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Dissipation, interaction, and relative entropy
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Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In
this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (also
called the Kullback-Leibler divergence). The processes considered are general time evolutions in both classical
and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. As an application,
the relative entropy is related to transport coefficients.
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I. INTRODUCTION

Dissipation reflects the profound distinction between work
and heat in finite-time dynamical processes. In this article we
relate dissipation to relative entropy, a quantity that we use to
distinguish between actual and idealized time evolution as we
explain below. This relation was introduced as a technical tool
for calculations in our [1] and [2], in the context of stochastic
dynamics, in order to extend the fluctuation-dissipation theo-
rem as well as Onsager relations for the reduced dynamics of
slow variables, even in the non-detailed-balance situation. In
this article, we use exact unitary or symplectic dynamics; it
follows immediately that the entropy of the true state remains
constant during the exact evolution.

On the other hand, in thermodynamics, in kinetic theories,
or in stochastic dynamics, by definition the true state of a
system is replaced by an idealized coarse graining and as a
consequence, the true evolution is replaced by an idealized
evolution of the corresponding coarse-grained state (or by a
quasistatic evolution in thermodynamics). There are two good
reasons for using this idealization:

(1) It is impossible—even in principle—to specify the exact
state of a large system. An attempt at extremely high precision
would modify the system, even in a classical context (related to
Maxwell’s demon). And it is even worse for quantum systems.

(2) Only slow variables can be measured with confidence
and stability. As a result, an observer can describe the system
only as a state of minimal information (or maximal entropy)
compatible with the observed slow variables [3–6]. During
the idealized evolution, information is lost by the observer
and the increasing entropy of the idealized state measures this
loss; however, under exact symplectic or unitary evolution the
entropy of the true state remains constant. Thus, entropy flow
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or production and dissipation measure the human observer’s
partial inability to relate the exact microscopic theory of the
evolution of a system to the macroscopic description of the
same evolution.

Standard thermodynamics uses the maximal coarse
graining of equilibrium, and the idealized evolution is not
modeled explicitly, so the dissipation can be taken into account
only by inequalities. For more detailed coarse graining (as
in hydrodynamics, Boltzmann’s equation, kinetic theories,
or stochastic thermodynamics) one can obtain an estimate
for the dissipative effects, for example, by the calculation of
transport coefficients.

In this article, our main purpose is to prove that the
relative entropy terms between initial and final states measure
the dissipation in the case of the exact dynamics, quantum
or classical (as was noted already in [1,2] for stochastic
dynamics), and to show that they are zero if and only if
the interaction energy is zero. Generally, dissipative effects
are measured by transport coefficients. Thus, we need prove
that the relative entropy allows the calculation of transport
coefficients. Indeed, we show below that the relative entropy
terms provide the calculation of the thermal conductivity
between two general quantum systems, initially at thermal
equilibrium at different temperatures. This is a kind of Fourier
law, except that we do not assume a linear regime, so that
the dependence upon temperatures is more complicated than
just their difference. Moreover, our exact calculation of the
transport coefficient shows that it is indeed proportional to
the square of the interaction energy, which confirms that
for vanishingly small interaction energy, no transfer occurs
in finite time. In other words, no power or finite rate of
information flow can be extracted from a system if one does
not have at the same time dissipative effects.

What emerges from our work is a general view in which
dissipation comes from the loss of average microscopic
information between the exact state and the information carried

1539-3755/2014/89(3)/032107(5) 032107-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.032107


B. GAVEAU, L. GRANGER, M. MOREAU, AND L. S. SCHULMAN PHYSICAL REVIEW E 89, 032107 (2014)

by the initial state, but averaged over the actual state: this
quantity is exactly the relative entropy [1,7] (also known as the
Kullback-Leibler divergence) between the actual true state and
the coarse-grained initial state. As this quantity is always pos-
itive, it provides a lower bound for the interaction energy or an
upper bound for the work that one can extract from the system.

In the following material, we first consider a two-
component system A and B. There is no hypothesis on the size
of the systems, and we do not introduce thermal reservoirs.
Thus, the identities we derive are exact. In Secs. III–V,
we recall various identities, including a derivation of the
Brillouin-Landauer estimate, an estimate of the work that
can be extracted from a two-part system in interaction with
an external source of work in terms of nonequilibrium free
energies and the relative entropy of the state before and after
the evolution. Similar identities were also obtained recently
in [8,9] and [10]. Continuing, we study the effect of an external
agent on an (otherwise) isolated system; again we obtain an
identity relating the work to the difference of internal (not free)
energies and the usual dissipative terms. In this we go beyond
Refs. [8–10]. Finally, we derive the relation between the
relative entropy and the heat conductivity in a quantum system.
In some of our examples one or both systems are initially at
thermal equilibrium, but only the initial temperatures appear
explicitly in the definition of the nonequilibrium free energies.
These free energies are no longer state functions because they
depend explicitly on the initial temperature and not on the
actual effective temperature. No coarse graining by an effective
final or intermediate thermal state is used, and neither system
is a reservoir.

II. DEFINITIONS AND NOTATION

Denote the state of a classical or quantum system by ρ.
“Tr A” indicates either an integral in phase space (classical
observable) or the trace in Hilbert space (quantum observable).
For both, ρ � 0 and Tr ρ = 1. The entropy of ρ is defined as
S(ρ) ≡ − Tr ρ log ρ (the logarithm is to base e throughout).
For states ρ and ρ ′, the relative entropy is S(ρ|ρ ′) ≡
Tr[ρ(log ρ − log ρ ′)]. It is known [7] that S(ρ|ρ ′) � 0, with
equality iff ρ = ρ ′. It is identically true that

S(ρ|ρ ′) = S(ρ ′) − S(ρ) − Tr[(ρ − ρ ′) log ρ ′], (1)

and this identity lies behind all results in the present article.
If U is an evolution operator for some time interval, either
symplectic or unitary, and A an observable, let A(U ) denote the
evolute of A ; e.g., in the quantum case, ρ(U ) = UρU †. For �

a function of ρ, we also define δ(U )�(ρ) ≡ �(ρ(U )) − �(ρ).
In particular, if �(ρ) = TrB ρ = ρA, then

δ(U )ρA = ρ
(U )
A − ρA, (2)

where

ρ
(U )
A = TrB ρ(U ). (3)

Notice that ρ
(U )
A is the partial trace over B of the evolved state

ρ(U ), not the evolution of ρA by an internal dynamics of A (this
would be nonphysical in the case where A is coupled to other
systems).

III. INFORMATION AND ENERGY TRANSFERS
IN INTERACTING SYSTEMS

Let A and B denote interacting systems, with respective
Hamiltonians HA and HB , and interaction energy V . The
energy expectations are EA(ρ) = Tr(HAρ), EV (ρ) = Tr(Vρ),
etc. Energy conservation under evolution by U requires

δ(U )[EA(ρ) + EB(ρ) + EV (ρ)] = 0 . (4)

For ρ a state of A + B, let ρA ≡ TrB ρ and ρB ≡ TrA ρ. We
take the initial (time-0) state of A + B to be

ρ0 = ρA(βA) ⊗ ρB0, (5)

where ρA(βA) = exp(−βAHA)/ZA(βA) is the thermal state
at temperature TA ≡ β−1

A and ρB0 is any state of B. We
immediately deduce from Eq. (1)

βAδ(U )EA(ρ) = −δ(U )S(ρB) + [
S
(
ρ(U )

∣∣ρ(U )
A ⊗ ρ

(U )
B

)
+ S

(
ρ

(U )
A

∣∣ρA(βA)
)]

. (6)

This equation can be checked directly, as follows. One has

S
(
ρ(U )

∣∣ρ(U )
A ⊗ ρ

(U )
B

) = −S(ρ(U )) + S
(
ρ

(U )
A

) + S
(
ρ

(U )
B

)
. (7)

But S(ρ(U )) = S(ρ0) = S(ρA(βA)) + S(ρB,0). This is because
for the exact evolution the entropy remains constant. Therefore

S
(
ρ(U )

∣∣ρ(U )
A ⊗ ρ

(U )
B

) = δ(U )S(ρB) + S
(
ρ

(U )
A

) − S(ρA(βA)).

(8)

Then

S
(
ρ

(U )
A

∣∣ρA(βA)
) = −S

(
ρ

(U )
A

) + βA

[
EA

(
ρ

(U )
A

) − FA(βA)
]

= −S
(
ρ

(U )
A

) + βAδ(U )EA(ρA) + S(ρA(βA)).

(9)

Adding Eqs. (8) and (9), we obtain the identity (6).
For similar results, see [9] and [8]. In particular, if the

evolution U is such that δ(U )S(ρB) � 0 (so that the information
content of B has increased), then

βAδ(U )EA(ρ) � |δ(U )S(ρB)|. (10)

This implies that the energy of A has increased [or that
the energy EB(ρ) + EV (ρ) has decreased]. Thus a transfer
of information to B implies a transfer of energy from B to
A [11,12,14–16]. Moreover, the equality (10) is attained only
when ρ

(U )
A = ρA(βA) and ρ(U ) = ρ

(U )
A ⊗ ρ

(U )
B , in which case

δ(U )EA(ρ) = 0, δ(U )S(ρB) = 0, and no transfer has occurred.
Finally, if ρ

(U )
A = ρA(βA), then δ(U )EA(ρ) = 0 and from

Eq. (10), δ(U )S(ρB) = 0. In particular, if A is a true thermal
bath (unchanged by the evolution) it cannot be used to lower
the entropy of another system, B.

Remark. In Eq. (6) the expression in square brackets
is positive. Note too that S(ρ(U )|ρ(U )

A ⊗ ρ
(U )
B ) is the mutual

information between A and B in the state ρ
(U )
A . We further

remark that Eq. (6) is true even if U does not conserve
energy and if HB is time dependent (but HA must be time
independent). However, Eq. (6) does demand of U that entropy
be constant under its action.

032107-2



DISSIPATION, INTERACTION, AND RELATIVE ENTROPY PHYSICAL REVIEW E 89, 032107 (2014)

IV. WHEN THE SYSTEMS ARE INITIALLY
IN EQUILIBRIUM

Assume now that A and B are in thermal equilibrium states
(with TB ≡ β−1

B ) at t = 0 so that

ρ0 = ρA(βA) ⊗ ρB(βB). (11)

Then the following identities can be deduced:

− δ(U )EV (ρ) = (1 − βA/βB)δ(U )EA(ρ) + TBS(ρ(U )|ρ0),

(12)

βAδ(U )EA(ρ) + βBδ(U )EB(ρ) = S(ρ(U )|ρ0), (13)

δ(U )EA(ρ) + δ(U )EB(ρ) = TAδ(U )S(ρA) + TBδ(U )S(ρB)

+ [
TAδ(U )S

(
ρ

(U )
A

∣∣ρA(βA)
)

+ TBδ(U )S
(
ρ

(U )
B

∣∣ρB(βB)
)]

. (14)

From this one can derive corresponding inequalities, for
example,

− δ(U )EV (ρ) � (1 − βA/βB)δ(U )EA(ρ), (15)

βAδ(U )EA(ρ) + βBδ(U )EB(ρ) � 0, (16)

δ(U )EA(ρ) + δ(U )EB(ρ) � TAδ(U )S(ρA) + TBδ(U )S(ρB).

(17)

These relations imply important theoretical and practical
conclusions. If, for instance, TA > TB and δ(U )EA(ρ) < 0,
it follows from (15) that δ(U )EV (ρ) < 0 and that the in-
teraction energy cannot be neglected, contrary to current
approximations. On the other hand, one sees that (16) is
the Clausius inequality. It should be pointed out that the
equalities (12)–(14) are much stronger than the corresponding
inequalities (15)–(17). In particular, (12)–(14) show that these
inequalities are changed into equalities iff there are no changes
under the evolution operator U . On the other hand, the last
term in the right-hand side of (14) can be interpreted as the
energy dissipation, which is thus expressed in terms of relative
entropies.

Remark. Some of the above relations have greater validity
than so far stated. For example, Eqs. (14) and (17) are valid
even if U is a general evolution, not even conserving energy.
On the other hand, Eqs. (12), (13) and (15), (16) require
conservation of energy as well as of entropy, which is satisfied
for unitary or symplectic evolution. Finally, since all these
equations refer to the temperature of B, it is clear that ρB must
be thermal.

V. INTERACTING SYSTEMS COUPLED
TO A WORK SOURCE

As before, A and B interact, but now A is coupled to an
external source of work and its Hamiltonian becomes HA(λ),
with the parameter λ taking the value λ0 at time 0. The initial
state is now written ρ0 = ρA,0 ⊗ ρ(βB) (so B is in a thermal
state, but A may not be). The external observer can modify λ,
and at the end of the evolution U , λ has some value λ(U ). Then

the work δ(U )W received by the external observer is

δ(U )W = −δ(U )EV (ρ) − δ(U )FA(ρA,βB)

− TB

[
S
(
ρ(U )

∣∣ρ(U )
A ⊗ ρ

(U )
B

) + S
(
ρ

(U )
B

∣∣ρB(βB)
)]

,

(18)

where

δ(U )FA(ρA,βB) = [
EA

(
ρ

(U )
A

) − TBS
(
ρ

(U )
A

)]
− [EA(ρA,0) − TBS(ρA,0)] (19)

is the variation of the (nonequilibrium) free energy of A,
calculated at temperature TB , and

EA

(
ρ

(U )
A

) = Tr
[
ρ

(U )
A HA(λ(U ))

]
,

EA(ρA,0) = Tr[ρA,0HA(λ0)]. (20)

In particular we deduce

δ(U )W � −δ(U )EV (ρ) − δ(U )FA(ρA,βB ). (21)

This inequality is analogous to, but more general than, the
standard thermodynamic inequality concerning the work that
can be extracted isothermally. Here the process need not be
isothermal, B is not a heat bath, and A’s final state need not be
equilibrium at temperature TB . Moreover, we have equality
in Eq. (21) iff ρ

(U )
B = ρB(βB) and ρ(U ) = ρ

(U )
A ⊗ ρB(βB).

Assume now that A and B are initially in thermal states at TA

and TB , so that ρ0 = ρA(βA,λ0) ⊗ ρB(βB). The work received
by the external observer is then

δ(U )W = −δ(U )EV (ρ) − (1 − βB/βA)δ(U )EB(ρ)

+ [
FA(βA,λ0) − F

(U )
A

]
−TA

[
S
(
ρ(U )

∣∣ρ(U )
A ⊗ ρ

(U )
B

) + S
(
ρ

(U )
B

∣∣ρB(βB)
)]

,

(22)

where FA(βA,λ0) is the equilibrium free energy of A and F
(U )
A

is the final (nonequilibrium) free energy at temperature TA,

F
(U )
A = Tr

[
HA(λ(U ))ρ(U )

A

] − TAS
(
ρ

(U )
A

)
. (23)

If βA = βB one obtains the inequality

δ(U )W � −δ(U )EV (ρ) + FA(βA,λ0) − F
(U )
A , (24)

with equality iff ρ
(U )
B = ρB(βB) and ρ(U ) = ρ

(U )
A ⊗ ρB(βA).

Equation (24) is more general than the usual thermodynamic
relation [5] in two ways: it includes the interaction energy
δ(U )EV (ρ) and it involves a nonequilibrium free energy F

(U )
A

[defined by Eq. (23)] which, being equal to or greater than the
equilibrium value, strengthens the inequality.

VI. SINGLE SYSTEM COUPLED TO A WORK SOURCE

A single system has Hamiltonian H (λ), with changes in
the external parameter λ corresponding to work. At t = 0,
λ = λ0, and we assume the state to be thermal: ρ0 =
exp[−β0H (λ0)]/Z(β0,λ0). The external observer changes λ to
λ(U ), inducing an evolution U of the system which ultimately
reaches the state ρ(U ). Define the adiabatic temperature β(U )

a by

S(ρ(U )) = S
(
β(U )

a ,λ(U )
)
, (25)
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with S(β,λ) the entropy of the thermal state [17]. Then one has

δ(U )W = E(β0,λ0) − E
(
β(U )

a ,λ(U ))

− 1

β
(U )
a

S
(
ρ(U )

∣∣ρ(
β(U )

a ,λ(U )
))

, (26)

with E(β,λ) the energy of the thermal state. From this
one deduces the standard [5] thermodynamic inequality for
adiabatic processes,

δ(U )W � E(β0,λ0) − E
(
β(U )

a ,λ(U )
)
, (27)

with equality iff ρ(U ) = ρ(β(U )
a ,λ(U )). In particular, if the

external observer imposes a cycle, namely, λ(U ) = λ0, then
β(U )

a = β0 and

δ(U )W = − 1

β0
S(ρ(U )|ρ(β0,λ0)) � 0. (28)

Remark. The inequality Eq. (27) is different from those
in the works of Jarzynski [18] and Kawai et al. [19].
One difference is that we use the adiabatic temperature [in
Eq. (27)], while they use the initial temperature βA. Although
we have not proved it, it is possible that our Eq. (27) is the best
possible. In addition, we use internal energy rather than free
energy, which is more appropriate for an adiabatic process.

VII. RELATIVE ENTROPY AND
TRANSPORT COEFFICIENTS

The previous identities can be transformed into inequal-
ities similar to the standard inequalities of nonequilibrium
thermodynamics using the positivity of the relative entropies
appearing in these identities. Thus the relative entropy terms
measure exactly the dissipative effects, coming from the
fact that actual evolutions differ from idealized quasistatic
processes. As an example, we deduce the transport coefficients,
confirming the significance of the relative entropy.

Consider systems A and B, initially in equilibrium at
temperatures β−1

A and β−1
B , respectively. The joint system

A + B evolves until a final time t . Let U or U (t) denote
the overall evolution operator from 0 to t . We wish to
evaluate the flow of energy from A to B, and deduce an
expression for the thermal conductivity.

Let ρ(t) be the state at time t . Then, as shown above
[Eq. (12)],

(βA − βB)δ(U )EA(ρA) = βBδ(U )EV (ρ)

+ S(ρ(t)|ρA(βA) ⊗ ρB(βB)). (29)

We can estimate each term of the second member of Eq. (29)
in the Born approximation, for systems A and B in the limits
of continuous spectrum and t large. Then the interaction term
δ(U )EV (ρ) becomes negligible, and in a calculation whose
details we will present elsewhere [20], one obtains

δ(U )EA(ρA) ≈ S(ρ(t)|ρA(βA) ⊗ ρB(βB))
βA − βB

≈ (βA − βB)Kt. (30)

In this expression the term of principal interest is K , a
thermal conductivity coefficient proportional to the square of
the matrix element of the interaction energy V . In particular,

K = π

�ZA(βA)ZB(βB)

∫
dEA dE′

A dEB dE′
B

×φ(EA,E′
A,EB,E′

B), (31)

where

φ = fA(EA)fA(E′
A)fB(EB)fB(E′

B)

× e−βAE′
A−βBE′

B |V (E′
A,E′

B |EA,EB)|2

× δ(EA + EB − E′
A − E′

B)
EA − E′

A

βA − βB

× (1 − e(βA−βB )(EA−E′
A)) > 0, (32)

and fA and fB are the densities of states of systems A and B.
Equation (30) is a form of the Fourier heat law.

VIII. CONCLUSIONS

Equations (6) and (14) are identities for the energy exchange
or information exchange between parts of a classical or
quantum system evolving under the exact true dynamics,
starting from a thermal state. The state of the system during
its evolution is the true state and is a nonequilibrium state. In
particular its entropy remains constant during the evolution.
Thus there is no coarse graining of the evolution and these
identities do not depend on a choice of a specific model
(stochastic or kinetic). These identities contain relative entropy
terms between the actual evolved state and the initial state,
and because the relative entropy is positive, the consequences
of these identities are inequalities which generalize the
inequalities of nonequilibrium thermodynamics. See Eqs. (10)
and (15)–(17). The relative entropy terms can be considered
as general expressions measuring dissipation effects occurring
internally between interacting parts of the system during its
evolution. This is confirmed by the fact that one can deduce
the thermal conductivity coefficient between two interacting
parts of a system from an estimate of the relative entropy,
as is seen in Eqs. (30) and (31). The same method also
gives an identity, Eqs. (22) and (26), for the work exchanged
between a system and an external agent and thus an inequality
[Eqs. (24) and (27)] for the work that can be extracted from a
system, together with an exact expression for the dissipation.
We have also seen that the interaction energy, which is
often neglected, can be used to give additional precision
[cf. Eq. (22)] and is important in calculating transport
coefficients [see Eqs. (31) and (32)].
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