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We describe a general simulation scheme for assessing the thermodynamic consequences of neglecting many-
body effects in coarse-grained models of complex fluids. The method exploits the fact that the asymptote
of a simple-to-measure structural function provides direct estimates of virial coefficients. Comparing the virial
coefficients of an atomistically detailed system with those of a coarse-grained version described by pair potentials,
permits the role of many-body effects to be quantified. The approach is applied to two models: (i) a size-
asymmetrical colloid-polymer mixture, and (ii) a solution of star polymers. In the latter case, coarse-graining to
an effective fluid described by pair potentials is found to neglect important aspects of the true behavior.
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Many-body forces occur when the net interaction between
two particles is not simply pairwise additive, but depends
on the presence of other particles. They appear in a wide
range of physical systems including dense phases of noble
gases [1], molecular systems [2], nuclear matter [3], super-
conductors [4], and complex fluids such as polymers [5],
lipid membranes [6,7], and colloidal dispersions [8–11].
In seeking to make theoretical and computational progress
with such systems one often attempts to simplify matters
by “coarse-graining” i.e., integrating over the degrees of
freedom on small length or times scales. This leads to a
description of the system in terms of an effective Hamiltonian
describing the interactions among the remaining degrees of
freedom. These interactions are inherently many body in
character, even if the original system involves only pairwise
interactions.

To appreciate how many-body interactions arise in coarse-
grained (CG) representations of complex fluids, consider
the case of colloids dispersed in a sea of much smaller
polymers. This system is commonly modeled as a highly size-
asymmetrical mixture of spheres as shown in the simulation
snapshot of Fig. 1(a). However, since dealing with compo-
nents of disparate sizes is theoretically and computationally
problematic, one typically seeks to integrate out the polymer
degrees of freedom to yield an effective one-component model.
But the colloidal interactions arise from the modulation of
the polymer density distribution by all the colloids, and
consequently, the effective one-component description is many
body in form. A second example is shown in Fig. 1(b) which
depicts three star polymers in solution. A common CG model
replaces each star by a single effective particle. However,
the net interaction between two polymers depends on the
proximity of a third, and hence the effective Hamiltonian has
a many-body character [12].

Computer simulation is a powerful route for designing
CG models for complex fluids, which is currently receiving
considerable attention. Indeed, in principle it can be used to
determine a many-body potential for the CG coordinates which
is consistent with the underlying atomistic model [13,14]. But
implementing such approaches is far from trivial and it is still
the norm that CG descriptions neglect some or all many-body
effects [15–18]. Thus for polymers one might replace each

chain by a set of one or more “blobs” which interact via a pair
potential such as the potential of mean force [19]. Similarly
for a colloid-polymer mixture one typically describes the
colloidal interactions via the depletion pair potential [20].
In view of this, it is patently important to be able to assess
the likely implications of the pair potential approximation
for the thermodynamics of the CG system. To date, though,
there has been little in the way of systematic methods for
doing so.

In this Rapid Communication we introduce a widely
applicable tool for comparing some basic thermodynamic
properties of an atomistically detailed system with those of
its CG representation. Our approach is based on calculations
of the virial coefficients Bn. These are pertinent because they
provide a systematic expansion of the properties of a system
in terms of many-body interactions: B2 depends only on
pair interactions, while B3 depends on two- and three-body
interactions, etc. Comparison of virial coefficients for the
atomistically detailed and CG models provide a measure of
the extent to which the thermodynamics of the models agree.

Previously there has been no method capable of directly de-
termining virial coefficients for complex fluids. The interesting
feature of our approach is that it is based on exploiting finite-
size effects. Consider a simulation box of volume V containing
N interacting molecules in thermal equilibrium at inverse
temperature β = (kBT )−1. For each of the N molecules we tag
an arbitrary atomic site and label its position vector ri , with
i = 1, . . . ,N . The position vectors of the remaining m atoms
in each molecule we write as ri,j = ri + ui,j ,j = 1, . . . ,m,
with ui,j the displacement of atom j on molecule i from
the tagged atom ri . Accordingly a molecular configuration
can be specified via a list of the N tagged and the M = Nm

nontagged coordinates, rN,uM . The corresponding Boltzmann
probability is

PN (rN,uM ) = e−βU (rN ,uM )

ZN

, (1)

where U (rN,uM ) is the full interaction potential containing
both intra- and intermolecular terms and

ZN =
∫

e−βU (rN ,uM )drNduM (2)

is the N -molecule configurational integral.
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FIG. 1. (Color online) (a) Snapshot of a highly size-
asymmetrical mixture of spheres. The effective one-component
model is realized by integrating out the small sphere degrees of
freedom. (b) A snapshot of three star polymers. The big spheres
represent a coarse-grained model in which each polymer is replaced
by a single effective particle. In both (a) and (b) simulation
measurements are also shown for the structural quantity g′

3(rmin)
discussed in the text, whose asymptote (dashed) yields information
on the third virial coefficient.

Now define

g̃N (rN,uM ) ≡ PN (rN,uM )

P
ig
N (rN )

= V N e−βU (rN ,uM )

ZN

, (3)

where P
ig
N (rN ) = V −N is the probability of finding (within

the same volume) a set of N structureless ideal gas particles in
the same configuration as the tagged sites. We shall focus on the
low density limit of g̃N (rN,uN ), corresponding to |rk − rl| →
∞, ∀k,l. In this regime the molecules are noninteracting, so
we can integrate out the internal molecular degrees of freedom
(associated with the ui,j ) to obtain the asymptotic value

fN (V ) ≡ lim
|rk−rl |→∞

g̃N (rN ) = (�V )N

ZN

= ZN
1

ZN

, (4)

where � is the integral over the internal degrees of freedom of
a single molecule and Z1 is the corresponding configurational
integral.

The quantity fN (V ) = ZN
1 /ZN is central because it permits

a direct calculation of molecular virial coefficients as will
be shown below. A key feature is its dependence on the
system volume. Specifically, although it has the limiting
behavior limV →∞ fN (V ) = 1, for finite system volume fN (V )
deviates from unity. However, on the face of it, determining
fN (V ) by simulation via Eq. (4) is not a feasible proposition
since it entails populating a 3N -dimensional histogram for
PN (rN ) with sufficient statistics to yield precise probabilities.

Fortunately, though, it turns out to be possible to determine
fN (V ) using only one-dimensional histograms. To see this,
consider the quantity

g′
N (rmin) ≡ PN (rmin)

P
ig
N (rmin)

. (5)

Here rmin is, for some configuration, the smallest, i.e., the
minimum separation among the N tagged sites. In the course
of a simulation, one can accumulate histograms for PN (rmin)
and P

ig
N (rmin) and thus form g′

N (rmin). Clearly, though, the limit
rmin → ∞ is none other than the limit |rk − rl| → ∞, ∀k,l.
Moreover, since in this limit the microstates of the tagged
particles are visited with constant probability �NZ−1

N , while
those of the ideal gas are visited with probability V −N , it
follows that the limiting value of g′

N (rmin) is the same as that
of g̃N (rN ), i.e.,

lim
rmin→∞ g′

N (rmin) = fN (V ). (6)

Equation (6) provides a straightforward computational
prescription for determining fN (V ), which in turn permits the
calculation of the virial coefficients for the molecular system.
Specifically, from the virial cluster expansion [21] one finds
that for N = 2 particles

B2 = V

2

(
1 − Z2

Z2
1

)
= V

2

(
1 − 1

f2(V )

)
. (7)

Similarly for three particles one finds

B3 = V 2
(
Z4

1 − 3Z2Z
2
1 − Z3Z1 + 3Z2

2

)
3Z4

1

= 4B2
2 − 2B2V + V 2 [f3(V ) − 1]

3f3(V )
. (8)

More generally, knowledge of fγ (V ), γ = 2, . . . ,n permits
the calculation of the virial coefficient Bn.

Thus measurements (for a small number of molecules)
of the asymptotic value of a simple-to-measure structural
quantity, g′

N (rmin), provide direct access to molecular virial
coefficients. The utility of the approach is wide because it can
be used in conjunction with any simulation method capable of
producing equilibrium configurations, for example, molecular
dynamics (MD), Monte Carlo (MC), or Langevin dynamics.
Furthermore it can deal with much more complex systems than
is possible with an existing method [22].

In general one can estimate f visually, or from a fit.
However, we have found that a particularly accurate measure
results from the ratio of integrals

fN (V ) =
∫ ru

rl
PN (rmin)drmin∫ ru

rl
P

ig
N (rmin)drmin

, (9)

where rl is some value of rmin for which g′(rmin) can be
considered to have first reached its limiting value, and ru is
the largest value of rmin for which data has been accumulated,
which will typically be half the simulation box diagonal length.
It should be emphasized that in practice Eq. (9) is evaluated
simply from a count of entries in the respective histograms for
PN (rmin) and P

ig
N (rmin)—no numerical quadrature is necessary.

To test the method we have used it to estimate the first
few virial coefficients of a single component system of hard
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TABLE I. Estimates of the first four virial coefficients of hard
spheres, compared with exact values.

N V BN Bexact
N [23]

2 (2.5σ )3 2.09441(6)σ 3 2.0943951 . . . σ 3

3 (3.5σ )3 2.7418(4)σ 6 2.7415567 . . . σ 6

4 (3.5σ )3 2.629(22)σ 9 2.6362180 . . . σ 9

spheres of diameter σ , finding excellent agreement with
exact values (see Table I). Having validated the method on
a simple system, we turn to a more challenging problem,
namely, that of quantifying the scale of many-body effects
in CG models for colloid-polymer mixtures. In such systems
the polymers mediate effective colloidal interactions [20].
A commonly studied model treats the colloids as big hard
spheres of diameter σb, and the polymers as small hard
spheres of diameter σs , so that the size ratio is q ≡ σs/σb.
The effective Hamiltonian then provides a CG description of
the colloidal interactions in which the polymer degrees of
freedom have been integrated out. Quite generally it takes the
form H eff = H 0 + �, where H 0 is the bare colloid-colloid
interaction, while � is a many-body contribution arising from
the polymers, which can in turn be written as a sum over
n-body terms � = ∑∞

n=1 θn [24]. Common practice is to
approximate this Hamiltonian in terms of a sum over pair
interactions, i.e., H eff ≈ ∑

i,j [φ(rij ) + W (rij )], where φ(rij )
is the hard sphere interaction between a pair of colloids
whose centers are separated by a distance rij , while W (rij )
is the depletion pair potential, whose form depends on the
small particle volume fraction and model details such as the
degree of additivity of the big-small interaction. Usually one
assumes that the small particles occupy an open ensemble, so
that W (r) is parametrized in terms of the reservoir volume
fraction ηr

s .
Since the depletion pair potential plays a central role

in theories and simulations of colloid-polymer mixtures,
it is desirable to quantify the effects of neglecting higher
order terms in H eff , the most prominent of which is triplet
interactions. Our strategy for doing so estimates the third virial
coefficient Beff

3 for the full effective fluid and compares it with
the corresponding value B

dep
3 for three particles interacting

via the depletion pair potential. This comparison directly
probes the extent to which the interaction between a pair of
big particles is influenced by the proximity of a third one.

To obtain estimates for Beff
3 we deploy the geometrical

cluster algorithm (GCA) [25,26]. This efficient rejection-free
Monte Carlo scheme can generate equilibrium configurations
at practically any value of q. We have used it to study systems
of N = 2 and N = 3 big particles in a sea of small ones at
various ηr

s . The procedure is as follows:
(i) In a simulation of N = 2 tagged big particles, measure

the form of g′
2(r) at some prescribed ηr

s . This yields the value
of Beff

2 (ηr
s ) via Eq. (7).

(ii) Use the form of g′
2(r) obtained in (i) to estimate

the depletion potential W (r|ηr
s ) by employing the procedure

detailed by Ashton et al. [27].
(iii) Next simulate N = 3 tagged big particles at the same

value of ηr
s and measure g′

3(rmin). Together with the estimate

of Beff
2 (ηr

s ) obtained in (i), this yields an estimate for Beff
3 (ηr

s )
via Eq. (8).

(iv) Finally, perform a simple MC simulation of three parti-
cles interacting via the depletion potential W (r|ηr

s ) obtained in
(ii). This yields the third virial coefficient B

dep
3 (ηr

s ) via Eq. (8).
We have applied this procedure to study two models of

colloid-polymer mixtures, namely, the Asakura-Oosawa (AO)
model and a system of additive hard spheres. The AO model
describes colloidal hard spheres in a solvent of ideal polymer
that have a hard-particle interaction with the colloids [28,29]
[cf. Fig. 1(a)]. Owing to its extreme nonadditivity, the exact
form of the depletion potential is known analytically [29]
which obviates the need to perform steps (i) and (ii) above.
Furthermore many-body forces are known to vanish for size
ratios q < 0.1547 [30,31], a fact that allows us to further test
our methodology and its sensitivity.

Figure 1(a) includes a sample plot of g′
3(rmin) obtained

for the AO model using a box of size V = (3.5σl)3 at
ηr

s = 0.2, q = 0.154. The data show the approach to the
asymptote, f3(V ). From plots such as this we have obtained
estimates of Beff

3 and B
dep
3 for size ratios q = 0.5,0.25,0.154,

as shown in Fig. 2. One expects that triplet interactions, as
quantified by the difference between Beff

3 (ηr
s ) and B

dep
3 (ηr

s ),
should increase with ηr

s and this is indeed the case. We find that
Beff

3 > B
dep
3 , consistent with the fact that triplet interactions

weaken the attraction between particles [32]. One further
expects Beff

3 − B
dep
3 to diminish with decreasing q and have

vanished by q = 0.154, a feature which is confirmed to high
precision by our data.

For additive hard spheres, the GCA is considerably less
efficient than for the AO model, being limited to ηr

s � 0.2.
Although triplet interactions are always present in principle,
our results (not shown) indicate that within this more limited
range of ηr

s , they are negligibly small for q = 0.2 and q = 0.1.
This finding suggests that for applications at low to moderate

0 0.1 0.2 0.3 0.4 0.5

s
r

0

1

2

3

4

B
3 

/ B
3H

S

B
3

eff

B
3

dep

q=0.5

q=0.25

q=0.154

FIG. 2. (Color online) Comparison of Beff
3 (ηr

s ) and B
dep
3 (ηr

s ) for
the AO model with size ratios q = 0.5,0.25,0.154. Lines are guides
to the eye and statistical uncertainties are smaller than the symbol
sizes. To aid visibility, the curves for q = 0.25 and q = 0.5 have
been shifted vertically by 0.5 and 1.0, respectively.
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FIG. 3. (Color online) Estimates of the dimensionless third viri-
als B

pmf
3 /B2

2 and Bstar
3 /B2

2 vs functionality for various chain lengths
n. Volumes ranged from V = (20σ )3 to V = (40σ )3, large enough
to access the limiting behavior of g′

3(rmin). Bonded monomers
interact via a FENE potential with parameters K = 30.0ε/σ 2, R0 =
1.5σ [34]. The LJ potential was truncated and shifted at r = 2.5σ . In
all cases T is chosen to yield B2 = −3321σ 3. Errors are comparable
with symbol sizes.

ηr
s and small q it is safe to use depletion potentials for additive

hard spheres.
As a final illustration of the power and generality of

our method, we have used it to quantify the role of triplet
interactions in a model for star polymers in implicit sol-
vent cf. [Fig. 1(b)]. Each star comprises a core particle to
which are attached a number (called the “functionality”) of
linear polymer chains each comprising n monomers. Bonded
monomers interact via a finitely extensible nonlinear elastic
(FENE) spring, while nonbonded monomers experience a
Lennard-Jones (LJ) potential. Using MD we have studied
various combinations of functionality and chain length n. Our
aim was to determine how these parameters affect the size
of the triplet interactions. In order to effect this comparison
in a fair manner, we tuned the temperature in each case
such that B2 matches a prescribed value, thereby providing

a “corresponding state.” The procedure for measuring the
size of triplet interactions via virial coefficients is similar to
that outlined for the colloid-polymer mixtures, except that the
tagged particles are now taken to be the set of core atoms. The
pair potential is the potential of mean force (pmf) which is
obtained in a simulation of two stars. We then simulate three
particles interacting via this potential to obtain B

pmf
3 . This

we compare with Bstar
3 , measured in a simulation of N = 3

star polymers [a sample plot of g′
3(rmin) in a box of volume

V = (40σ )3 is included in Fig. 1(b)].
The results are shown in Fig. 3 and reveal large discrep-

ancies between B
pmf
3 and Bstar

3 , which decrease in magnitude
as both the functionality and the arm length increase. Clearly
the disparity is such that one should expect a quite different
equation of state (as well as other thermodynamic quantities)
to arise from the coarse-grained system described by the pmf
compared to the full model. We believe that the importance of
many-body effects in this system arises from the ability of the
polymers to substantially overlap, which occurs predominantly
for lower functionality and smaller number of monomers per
arm. When two polymers overlap, the resulting composite
particle is locally much denser than for a single polymer.
Accordingly a third polymer is much less likely to overlap
with the first two due to short ranged monomeric repulsions.
Clearly, however, this effect is completely neglected in the
pair potential framework. This observation should be relevant
to CG models for many other types of polymer-based soft par-
ticles, including cluster forming amphiphilic dendrimers [33].

In summary, we have proposed a general method for
calculating low-order virial coefficients of complex fluids via
a simple-to-measure structural property. We have highlighted
its utility in quantifying the consequences of neglecting many-
body effects in coarse-graining schemes. Beyond this it should
prove useful as a means of testing new and existing molecular
models by comparing the extent to which they reproduce
experimentally determined virial coefficients.
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Jack, Andrew Masters, and Friederike Schmid for helpful
discussions.
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