putting these results together, we can write

∂Wd (α,φ)/∂φ| ≈ −1

2
(2/α)d/2�(d/2)�(2 − d/2)φ(d−4)/2,

(23)

for 2 < d < 4. However, the quantity ∂Wd (α,0)/∂α is calcu-
lated to be finite and negative at αc. We can therefore write

Wd (α,0) ≈ W(αc,0) − (α − αc)W ′, (24)

W ′ ≡ −[dWd (α,0)/dα]α=αc
. (25)

Using (23) and (24) in (4), we can write

φ ≈ (C+)−1t2/(d−2), 2 < d < 4, t > 0, (26)

C+ =
[

2d/2�(d/2)�(2 − d/2)

(d − 2)α(d+2)/2
c W ′

]2/(d−2)

, (27)

where we have written

t = (T − Tc)/Tc. (28)

From the result (26) we note that the critical exponent is 2/(2 −
d), which is the same as that of the nonrelativistic Bose gas.
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Thus, the critical behavior of the gas is the same in all regions,
whether relativistic or nonrelativistic [10]. The only difference
relates to the amplitude, the overall factor multiplying [(T −
Tc)/Tc]2/(d−2) in (26). Finally, turning to the behavior for T <

Tc, we note that φ = 0 for T < Tc.
To see the connection of our general analytical results with

the results of Ref. [7], we consider the nonrelativistic (NR) and
the ultrarelativistic (UR) limit for the number density and the
energy density of the Bose gas. These correspond to αc � 1
and αc � 1, respectively. From Eq. (15), we have

Wd (αc,0) = bdc

∞∑
p=1

p−(d ′−1) sinh(pαc)Kd ′(pαc). (29)

Using (16), we get for the nonrelativistic case

Wd (αc,0) = 1

2

[
2

αc

]d/2

�(d/2)ζ (d/2), αc � 1. (30)

Using the fact that Wd (αc,0) = adn, and solving (30) for the
critical temperature αc = m/Tc, we get

Tc = 2π

m

[
n

gζ (d/2)

]2/d

, (31)

in the nonrelativistic region, which is the result (5) of Ref. [7].
We now consider the behavior of energy density in the

nonrelativistic region. Using (8), (9), and (14), we can write
for the energy density in the nonrelativistic region

u = ma−1
d Yd (αc,0), (32)

where

Yd (αc,0) = 1

2αc

[
2

αc

]d/2

�

(
d + 2

2

)
ζ (d/2), αc � 1.

(33)

On the other hand, for the ultrarelativistic limit αc � 1, we
can use the expansion [9]

Kν(z) ≈ 2ν−1�(ν)

zν
(34)

for z � 1 to obtain

Wd (αc,0) = 2

αd−1
c

�(d)ζ (d − 1), αc � 1, (35)

which, together with the result (15), can be solved for the
critical temperature to obtain

Tc =
[

n(2π )d�(d/2)

4gmπd/2�(d)ζ (d − 1)

]1/(d−1)

, αc � 1, (36)

which is the same as the result (9) of Ref. [7]. Finally, in the
UR limit the energy density can be written as

u = ma−1
d Yd (αc,0), (37)

Yd (αc,0) = 2

αc

(d − 1)�(d)ζ (d − 1), αc � 1. (38)

In summary, we have solved the ideal, relativistic Bose gas in a
closed form, and we have shown that the critical behavior of the
gas is the same as for the standard nonrelativistic Bose gas. Our
general results are applicable to all the regions of the Bose gas.
We have shown that our general results reduce to the known
results in the nonrelativistic and the ultrarelativistic regions.
Furthermore, we have also obtained an analytical result for the
energy density of the Bose gas in a closed form. We have thus
provided a unified treatment of the Bose gas that is applicable
in all regions of parameter space.
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