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Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins
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We explore the dynamical large deviations of a lattice heteropolymer model of a protein by means of path
sampling of trajectories. We uncover the existence of nonequilibrium dynamical phase transitions in ensembles
of trajectories between active and inactive dynamical phases, whose nature depends on the properties of the
interaction potential. We consider three potentials: two heterogeneous interaction potentials and a homogeneous
G0 potential. When preserving the full heterogeneity of interactions due to a given amino acid sequence, either
in a fully interacting model or in a native contacts interacting model (heterogeneous G6 model), the observed
dynamic transitions occur between equilibrium highly native states and highly native but kinetically trapped
states. A native activity is defined that allows us to distinguish these dynamic phases. In contrast, for the
homogeneous GO model, where all native interaction energies are uniform and the amino acid sequence plays
no role, the dynamical transition is a direct consequence of the static bistability between the unfolded and the
native state. In the two heterogeneous interaction models the native-active and native-inactive states, despite their
thermodynamic similarity, have widely varying dynamical properties, and the transition between them occurs

even in lattice proteins whose sequences are designed to make them optimal folders.
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I. INTRODUCTION

In statistical mechanics, when trying to uncover the physical
mechanisms behind complex emergent behavior of materials
or natural systems, we very often consider highly simplified
model versions of such systems in the hope that these models
are simple enough to allow thorough investigation while,
at the same time, retaining the basic physical ingredients
of the problem of interest [1-4]. In the case of protein
folding, this approach has helped shape our current under-
standing through theoretical and computational studies of
models that discard fine details of molecular structure and/or
make simplifying assumptions about the interaction energies
of amino acid residues [5-7]. One such idealized model is
the representation of a heteropolymer by a self-avoiding walk
on a cubic lattice, as originally proposed by Go6, where each
occupied lattice site represents an amino acid and each edge
represents an unbreakable backbone bond [8,9]. This model
has been widely studied [9—-11], has been shown to mimic the
elementary aspects of protein folding, and is the system we
consider here.

The question we address is that of the existence of highly
metastable, or “glassy,” states [12] in lattice protein models.
A well- “designed” sequence (one that makes the protein an
efficient folder) should minimize kinetic bottlenecks en route
to the native state—sometimes referred to as the “principle
of minimal frustration” in the context of natural proteins
[13]. In contrast, a heteropolymer with a random or a poorly
designed sequence is plagued by kinetic traps and, at low
temperatures, becomes arrested in an amorphous compact
state, analogous to a glass in this context [14—16]. On the
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surface at least, this would appear to indicate that in well-
designed protein sequences glassy states are absent. Here we
show, however, that even well-designed lattice proteins, i.e.,
those with sequences that allow them to reach the desired
native state efficiently, possess glass-like arrested states. These
states are thermodynamically unlikely (thus folding events are
successful on average and occur fast) yet highly kinetically
metastable. We show that, in fact, dynamics takes place
close to the first-order coexistence between an equilibrium
and “‘active” dynamical phase and a nonequilibrium and
“inactive” (or glassy) phase. We also show that glass-like
states can be highly native: just as in the glass problem, while
active and inactive states differ markedly in their dynamics,
they cannot be distinguished by simple structural measures
(here, degree of nativeness). We obtain these results by
studying the large-deviation (LD) properties of ensembles of
dynamical trajectories via the so-called “s-ensemble” method
[17-21], recently used to uncover dynamical phase behavior
and transitions in glasses and other systems with complex
dynamics. While our results are for a highly idealized system,
it is not far-fetched to speculate that more detailed models of
proteins will have dynamical phase behavior as rich as (if not
richer than) that we report here.

The paper is organized as follows. In Sec. II we introduce
the lattice models we study. In Sec. III we give a brief overview
of the s-ensemble approach for uncovering dynamical phase
behavior, both in a general context and for the more specific
case of the lattice protein model we study here, including
how to access the s ensemble with biased simulations.
Section IV presents the results for the heterogeneous and
full interaction models. In Sec. V the results are collected
into a schematic phase diagram, and in Sec. VI we provide
a discussion of our observations in a more biological context
and also compare them to other recent results in the litera-
ture. The Appendixes present further model and simulation
details.
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FIG. 1. (Color online) Results of HeGo s-ensemble simulations of 30 000 trajectories for different 7' and 7,5 (a) native state; (b) sequence;
(c) representative trapping state. k, as a function of s for temperatures of (d) Tie > T = 0.175 (€) Ttou = T = 0.19 (f) Troa < T = 0.205.
Different curves correspond to different trajectory lengths ( = ty,) in units of Monte Carlo steps: t = 1 x 10° [solid (black) line], t = 5 x 10°
[dashed (red) line] and # = 1 x 107 [dotted (blue) line]. The equilibrium mean first folding time (MFFT) at T = Tjyq is t = 1 x 10°. (g-i)
corresponding dynamical susceptibilities y (s). (j—1) Joint distribution of activity (per unit time and residue) k and nativeness Q from subsamples

of 5000 trajectories.

II. MODELS

We study the standard lattice protein model [14—16] of a
self-avoiding walk on a three-dimensional cubic lattice, where
each site on the walk represents an amino acid or residue of the
protein, and each bond that connects these sites a backbone
bond. The chain is unbreakable, self-avoiding, and ergodic,
and allowed Monte Carlo moves maintain these properties.
More details on the model and simulations are provided in the
Appendixes. With appropriately chosen interactions between
residues a lattice heteropolymer displays the characteristic
two-state kinetics and thermodynamics of simple proteins
[7]: at high temperatures the stable thermodynamic state
is that of an extended and mobile chain—the ‘“unfolded”
state—while at low temperatures the stable state is compact
and less mobile—the “native” state—the change of state being
“first-order-like,” i.e., a first-order crossover (due to the finite
extent of the system), whose formation is often initiated with
the nucleation of a set of key contacts between residues
[22-24]. As in real proteins, the folding into a specific native
state is encoded in the amino acid sequence, which in turn
determines the interactions.

Figure 1(a) shows one of the native structures we consider: a
chain of length L = 48, with N = 57 native contacts in its fully
folded state. We analyze three possible energy functions. In all
cases interactions between pairs of noncontiguous residues
(i.e., two residues which are not direct neighbors along the
backbone) are considered only when they lie on two lattice sites
which are one lattice spacing a away from each other. The first
energy function we consider includes all interactions between
such pairs of residues. The interaction energy between them
depends on the two residues involved and is parameterized by
the Miyazawa-Jernigan interaction matrix [25]: we call this
the Full model. The second energy function corresponds to

considering the same interactions as in the Full model only
between residues which form a native contact, i.e., between
residues which should be a lattice spacing away in the native
state: we call this the heterogeneous GO (HeGo) model. The
third energy function considers only native interactions with a
uniform interaction energy between native contacts: this is the
homogeneous Go (HoGo) model. Only for the Full and HeGo
model is the sequence relevant. The one shown in Fig. 1(b) was
specifically designed to be a fast folder to the native structure
in Fig. 1(a) [22]. Results of the HoGo model are mostly left
for the Appendixes.

The system’s dynamics is that of the standard Metropolis
Monte Carlo, using a previously proposed move set consisting
of single- and two-monomer moves [23]. The three models
we conside—Full, HeGo, and HoGo—display two-state
thermodynamics and folding kinetics [22,26,27], which are
reviewed in the Appendixes for completeness.

III. DYNAMICAL PHASE BEHAVIOR AND s ENSEMBLE
OF TRAJECTORIES

We are primarily interested in understanding the space-
time dynamics, which is achieved by looking at rare events
in the equilibrium path ensembles [17,18,20]. We denote
by X, a trajectory, of time extension 7 = ty,s, from such
an ensemble, and denote its corresponding path probability
P[X,]. In order to investigate the dynamical phase structure,
we define a dynamical order parameter termed the activity
K[X,], extensive in both system size and observation time,
which we use to classify trajectories. A convenient choice is
given by the “native activity,” that is, the total number of events
in which a native contact is made or broken in a trajectory. As
in the case of glasses, activity is the natural order parameter to
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explore metastability in systems displaying complex collective
dynamics [18,28].

For an equilibrated system at a given temperature, the
path ensemble P[X;] of trajectories X; can be sampled
straightforwardly by generating dynamical trajectories starting
from an equilibrated initial state. This is not very efficient for
exploring rare events. To explore the tails of P[X,] we can
formally define a modified ensemble of trajectories biased by
activity

—s K[X,]

pix = DA 0
Z:(s)

The parameter s is a biasing “counting” field conjugate to the

activity K[X,] [18]. The exponential factor in Eq. (1) biases

the probability of trajectories towards those which are less

(more) active when s > 0 (s < 0) compared to the unbiased

ensemble. The normalization factor,

Z(s)= Y P[XJe KX, )

X,

is the moment-generating function for K [that is, (K") =
(=)'} Z;(s)|s=0] and can be thought of as a dynamical
partition function associated with the ensemble of trajectories
biased by s.

In analogy with an equilibrium statistical mechanics prob-
lem, the dynamical partition sum Z;(s) is the object of interest.
At long times it acquires an LD form [18,29]:

Zi(s) ~ 'V, 3)

The LD function v (s) can be thought of as a dynamical free
energy. It is directly related to the order parameter distribution
at long times. That is, the probability P;(K) of observing an
activity K over time ¢ also has an LD form for long times,
P,(K) ~ e /D and the functions ¢ and ¥ are connected
by a Legendre transform [29].

Just like the free energy in an equilibrium problem,
the analytic structure of i(s) as a function of s tells us
about dynamical phases and possible phase transitions (or
crossovers, in the case of systems of finite extent) between
them. The average native activity, as a function of s, is given by

_ (K _ 2x BIXAKIX]  3y(s)

s = =

4
Nt Nt as @)

where we have defined «; as activity per unit time and unit
native contact (where N is the number of native contacts in the
fully folded state). When s = 0, Eq. (4) gives the average rate
at which native contacts are formed and broken in the normal
dynamics of the system. When s # 0, Eq. (4) gives the average
rate associated with atypical trajectories biased to be more or
less active by the field s. A singular change in ¥ (s) with s
translates into a singular change in «;, which will therefore
serve as the order parameter, which allows us to distinguish
between dynamical phases in the lattice heteropolymer. Al-
ternative choices for the activity, such as the total number of
formed/broken contacts, irrespective of whether or not they are
native, give equivalent results, as discussed in the Appendixes.

The average (-); in Eq. (4) is over the ensemble of
trajectories biased by s as in Eq. (1), which we call the
s ensemble. The s ensemble can be probed numerically by a
variation of transition path sampling (TPS) as used in [20] and
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[30]: in effect, a Monte Carlo scheme in trajectory space that
samples the distribution Ps[X,]. A trajectory X, can be sliced
into n segments of time extent t = ¢/n. Each segment of the
trajectory can serve as a shooting point from which part of the
original trajectory is regenerated. For the reversible trajectories
we are sampling here, the shooting direction can be forwards
or backwards. The probability of accepting a new trajectory
X" thus generated is given by a Metropolis criterion
dependent on the change in activity, min[1,e =5 (Knew=Koa)] This
procedure guarantees eventual convergence to the s ensemble
P;[X,] at a given temperature of the system.

IV. RESULTS

In Fig. 1 we show results for the s ensemble for the HeGo
model with the native structure and sequence in Figs. 1(a)
and 1(b); Figs. 1(d)-1(f) show the average native activity «,
Eq. (4), as a function of s for temperatures, below, at, and
above the folding temperature Tiq = 0.19 for this system
(To1q 1s defined as the temperature at which 50% of the native
contacts are formed, on average, in equilibrium). For s < 0
the native activity is larger than the typical one, and for s > 0
it is smaller, as expected from Eq. (1). But what is notable is
that the change from more active to less active as a function of
s becomes sharp with increasing the observation time of the
trajectory. This is also seen in the increase in the peak of the
dynamical susceptibility,

(K?)s — (K);
xk(s) = N7 , )
shown in Figs. 1(g)-1(i). Such behavior is indicative of a
first-order transition between an active/equilibrium dynamical
phase and an inactive/metastable dynamical phase. Even if
time can become infinitely large, the transition is rounded since
the protein is a system of finite extent in space. The first-order
dynamical transition in trajectories shown in Fig. 1 is highly
reminiscent of what is observed in models of glasses, where
the inactive phase is associated with dynamical metastability
[20,31].

The natural question to ask is whether there is a structural
signature of the active-inactive transition we observe in the
HeGo model. An obvious structural order parameter is the
“nativeness,” i.e., the overall time average of formed native
contacts Q = ¢! fot Zj n;j(t)dt’, where j runs over all native
contacts (j =1, ...,57 for the specific case in Fig. 1), and
n;(t) = 1,0 indicates whether native contact j is made/broken
attime 7. Figures 1(j)—1(1) show the joint probability of activity
(per unit time and residue) k = (Nt)~' K and nativeness Q of
all trajectories in an s ensemble near the critical value s.(7).
The bimodality of the distribution is evident, as expected
from the first-order nature of the transition, but what is
notable is that the active/inactive basins, which differ greatly
in dynamical activity, are difficult to distinguish in terms of
nativeness. Inactive trajectories are a consequence of a highly
metastable state which is also as native as equilibrium states; a
characteristic conformation associated with this inactive near-
native state is shown in Fig. 1(c). This, again, is reminiscent of
glasses, where the inactive glassy state is difficult to distinguish
structurally from the relaxing liquid [21].
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FIG. 2. (Color online) Results of the Full model where the
equilibrium (s = 0) MFFT to the folded state is r =2 x 10° at
Trola- (a) K, with respect to s at Tjpg = 0.19 averaged over 20 000
trajectories. (b) Fluctuations yx in terms of s. (c) Joint probability
density of k and Q from a subsample of 5000 trajectories.

The existence of inactive yet highly native states seems to
require the heterogeneity of interactions associated with the
amino acid sequence. In the Appendixes we present a similar
s-ensemble analysis for a HoGo model for the same structure
as in Fig. 1(a): for this model, where the sequence plays no role
in the interactions, there is a straightforward linear relation
between dynamical activity k and structural nativeness Q,
indicating that kinetic trapping is determined by the same
structural states—unfolded and native—that determine the
thermodynamics. In contrast, the Full model for the sequence
in Fig. 1(b) shows active-inactive transitions of similar richness
as the HeG6 model (see Fig. 2). This is indicative of the fact
that for qualitative folding models sequence heterogeneity is
essential, as for the case of the Full and HeGo6 models [22].

In Fig. 3 we further explore the nature of the active
and inactive dynamical phases. Figure 3(a) shows the joint
density profile of the activity and nativeness k and Q from a
subsample of 5000 trajectories at T = Tgq4, for two values of
s: s = 0 (typical dynamics) and s = s. ~ 10~* [an enlarged
version of Fig. 1(k)]. In the former case there is a clear
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FIG. 3. (Color online) Dynamic phase classification. (a) Densi-
ties of the joint distribution of k and Q for s = 0 (black; lower
distribution) and s = 1 x 10™* (red; upper distribution) for fops =
5 x 10% and T = T;yq of 5000 trajectories. (b, ¢) FPT distribution
of 5000 FPT trajectories for initial configurations selected from
critical trajectories with Q > 40 and k > 0.02 (b) and Q > 40 and
k < 0.02 (c). Dashed-dotted lines indicate MFFT of the distributions.
(d, e) RMSD distribution for initial states with Q > 40 and k >
0.02 (d) and Q > 40 and k < 0.02 (e).
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correlation between k and Q, while at “space-time” coex-
istence between the two dynamical phases two clear basins
of very distinct activity but similar structural nativeness are
found, as previously discussed. Representative configurations
taken from trajectories fulfilling the requirements of Q > 40
and k£ < 0.02 or k > 0.02, respectively, are used in order to
investigate the dynamic nature of the highly native active
or inactive trajectories. This is indicated in Fig. 3(a) by the
respective boxes [dashed (green) box, k > 0.02; dotted (blue)
box, k < 0.02]. Figures 3(b) and 3(c) look at the distributions
of first passage times (FPTs) to the fully native state starting
from a typical conformation of the active or inactive phases,
respectively, rapidly quenched to equilibrium (s = 0). Not
only do the inactive states have a much larger mean first folding
time [MFFT; indicated by the dash-dotted (blue) lines], but
also the distribution is exponential, rather than stretched (as a
power law, as is characteristic of near-native equilibrium states
in this model). Figures 3(d) and 3(e) show the distribution of
the root mean square distance (RMSD) in the FPT trajectories.
Active trajectories are sharply peaked around RMSD values
of 1 lattice unit, corresponding to the RMSD value of the
initial structures, which is already “en route” to the native
state, as shown in Fig. 3(d). Low-activity initial structures
escape trapped states by an unfolding event (RMSD peak of
3 lattice units) followed by the folding event [see Fig. 3(e)].
This supports the idea of a long-lived and metastable trapping
state, prolonging folding times significantly.

V. DYNAMICAL PHASE DIAGRAM

From our simulation results, a schematic phase diagram
in the parameter space {7T,s} can be constructed as shown
in Fig. 4. For all values of T there is a dynamical phase
corresponding to equilibrium trajectories that is smoothly
connected to s = 0. The phase boundary of this equilibrium
dynamical phase is at s.(7'), indicated by the solid (black)
curve in Fig. 4. At temperatures 7 > Ttq, equilibrium
trajectories are very active as the typical states are unfolded

T
unfolded
phase

Toa | inactive, near native

—_ 0" . .

et trajectories

(trapping phase)
. folded|phase

-

FIG. 4. (Color online) Schematic dynamic phase diagram of the
HeGo6 and Full models in the parameter space {s,7'}. First-order dy-
namic transitions, giving rise to inactive yet highly native trajectories,
are indicated by the solid black line. Open circles along the line of the
first-order transitions are taken from the results in Fig. 1. The dashed
(gray) line is an extension of the thermodynamic native-to-non-native
transition into the s space.
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(unfolded phase), while at 7" < Tq equilibrium trajectories
display a lower activity since typical states are native (folded
phase). The transition between these two regimes, indicated
by the dashed (gray) line in Fig. 4, is a direct extension of
the thermodynamic crossover at Toq [filled (gray) circle].
As shown in the Appendixes, this straightforward connection
between static and dynamic phases is all that is present in the
HoGo model.

In the HeGo and Full models, that is, the models with the
interaction heterogeneity of the amino acid sequence, a third
dynamical phase exists. At s.(T) there is a transition to the
nonequilibrium phase of metastable, or trapped, trajectories
of very low activity (trapping phase; three open circles,
corresponding to the three temperatures, in Fig. 1). From the
structural point of view, the trapped phase appears to be as na-
tive as the equilibrium phase despite having a very low activity,
showing that in the more complex HeGo and Full models dy-
namic behavior is not a simple consequence of static behavior.

We surmise the phase diagram in Fig. 4 from the analysis of
the results presented in Fig. 1. As we show in the Appendixes,
such behavior is also valid for different sequences optimized
for the same native state in Fig. 1(a). Depending on the
sequence and native state, the phase of inactive trapping
trajectories may contain an even richer phase structure, but
we expect it to be fundamentally similar to that in Fig. 4.

VI. DISCUSSION

We have shown that very simplified models of proteins, as
long as interaction variability is maintained, display a complex
dynamical phase structure analogous to that of glassy systems.
Just as in ordinary many-body systems, the mere existence
of a phase transition to a highly inactive phase implies that
rare fluctuations will play a role in the observed dynamics.
It is not far-fetched to assume that such behavior can also be
observed in nature, especially as there are certain biological
systems that seem to be good candidates for such dynamics.
As an example one might think of fibril formation, where
certain kinetically rare trapping events predispose protein
molecules to aggregation [32]. Once such an aggregate is
formed it is very stable yet not in its native configuration.
A first approach to study arrested protein dynamics in all atom
models was attempted in very recent work [12], where the
s ensemble was applied to Markov state models of a selection
of all-atom protein models, obtained by means of molecular
dynamics simulations. While a crossover between active and
inactive phases was observed in all cases studied, no sharp
transition to a glass-like state, like the one we presented here
in lattice proteins, was found. This may be due to the fact
that the biased distribution itself was not sampled, as only the
equilibrium Markov state model was biased according to the
s ensemble with observation times no larger than the folding
time scale. In contrast, our observation times were up to 10
times the MFFT of the system and explicitly sample from
the biased distribution, thus showing much sharper transitions
to non-native, metastable states. Observing such dynamic
transitions in all-atom protein models by direct sampling from
the biased distribution may still be problematic due to the
sampling problem that plagues the field of all-atom protein
molecular dynamics simulations.

PHYSICAL REVIEW E 89, 032109 (2014)

ACKNOWLEDGMENTS

ASJSM. would like to thank J. D. Chodera and
B. Gin for useful discussions and acknowledges the BESTS
scholarship for funding a visit to UC Berkeley. Simulations
were performed at the University of Nottingham HPC facility.

APPENDIX A: MODEL DETAILS

As discussed above, a heteropolymer of length L and with
N native contacts (mostly L = 48 and N = 57), represented
by a self-avoiding walk on a lattice, is studied. The length
L represents the number of beads that sit on the vertices
of the cubic lattice. All edges have a uniform length a and
represent the lattice spacing. The heteropolymer’s native state
is defined by a maximally compact structure as depicted in
the schematic in Fig. 1(a). The choice of the native state was
motivated by a series of previous studies [22,26,27]. We look at
three variants for the interaction potential between monomers:
the GO interaction potential (HoGd), which considers only
contacts (i.e., monomers which are not direct neighbors along
the backbone and which are a single lattice spacing a away
from each other) that occur in the native state to which it assigns
a uniform interaction energy. The heterogeneous Go potential
(HeG0d) has nonuniform interaction energies between these
native contacts; and in the full interaction potential (Full), the
energy of all contacts (native and non-native) is considered.

The energy function for the three models can be written
generically [6],

L-1 L L-3 L
E=) Y Uti)+) D> NyBjA(ry—a). (AD

i=1 j>i i=1 j=i+3

where 7; indicates the position of the ith monomer and
rij = |7 =7 ;1. The potential U (r;;) restricts the walker to be
self-avoiding, as it takes a value of oo for r =0 and of 0
for any value of 7 > 0. The term B;; is an energy interaction
matrix, which is determined by the sequence of the amino acids
chosen [for example, that in Fig. 1(b)]. Interaction values for
different amino acids are drawn from the model of Miyazawa
and Jernigan [25] and set the base value ¢, for the energy scale.
In this model, only residues in contact, i.e., one lattice spacing
away from each other, are of interest, and the matrix A holds
the information of the list of contacts in a given configuration
of the heteropolymer. In the HoGo and HeG0O models N;;
holds the information about the set of native contacts, so that
N;j =1 if the contact is present in the native state and 0
otherwise. This restriction is lifted for the Full interaction
model, with all entries given by 1. The energy function now
allows us to compute the instantaneous energy of the system
at each simulation step. The simulation is a Monte Carlo
simulation using the standard Metropolis acceptance criterion,
Paccepe = min[1, exp(—=BAE)]. The set of moves consists of
single-monomer and double-monomer moves defined in [23].
The single moves are flips of the terminal bead or corner bead,
and the double moves are “crank-shaft” moves [23]. We found
that attempting a ratio of 80% monomer to 20% crank-shaft
moves gave a good sampling. The time observable ¢ given
earlier corresponds to the incremental count of each attempt to
move one of the beads, thus generating trajectories of any given
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FIG. 5. (Color online) (a) Two-state thermodynamics: average
number of native contacts as a function of temperature for the
three models: HoGo [(black) circles], HeGo [(red) squares], and Full
[(blue) triangles]. (b) MFFT from random high-temperature states as a
function of temperature. Averages were taken from 1000 independent
simulation runs.

observational time ¢ = .. Initial configurations were drawn
from short equilibrium trajectories at a high temperature,
T = 100¢y/ kp. The Boltzmann constant was set to kg = 1
in all simulations. All other temperatures are unitless, defined
by the Miyazawa and Jernigan interaction scale.

APPENDIX B: EQUILIBRIUM AND FOLDING BEHAVIOR

We recomputed relevant known [16,22,23,26,27] equilib-
rium results of the lattice polymer models considered above.
The two-state thermodynamics of the three models considered
can be observed in the behavior of the average number of
native contacts in equilibrium [Fig. 5(a)], which crosses over
from being low in the unfolded state at high T to high in the
native state at low T [where the choice for the native state
was that of the structure shown in Fig. 1(a)]. The sigmoidal
behavior mimics that of real protein denaturation. The Ty
temperature, indicated by dashed arrows, is defined as the
temperature at which 50% of all native contacts are formed.
The second observable is the mean first passage time to the
folded state, or the mean first folding time (MFFT), shown in
Fig. 5(b).

We have defined the native activity K as the total number of
formed and broken native bonds in a trajectory of time extent
t. The average native activity per unit time and native bond is
Ks=0, Eq. (4). It is shown as a function of T for the HoGo model
in Fig. 6(a) and for the HeGo and Full models in Fig. 6(c). In
all cases it shows a two-step behavior similar to that of other
thermodynamic quantities. In fact, in equilibrium trajectories,
there is a close correlation between (intensive) native activity,
k = K/Nt, and nativeness Q, as shown in Figs. 6(b) and 6(d)
for the case of T = Tg,q- The correlation is particularly sharp
for the HoGo case.

APPENDIX C: s-ENSEMBLE SIMULATION DETAILS

Dynamical LDs and the s-ensemble approach for studying
statistical properties of trajectories is discussed at length in
Refs. [18-20,33]. The key aim is to obtain the partition sum,
Eq. (2), in its LD form, Eq. (3). How the LD function ¥ (s)
relates to the (physically observable) probability distribution
of the activity P,(K) is sketched in Fig. 7. The panels on
the left in Fig. 7 describe the case of a single dynamical
phase: (s) is an analytic function for all s [Fig. 7(a)]; in
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FIG. 6. (Color online) Equilibrium results (a,b) for the HoGo
model and (c,d) for the HeGo and Full model. (a,c) Average native
activity ks in equilibrium as a function of temperature 7'. Folding
temperature Ti,q indicated by the dashed line. (b,d) Native activity
k vs nativeness Q in equilibrium trajectories. Trajectory length was
1 x 107 Monte Carlo steps for the HoGo model [(black) circles] and
5 x 10° Monte Carlo steps for the Full [(blue) triangles] and the HeGo
[(red) squares] models.

this case the distribution P,(K) is unimodal [Fig. 7(c)]; and
the average activity «; changes smoothly with s [Fig. 7(e)].
The panels on the right of Fig. 7, in contrast, describe the
case with two dynamical phases, with a first-order transition
between them: 1/ (s) is has a singularity at s. [Fig. 7(b)]; in
this case the distribution P;(K) is bimodal [Fig. 7(d)]; and the
average activity «, is discontinuous at s, [Fig. 7(f)]. Note that
while P,(K) is the probability distribution observed in normal
dynamics, i.e., when s = 0, its shape is strongly affected by
the presence of the singularity in the LD function 1 (s) at s,.
The s ensemble is composed of trajectories of the original
dynamics but where their probabilities are biased by s
according to Eq. (1). For accessing this ensemble a modified
TPS strategy was employed [20,30]. An initial trajectory of
a predefined length of time steps was generated. Along this
trajectory with equal probability a shooting point was chosen
from which either the first or the second part of the trajectory
was regenerated, again with equal probability. In this way
a second trajectory similar in activity K to that of the first
was obtained. In order to bias according to the s ensemble
the new trajectory was accepted according to the Metropolis
acceptance criterion Py, = min[1,e~*&™ =K")] This ac-
ceptance uses the extensive native activities. As we are trying
to approach the limit of # — oo, we choose computationally
feasible trajectory lengths. By this we mean trajectories
that are long enough, ideally + > MFFT, so that even large
values of the bias still allow fast equilibration into the
s ensemble. For all simulation results shown here an initial
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FIG. 7. (Color online) Sketch of the relation between the LD
function ¢ and the order parameter distribution P(K). (a, c, e) The
case with a single phase and a unimodal distribution. (b, d, f) The case
with two phases and a bimodal distribution, resulting in a first-order
transition between the two phases.

set of 2000 trajectories was discarded towards equilibration
into the s ensemble. A choice of t > MFFT will ensure that
trapping states even longer-lived than the folded state can be
uncovered and are allowed to dominate the dynamics in the
biased setting. In order to reduce the required computations,
after an initial scan through different values of s, the simulation
time was concentrated to values close to a critical s. The set of
trajectories was then reweighted with a histogram reweighting
method in order to compute the dependence of s and «;, as
well as the susceptibilities.

APPENDIX D: s ENSEMBLE OF THE HoGo MODEL

Figure 8 shows results for the s ensemble in the HoGo
model obtained from TPS simulations of 10* accepted tra-
jectories. Figure 8(a) is for temperatures T < Tg,1q; Fig. 8(b),
for temperatures T > Tio4. Both panels show a clear transition
from high to low activity as s is changed. For the case T < Tio1q
the transition occurs at s, < 0 and moves progressively to more
negative values of s as T’ decreases from T,q. Conversely, for
T > Tio4, the transition occurs at s, > 0 and moves to larger
values as T increases. These results suggest the phase diagram
in Fig. 8(c): the transition between the dynamical active and
inactive phases is a direct extension of the thermodynamic
transition between the unfolded and the native state.
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FIG. 8. (Color online) The s ensemble of the HoGd model.
(a) Average native activity «, as a function of s for temperatures
below Tiq (T =0.18 and T = 0.19 as indicated). Dashed lines
correspond to observation times of ¢ = 5 x 103; solid lines, to t =
1 x 10°. (b) Same as (a), but for T > Tiq (T = 0.25and T = 0.26).
(c) Schematic dynamical phase diagram: the active phase is the
dynamical phase associated with the unfolded thermodynamic phase,
and the inactive phase is associated with the native thermodynamic
phase. The dashed line indicates the first-order transition between
the dynamical phases (dotted intersects are the observed data at
high and low temperatures). The dynamical transition intersects the
temperature axis at Tgd.

APPENDIX E: DIFFERENT DYNAMICAL OBSERVABLES

The emergence of complex dynamic behavior using the
native activity (K) as an order parameter has been presented.
An obvious question arises: Is this complex dynamic behavior
also observed if the dynamic observable is changed? Another
possible choice of observable is the general activity, that is,
the count of all contacts broken or formed (G), irrespective
of whether they are native, over the whole trajectory. The
intensive general activity is then defined by g = %, and the
averaged general activity as

(G)y  2x, PIX/1G[X/]
Nt Nt :

Figure 9 shows the results for a TPS simulation of 30000
biased trajectories for different values of s at a temperature of
Ttola = 0.19 in the HeGo model. The observation time ¢t was
again chosen in such a way that# > MFFT at Tyq. The general
activity is now higher than the native one (cf. Fig. 1), but again,
a sharp crossover is observed at s &~ (. Taking a set of critical
trajectories using, again, the histogram reweighting method,
the dependence of g; with respect to s was obtained for two

gs = (EL)
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FIG. 9. (Color online) General activity in the HeGo model from
averages of 30 000 trajectories at T = 0.19. (a) g, withrespect to s for
t =5 x 10° [dashed (red) line] and ¢ = 1 x 107 [dotted (blue) line]
and (b) the corresponding susceptibility x,. (c) The joint distributions
of g and Q form of a set of critical trajectories for t = 5 x 10°.
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FIG. 10. (Color online) s-ensemble results for a fast folder with
the sequence shown using the HeGo model. (a) «, with respect to s at
T = 0.15 for trajectory lengths t = 1 x 10° [solid (black) line], t =
2.5 x 10° [dashed (red) line], and r = 5 x 10° [dash-dotted (green)
line]. (b) Susceptibility and (c) joint distribution of £ and Q. The
active-to-inactive trapped transition becomes very pronounced for
longer observation times, and the two phases, while dynamically
very distinct, are virtually indistinguishable in terms of nativeness Q.

observation times, r = 5 x 10° [dashed (red) line] and ¢ =
1 x 107 [dotted (blue) line]. Again, the transition gets sharper
for longer times. The joint distribution of g and Q for a set of
critical trajectories shows a pattern similar to that in Fig. 1.
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APPENDIX F: DIFFERENT SEQUENCES

In order to highlight the fact that the existence of a
dynamically trapped phase is not the consequence of a specific
sequence (or a specific native structure), we show here the
case of a second sequence, different from that in Fig. 1(b),
which also folds to the native structure in Fig. 1(a) in the
HeGo model. For this sequence (Fig. 10), Tiq =~ 0.155.
The folding dynamics follows a different pathway to the
sequence in Fig. 1(a). The MFFT at a temperature near Toq
is about five times larger than that in Fig. 1(a) yet still
counts as a “fast folder” [22]. Figures 10(a)-10(c) show the
results of s-ensemble simulations at 7 = 0.15 for trajectory
observation times ¢t = 1 x 10°, 2.5 x 10°, and 5 x 10°. The
longest observation time is close to the MFFT of the system at
the observed temperature. Figures 10(a) and 10(b) show that
the dynamical transition becomes increasingly pronounced
with longer observation times, and the transition point is close
tos = 0, indicating that the inactive state is highly metastable.
Figure 10(c) shows the joint distribution of k and Q from 10*
trajectories consisting of + = 10° Monte Carlo steps each at
sc. For this case the active and trapped phases are virtually
indistinguishable in terms of their structural nativeness.
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