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We study analytically the tracer particle mobility in single-file systems with distributed friction constants. Our
system serves as a prototype for nonequilibrium, heterogeneous, strongly interacting Brownian systems. The
long time dynamics for such a single-file setup belongs to the same universality class as the Rouse model with
dissimilar beads. The friction constants are drawn from a density �(ξ ), and we derive an asymptotically exact
solution for the mobility distribution P [μ0(s)], where μ0(s) is the Laplace-space mobility. If � is light tailed (first
moment exists), we find a self-averaging behavior: P [μ0(s)] = δ[μ0(s) − μ(s)], with μ(s) ∝ s1/2. When �(ξ ) is
heavy tailed, �(ξ ) � ξ−1−α (0 < α < 1) for large ξ , we obtain moments 〈[μs(0)]n〉 ∝ sβn, where β = 1/(1 + α)
and there is no self-averaging. The results are corroborated by simulations.
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I. INTRODUCTION

Studies of the force response properties in complex media
have a long tradition in physics [1,2]. In biology, forces are
involved in a large number of different processes in cells,
and moreover, forces are commonly used in force probing,
for instance, of macromolecular structure in in vitro systems
[3]. The Jarzynski equality relates the time-averaged response
of a system when under the influence of a force to the
free energy between initial and final states [4]. Recently,
an exact solution to a paradigm nonequilibrium model for
homogeneous systems, the asymmetric exclusion process, was
put forward [5].

In this article we provide asymptotically exact solutions for
the force response of a complex heterogeneous system: tracer
particle dynamics in a single-file system (the same universality
class as harmonically coupled dissimilar beads or Rouse
chains, for long times) with randomly distributed friction con-
stants. Our model serves as a prototype for the nonequilibrium
dynamics in heterogeneous, strongly interacting Brownian
systems. Even for the case when all particles have identical
friction constants, such systems display nontrivial dynamics
characterized by a subdiffusive behavior [6–9]. Few studies
have addressed the problem of the diffusion of hardcore
particles with different friction constants; for undriven systems
see Refs. [10–16]. Of particular interest for the present
study is Ref. [16], where an effective medium approximation
was applied, revealing ultraslow time evolution of the mean
square displacement, and where simulations indicated lack
of self-averaging. To our knowledge the problem addressed
in this paper, namely, the exact force-response relation for
tracer particle dynamics in single-file systems with distributed
friction constants, has not been addressed previously. From
our treatment of these systems we also obtain exact results for
the mean square displacement of the tracer particle.
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Besides its theoretically interesting properties, the single-
file problem finds a number of experimental realizations: trans-
port in microporous materials [17–19] (e.g., zeolites), colloidal
systems [20], molecular sieves [21], and biological pores [22].
Cooperative effects are of importance in transport processes
involving molecular motors [23,24]. Hardcore repulsion of
binding proteins diffusing along DNA has been shown to be
important in transcription [25].

II. DESCRIPTION OF THE SYSTEM

Let us state the problem. We consider strongly overdamped
motion of Brownian particles in an infinite one-dimensional
system, interacting via a two-body short-range repulsive
potential. This potential, V(|xn(t) − xn′ (t)|), where xn(t) is
the position of the nth particle, has a hard-core part which
excludes particles from overtaking each other. The Langevin
equations of motion are thus ξnẋn(t) = ∑

n′ f[xn(t) − xn′ (t)] +
ηn(t) + f0(t)δn,0 where a dot denotes the time derivative,
f = −∂V/∂xn is the interaction force, ηn(t) is a Gaussian zero-
mean noise, < ηn(t) >= 0, with correlations that are related to
the friction constants ξn by the fluctuation-dissipation theorem
[26] as < ηn(t)ηn′(t ′) >= 2kBT ξnδ(t − t ′)δn,n′ , where kB is
the Boltzmann constant and T is the temperature. f0(t) is an
external force acting only on particle 0 (the tracer particle).
In our simulations we take f0(t) to be an oscillating force. A
cartoon of the problem at hand is depicted in Fig. 1.

As was shown in [16,27] using a harmonization approach,
the long time limit of the Langevin equation above with a
sufficiently small external force f0(t) is the same as that for a
linear chain of interconnected springs,

ξn

dxn(t)

dt
= κ [xn+1(t) + xn−1(t) − 2xn(t)] + ηn(t)

+f0(t)δn,0. (1)

The effective nearest neighbor spring constant κ is obtained
from the system’s equation of state. For hard-core interacting
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FIG. 1. (Color online) Cartoon of the heterogeneous single-file
system investigated in this article. Dissimilar hardcore interacting
particles (the particles cannot overtake) are diffusing in a one-
dimensional system. The particles are assigned different friction
constants ξn (n labels different beads), drawn from a probability
density �(ξn). A time-varying force, f0(t), acts on a tracer particle
(colored black). In such a scenario we study the tracer particle force
response properties through the mobility defined in Eq. (3).

particles of size b (used in our simulations) this harmonization
procedure yields [27] κ = ρ2kBT (1 − ρb)−2, where ρ is the
particle density.

The heterogeneity of the particles enters through their
different friction constants ξn, which here are assumed to
be identically distributed random variables taken from a
probability density �(ξn). We distinguish between light-tailed
(LT) distributions for which the mean ξ̄ of �(ξ ) exists and
heavy-tailed (HT) systems, where

�(ξ ) ∼ Aξ−1−α (2)

for large ξ , with A being a constant prefactor and 0 < α < 1
such that the mean diverges.

The main quantity of interest in this study is the distribution
P [μ̂0(s)] of mobilities of tracer particle 0 defined as (in the
Laplace domain)

μ̂0(s) ≡ < v̂0(s) >

f̂0(s)
, (3)

where v0(t) = dx0(t)/dt is the tracer particle velocity and
we use a hat to distinguish quantities in Laplace space
[Laplace-transforms are defined as Â(s) = ∫ ∞

0 dt e−stA(t)].
The < · · · > brackets represent an average over different
realizations of the thermal noise and random initial positions.
We label this average the nonaveraged case. It is contrasted by
the heterogeneity-averaged case (represented by 〈· · · 〉), where
an additional average over the probability density of friction
constants is performed. In the simulations for the nonaveraged
case the same ξn’s are used when averaging over thermal noise
(i.e., for each simulation run). For the heterogeneity-averaged
case we draw new friction constants whenever we make a new
initial particle positioning.

Turning back to Eq. (1), introducing the quantity yn(t) =
xn(t) − n/ρ and taking the Laplace transform, we obtain

ξn[s <ŷn(s)> − <yn(0)>] = κ[<ŷn+1(s)> + <ŷn−1(s)>

−2 <ŷn(s)>] + f̂0(s)δn,0.

(4)

We proceed by introducing the quantities m(±)
n , representing

the mobility of the chain to the right (+) or left (−) starting
from particle n (using < yn(0) >= 0), defined as

m(±)
n (s) = s < ŷn(s) >

−κ[< ŷn(s) > − < ŷn∓1(s) >]
. (5)

Notice that the denominator represents the velocity of particle
n, while the numerator represents the force from one of
its harmonic springs. With these definitions we obtain the
following expression for the tracer particle mobility of particle
0 [28]:

μ̂0(s) =
(

ξ0 + 1

s/κ + m
(+)
1 (s)

+ 1

s/κ + m
(−)
−1 (s)

)−1

, (6)

as well as the following recurrence relations:

m
(±)
±n (s) =

(
ξn + 1

s/κ + m
(±)
±(n+1)(s)

)−1

, n > 0. (7)

For a given set of ξn’s, Eqs. (6) and (7) provide an exact
expression for the tracer particle mobility in the non-averaged
case.

III. TRACER MOBILITY FOR ξn BEING INDEPENDENT,
IDENTICALLY DISTRIBUTED RANDOM VARIABLES

We now proceed to consider heterogeneity averages by
assuming that the ξn’s are independent, identically distributed
(iid) random numbers and try to solve Eqs. (6) and (7) for the
probability distribution of μ̂0(s). Note that since the ξn’s are
identically distributed random variables, so are the mn’s; we
denote by gs(mn) the corresponding distribution. We obtain
an equation for gs(m) by writing down the formula for the
distribution of m(±)

n in terms of the identical distribution of
m

(±)
±(n+1). Using Eq. (7), it is

gs(m) =
∫ ∞

0
dm′gs(m

′)
∫ ∞

0
dy R(y)

× δ

[
m −

(
1

y
+ 1

s/κ + m′

)−1 ]
, (8)

where we made the variable substitution y = 1/ξ , with
R(y) = �(1/y)/y2 denoting the corresponding distribution.
The function δ(z) is the Dirac delta-function. Eq. (8) constitute
an integral equation for gs(m).

The probability density for the mobility (in Laplace space)
is obtained by integrating over all m’s and y’s consistent with
Eq. (6):

P [μ̂0(s)] =
∫ ∞

0
dy R(y)

∫ ∞

0
dm gs(m)

∫ ∞

0
dm′gs(m

′)

× δ

[
μ̂0(s) −

(
1

y
+ 1

s/κ + m
+ 1

s/κ + m′

)−1 ]
.

(9)

Equations (8) and (9) define the problem to be solved. In the
following we give asymptotically exact results for s → 0 (long
times), from which heterogeneity averages can be calculated.
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A. LT systems

Let us first give the results for the quantity of interest, i.e.,
the tracer particle mobility probability density [Eq. (9)], for
LT systems. We make use of the explicit expression for gs(m)
contained in Eqs. (A1), (A4), and (A5) in Appendix A and
find, for s → 0, that

P [μ̂0(s)] = δ[μ̂0(s) − μ̂0(s)|EM,LT], (10)

where

μ̂0(s)|EM,LT ∼ s1/2

2(κξ̄ )1/2
. (11)

From Eqs. (10) and (11) we see that LT systems behave
universally at long times like a system of identical particles all
having the friction constant equal to the mean ξ̄ .

The result for the tracer particle mobility contained in
Eq. (11) is identical to the effective medium mobility obtained
in [16] (Appendix A) for LT systems. This effective medium
approximation consists of replacing the disordered quantity
ξn with an n-independent but instead time-dependent friction
kernel ξeff(t) in such a way that the mobility of a particle on
average is unchanged if its effective friction ξeff(t) is replaced
by one of the original ξn. This procedure is thus exact for LT
systems at long times.

B. HT systems

For the case of HT systems, i.e., friction constants drawn
from a distribution with a heavy power-law tail as described by
Eq. (2), the analysis is more challenging. As for LT systems,
the problem is divided into two steps, namely, first, solve
Eq. (8) and, second, use the corresponding solution for gs(m)
to evaluate Eq. (9).

Considering the first step above, we note that if we choose
the specific type of power-law probability density, R(y) =
αyα−1 for 0 < y < 1, with y = 1/ξ and R(y) = 0 otherwise,
Eq. (8) can be solved following the approach in the appendix
of Ref. [29] for long times, s → 0 (see also Ref. [30]). In
Appendix A we generalize, and simplify, the derivation in
[29] to friction constant probability densities of a general type
with an asymptotic behavior as in Eq. (2).

Let us now turn to the second step, i.e., evaluating Eq. (9)
using the explicit result for gs(m) obtained in Appendix A. In
the limit of s → 0, Eq. (9) becomes (after a rescaling of the
integration variable)

P [μ̂0(s)] =
∫ ∞

0
dp h(p)

∫ ∞

0
dp′h(p′)

× δ

(
μ̂0(s) − ε(s)

1/p + 1/p′

)
, (12)

where the scaling functions ε(s) and h(q) are related to
gs(m) by gs(m) = h[m/ε(s)]/ε(s), with expressions for them
provided by Eqs. (A11) and (A13). In arriving at Eq. (12) we
have made use of the normalization condition

∫ ∞
0 R(y)dy = 1.

Taking the Mellin transform with respect to μ̂0(s) of Eq. (12),

we find

P̄ [z] = M[P (μ)] =
∫ ∞

0
μz−1P (μ)dμ

= [ε(s)]z−1
∫ ∞

0
dp h(p)

∫ ∞

0
dp′g(p′)f (p′/p), (13)

where g(q) = qz−1h(q) and f (q) = (1 + q)1−z. Using Par-
seval’s relation for Mellin transforms and other standard
Mellin-transform relations [see Ref. [31], Mellin-transform
table, Eqs. (1.3) and (2.17)] and interchanging the order of
integrations, we find

P̄ (z) =
(

β

�(β)

)2
Bz−1

�(z − 1)

∫ c+i∞

c−i∞
dw Ḡ(1 − w)F̄ (w),

(14)
where Ḡ(w) = �(βw)�(βz − βw) and F̄ (w) = �[β(z −
2) + βw]�(2β − βw), with B = B(s) = Q(β)μ0(s)|EM,HT.
We define the exponent

β = 1/(1 + α) (15)

and introduce the result for the mobility within the effective
medium approximation for HT systems [16]:

μ̂0(s)|EM,HT ∼ sβ

2(κχ )1/2
, (16)

with χ = (4κ)2β−1(Aπ/ sin[(1 − β)π/β])2β . Also,

Q(β) =
(

4(1 − β)

β3
�((1 − β)/β)

)β

. (17)

In order to arrive at Eq. (14) we also used the reflec-
tion formula for � functions [32]. Using Parseval’s rela-
tion in reverse together with standard Mellin transforms
[see Ref. [31], inverse Mellin-transform table, Eq. (5.36)],
we obtain P̄ (z) = [�(βz)/�(β)]2Bz−1I/�(z − 1), with I =∫ ∞

0 dx(1 + x1/β )−2βzxz−2. Performing the integral I , we get
our final expression for the Mellin transform of the tracer
particle mobility probability density for HT systems:

P̄ [z] =
∫ ∞

0
μz−1P (μ)dμ

= β

�(β)2

B(s)z−1

�(z − 1)

�(βz)2�(β(z − 1))�(β(z + 1))
�(2βz)

.

(18)

The inverse Mellin transform of P̄ (z) is an H function
[33]. However, due to the definition of the Mellin transform,
Eq. (18) allows us to directly obtain moments of the probability
distribution P [μ̂0(s)]; that is, we have

〈[μ̂0(s)]n〉 = P̄ (n + 1). (19)

Unlike LT systems, we note that the mobility in the HT systems
does not self-average at long times (small Laplace frequen-
cies); that is, the system does not become universal with
a δ-peaked distribution of mobilities [compare to Eq. (10)].
This follows since 〈[μ̂0(s)]n〉 is not simply an n-independent
quantity to the power n. Also, in contrast to LT systems, the
effective medium prediction for the mean mobility is not exact.
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IV. MEAN SQUARE DISPLACEMENT

The results from the previous section allow us to extract
the tracer particle mean square displacement. Employing
the fluctuation-dissipation theorem [26] in the form of a
generalized Einstein relation,

〈δxT (t)〉f = F0

2kBT
〈δx2

T (t)〉, (20)

where the subscript f on the left hand side indicates that
the average is performed in the presence of a constant force
f0(t) = F0, whereas the average on the right hand side is in the
absence of force. Combining this with Eqs. (18) and (19) for
the mean mobility (n = 1), we find the heterogeneity-averaged
mean square displacement for HT systems:

〈δx2
T (t)〉 = �(β)

kBT

(κχ )1/2

t1−β

�(2 − β)
, (21)

where we have introduced a correction factor compared to the
effective medium result obtained in [16]:

�(β) = Q(β)
β

�(β)

[�(2β)]2�(3β)

�(4β)
. (22)

The inset in Fig. 2 displays the quantity �(β) for the full
range of β values. We notice that the effective medium
approximation gives the correct exponent 1 − β = α/(1 + α)
for the heterogeneity-averaged case, while the corresponding
prefactor is not exact.
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FIG. 2. (Color online) Tracer particle mean square displacement
for the heterogeneity-averaged case: comparison of simulations with
the effective medium (dashed lines) and exact (solid lines) long
time results, Eq. (21). The simulation results are averaged over 2400
realizations with the center particle taken as the tracer particle. The
system size is L = 10 001 with N = 1001 particles. The rest of the
parameters are as given in Sec. V. The inset shows the ratio �−1

[see Eq. (22)] of the effective medium and exact results for the mean
squared displacement of a tracer particle in a HT single-file system
as a function of α [see Eq. (2)]. Simulation data for α = 0.3,0.5, and
0.7 are from [16].

V. SIMULATIONS

In this section we provide simulation results in order to
numerically test the analytic prediction from the previous two
sections.

The simulation scheme employed here is identical to the one
described in Appendix G of [16]. Briefly, each particle is placed
randomly on a line of length L. The particles make random
jumps with a rate qn = 2kBT /(ξna

2) and distance l according
to the Gaussian distribution P (l) = (2πa2)−1/2 exp[−(l −
μ)2/(2a2)]. In our simulations we use a = 1. The average
is set to μ = 0 for all particles except the tagged particle
when an oscillating force is applied to it. In this case μ =
[F0/(ξ0q0)] cos(ω0t) for a force fn(t) = δn,0F0 cos(ω0t). The
particles are hard core, interacting with a size of b taken to be
unity in the simulations; if an attempted jump would lead to
two particles overlapping or crossing, then either the jump is
canceled, or both particles are moved according to an algorithm
that preserves a detailed balance (see [16] for details). Any
jump that would lead to the particle moving outside the system
size L is canceled. The distribution of friction constants is
taken to be �(ξn) = Aξ−1−α

n for ξn � ξc, ξc = (A/α)1/α and
zero otherwise, with A chosen such that the average diffusion
constant D̄ = 〈kBT /ξn〉 = αkBT /[(1 + α)ξc] is unity.

Let us first consider results for the tracer particle mean
square displacement (MSD). In Fig. 2 we show a comparison
of simulations with the analytical prediction for HT systems
[solid lines; Eq. (21)], showing satisfactory agreement and
improving previous effective medium predictions (dashed
lines). The correction factor for HT systems �(β) is shown
in Fig. 2 (inset) as a function of the friction-constant exponent
α. We see that the effective medium prediction becomes exact
as α approaches 1 and deviates at most by 25% in the limit
α → 0. For LT systems the fluctuation-dissipation theorem
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FIG. 3. (Color online) Simulation results for the mean displace-
ment from nonaveraged simulations for 20 HT systems with α = 0.5.
Also shown are the average of the 20 simulations compared to the
result obtained from Eq. (18). We used 501 particles in a box of length
5001 and an oscillation frequency ω0/(2π ) = 10−5 and amplitude
F0/(ξ0q0) = 0.002.
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FIG. 4. (Color online) Scatterplot in the complex plane (real axis
placed horizontally) of mobilities extracted from 50 nonaveraged
simulations (see also Fig. 3, where results for 20 of them are shown).
The circle (with error bars) indicates the mean of the extracted
mobilities, whereas the asterisk indicates the mean as obtained from
Eqs. (18) and (19) with n = 1 and s = −iω0. The ellipse represents
the estimated covariance matrix, with the semimajor and semiminor
axes having lengths equal to the square root of the eigenvalues and
pointing along the corresponding eigenvectors. The red (gray) line
along the major axis has a length equal to the square root of the
difference of the eigenvalues. The black line emanating from the
asterisk is the analytic result for this line as obtained in Appendix B.

combined with Eq. (10) proves that the effective medium
prediction for the MSD in [16] is exact for such systems.

In Fig. 3 we display simulations for the mean displacement
in the presence of an oscillating force on the tagged particle
f0(t) = F0 cos(ω0t) for HT systems. Due to the nonuniver-
sality of HT systems each realization of friction constants
gives a different amplitude and phase for the oscillations
around the mean position. The mean value as obtained with
the average mobility (n = 1) from Eqs. (18) and (19) shows
satisfactory agreement with the simulations. Note the phase
shift, (1 − β)π/2, between the applied force and the induced
response in terms of the mean position. The mobility as
extracted from simulations is a complex quantity with real
part μR and imaginary part μI . The theoretical prediction
for the mean of μR and μI is obtained from Eqs. (18) and
(19) by setting n = 1 and making a Wick rotation s = −iω0.
To assess the variability around the mean mobility Fig. 4
displays a scatterplot of complex valued mobilities μ0,m(ω0),
m = 1, . . . ,M , as extracted from simulations of M = 50
different sets of frictions by

μ0,m(ω0) = −2iω0

F0N

N∑
r=1

eiω0tr < δxT,m(tr ) >sim , (23)

where δxT,m are deviations from the average position for the
friction constant set m, tr runs over equally spaced times within
one period of the force, and < . . . >sim represents an average
over different periods within one set of friction constants. The

average squared mobility estimated over the 50 different sets of
frictions is 〈μ0(ω0)2〉sim = [−(9.4 ± 1.7) − (13.4 ± 2.4)i] ×
10−5, in satisfactory agreement with the corresponding an-
alytic result 〈μ0(ω0)2〉 = (−10.1 − 17.6i) × 10−5 obtained
from Eqs. (18) and (19) with n = 2 and s = −iω0.

VI. CONCLUSION

Exactly solvable many-body models have, over the years,
served all fields of physics, chemistry, and biological sciences.
The present article provides important insights into the com-
bined effects of heterogeneity and particle-particle interactions
on the dynamics in stochastic processes. In particular, we
provided an asymptotically exact analytic expression for the
probability density of mobility in a single-file system and for
harmonically coupled beads with different friction constants.
Our study paves the way for force response studies of other
complex heterogeneous many-body systems.

We hope that the type of system introduced here will find
experimental realizations for transport processes where hetero-
geneity is prominent; examples include motion of fluorescently
labeled proteins on DNA molecules and other macromolecules
and diffusion of dissimilar particles in nanochannels.
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APPENDIX A: ASYMPTOTIC SOLUTION OF EQ. (8)

Let us consider the expression for the distribution gs(m),
Eq. (8) in the main text, for the case of long times (s → 0). In
this limit Eq. (8) can be solved following the approach in the
appendix of Ref. [29]. However, as this derivation is lengthy,
we here provide a simpler as well as more general version of
the derivation. Following Ref. [29], we write

gs(m) = 1

ε(s)
h[m/ε(s)], (A1)

with the s-dependent scaling function ε = ε(s) chosen to be
positive and to satisfy ε(s) → 0 and s/ε(s) → 0 as s → 0.
Taking the Mellin transform [Ā(z) = ∫ ∞

0 xz−1A(x)dx] of
Eq. (8) with respect to m and substituting the integration
variable with v = m′/ε, we get

h̄(z) =
∫ ∞

0
dv h(v)

∫ ∞

0
dy R(y)

(
ε

y
+ 1

v + s/(κε)

)1−z

,

(A2)
which is the starting point of our simplified derivation.

1. LT systems

Let us first consider LT systems. For these we ex-
pand the right hand side of Eq. (A2) to first sub-
leading order in ε and s/(κε). Also making use of
the definition of a Mellin transform, we get that the
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right hand side equals h̄(z) − (1 − z)(s/κε)h̄(z − 1) + (1 −
z)〈y−1〉εh̄(z + 1). Equation (A2) then becomes

s

κξ̄ε2
h̄(z − 1) = h̄(z + 1). (A3)

We obtain a nontrivial solution for h̄ by choosing

ε(s) =
(

s

κξ̄

)1/2

, (A4)

where ξ̄ = ∫ ∞
0 (1/y)R(y)dy = ∫ ∞

0 ξ�(ξ )dξ is the mean fric-
tion constant. The solution to Eq. (A3) with h̄(1) = 1 (nor-
malization condition) is simply h̄(z) = 1, which, when Mellin
inverted, gives

h(x) = δ(x − 1), (A5)

in agreement with [29].

2. HT systems

For HT systems the analysis is slightly more involved. First
we integrate Eq. (A2) by parts, introducing the cumulative
distribution C(y) = ∫ y

0 R(y ′)dy ′, to find h̄(z) = T1 + T2, with

T1 =
∫ ∞

0
dv h(v)C(y)

[
ε

y
+ 1

v + s/(κε)

]1−z
∣∣∣∣∣
∞

y=0

(A6)

T2 =
∫ ∞

0
dv h(v)

∫ ∞

0
dy

(1 − z)ε

y2
C(y)

[
ε

y
+ 1

v + s/(κε)

]−z

.

(A7)

Since R(y) ∼ A/y1−α for small y, we have C(y) ∼ Ayα/α.
Restricting z to z > 1 − α, the lower boundary term above
vanishes. At the opposite boundary we have C(∞) = 1, and
thus we get

T1 =
∫ ∞

0
dvh(v)vz−1

[
1 + s

κεv

]z−1
. (A8)

For T2, if we set y = εy ′ and let ε → 0, we have C(εy ′) ∼
A(εy ′)α/α and find, to leading order in ε and s/ε,

T2 ∼
∫ ∞

0
dv h(v)

∫ ∞

0
dy ′ (1 − z)

(y ′)2

A(εy ′)α

α

[
1

y ′ + 1

v

]−z

= εα A(1 − z)�(1 − α)�(z + α − 1)

α�(z)
h̄(z + α). (A9)

Similarly, we expand T1, but here we include the subleading
term in s/(κε),

T1 ∼ h̄(z) + (z − 1)s

κε
h̄(z − 1). (A10)

From Eqs. (A9) and (A10) we see that a way to obtain a
nontrivial equation for h̄(z) in the limit s → 0 is to choose

ε(s) =
( αs

κA

)β

, (A11)

with β = 1/(1 + α). With this choice we find that h̄(z) satisfies

h̄(z − 1) = �(z + α − 1)�(1 − α)

�(z)
h̄(z + α), (A12)

which has the solution [with h̄(1) = 1]

h̄(z) = β

�(β)
[β2�(1 − α)]β(1−z) �(β(z − 1))�(βz)

�(z − 1)
, (A13)

in agreement with [29].

APPENDIX B: THE COVARIANCE MATRIX

Writing the mobility in Fourier space according to (with
δμR and δμI being real)

μ0(ω0) = 〈μ0(ω0)〉 + δμR + iδμI , (B1)

we can define a covariance matrix for the real and imaginary
deviations:

� =
( 〈

δμ2
R

〉 〈δμRδμI 〉
〈δμRδμI 〉

〈
δμ2

I

〉
)

. (B2)

From simulation data with estimates μ0,m(ω0), m = 1, . . . ,M ,
of mobility from M different sets of friction coefficients we
estimate the average as 〈μ0(ω0)〉est = ∑M

m=1 μ0,m(ω0)/M . For
the deviations δμR,m + iδμI,m = μ0,m(ω0) − 〈μ0(ω0)〉est we
estimate the components of � by

〈δμAδμB〉est = 1

M − 1

M∑
m=1

δμA,mδμB,m, (B3)

where A and B are either R or I . The ellipse in Fig. 3 has
been drawn with its center on 〈μ0(ω0)〉est and with the major
and minor radii equal to the square roots of the eigenvalues
of the estimated �. The corresponding axes point along the
eigenvectors.

The analytic result for the second moment about the mean,
〈(δμR + iδμI )2〉, allows us to extract two results regarding the
covariance matrix �. One regards its eigenvalues λ±,

λ± =
〈
δμ2

R

〉 + 〈
δμ2

I

〉 ± √(〈
δμ2

R

〉 − 〈
δμ2

I

〉)2 + 4〈δμRδμI 〉2

2
.

(B4)
The difference of these can be found from the analytic
calculation of the moments as

λ+ − λ− =
√(〈

δμ2
R

〉 − 〈
δμ2

I

〉)2 + 4 〈δμRδμI 〉2

= |〈(δμR + iδμI )2〉|
= |〈μ0(ω0)2〉 − 〈μ0(ω0)〉2|. (B5)

Note that Eq. (B5) implies that λ+ � λ−. We can also
extract the eigenvectors. To see this first note that the
asymptotic result 〈μ0(ω0)n〉 � (−iω0)nβ for the nth moment
tells us that 〈(δμR + iδμI )2〉 = Ce2iφ , where C > 0 and
eiφ = 〈μ0(ω0)〉/|〈μ0(ω0)〉|; that is, the phase of the second
moment is twice that of the first moment. Using this, we find
that the eigenvector corresponding to λ+ is

�v+ =
( 〈δμRδμI 〉

λ+ − 〈
δμ2

R

〉
)

= C

2

(
sin 2φ

1 − cos 2φ

)

= C sin φ

(
cos φ

sin φ

)
= C sin φ

| 〈μ0(ω0)〉 |

(
Re 〈μ0(ω0)〉
Im 〈μ0(ω0)〉

)
.

(B6)
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Thus, for the ellipse plotted in Fig. 3 of the main text we find
that the major axis should point along the line to the origin.
The black line in Fig. 3 drawn from the asterisk has a length

√
λ+ − λ− and points along −�v+, as obtained from the analytic

results.
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