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We propose a method to reconstruct the density of a luminescent source in a highly scattering medium from
ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source
problem for the diffusion equation.
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The development of tools for molecular imaging has had
a transformative effect on biomedical research [1]. There are
multiple applications including mapping gene expression and
following the course of infection in a single animal, among
others. Optical methods hold great promise for molecular
imaging, due to their spectroscopic sensitivity to chemical
composition, nondestructive nature, and relatively low cost [2].
One particularly popular modality, known as bioluminescence
imaging, makes use of a bioluminescent marker, most often
the luciferin-luciferase system, as a reporter of molecular
activity [3,4]. In a typical experiment, genetically modified
light-emitting cells are introduced into a model organism and
a CCD camera is used to record the intensity of emitted light.
The resulting images convey information about the spatial
distribution of the labeled cells. However, the images are
not tomographic nor are they quantitatively related to the
number density of the cells. One approach to this problem
is to reconstruct the number density (optical source) from
measurements of multiply scattered light, a method known as
bioluminescence tomography (BLT) [5–13]. The correspond-
ing inverse problem is a classical inverse source problem (ISP)
and it is well known that such problems do not have unique
solutions [14]. That is, more than one source can give rise to the
same measurements. Uniqueness can be restored under strong
mathematical assumptions, requiring a priori knowledge of
the source geometry.

To overcome the problem of nonuniqueness in BLT requires
a fundamentally new approach. In this Rapid Communication,
we propose an imaging modality termed ultrasound modulated
bioluminescence tomography (UMBLT), which is in the spirt
of several recently developed hybrid imaging methods. In
hybrid imaging (also called multiwave imaging), an external
field is used to control the material properties of a medium
of interest, which is then probed by a second field [15–33].
In the physical setting we consider, the source density is
spatially modulated by an acoustic wave, while measurements
of the emitted light are recorded. We find that it is possible
to uniquely reconstruct the source density by an algebraic
formula. Moreover, the reconstruction is stable in the sense
that an error in the measurements is linearly related to the
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error in recovering the source. We note that the inverse problem
of UMBLT has a quite different mathematical structure than
those that arise in other hybrid imaging modalities such
as acousto-optic tomography (AOT) [18]. In particular, the
inverse problem of AOT is an inverse scattering problem which
consists of solving a nonlinear partial differential equation. In
contrast, the inverse problem of UMBLT is an inverse source
problem which is formulated as a linear partial differential
equation. Indeed, we believe that this is the first inverse source
problem that has been considered in the context of hybrid
imaging.

We note that our results are particularly timely in view
of recent exciting work by Huynh et al. [34]. These authors
report experiments in which a focused ultrasound beam is
used to enhance the resolution of bioluminescence images.
Such experiments provide the necessary data to reconstruct
the source density in UMBLT.

We begin by recalling the mathematical formulation of
BLT. We consider a highly scattering medium in which light
propagates as a diffuse wave [35]. The energy density u of
the wave is assumed to obey the time-independent diffusion
equation

− ∇ ·
[
Dn2∇

(
u

n2

)]
+ αu = S in �, (1)

u + �
∂u

∂n
= 0 on ∂�. (2)

Here � is a three-dimensional bounded domain, n is the
index of refraction, α and D are the absorption and diffusion
coefficients of the medium, S is the source density, and �

is the extrapolation length. We note that in bioluminescence
imaging the source is incoherent and emits light over a broad
range of frequencies. Thus, for the remainder of this Rapid
Communication, we assume that the intensity is measured over
a relatively narrow band of frequencies so that the frequency
dependence of the absorption and diffusion coefficients can be
neglected.

The inverse problem of BLT is to determine the source
density S everywhere in the volume � from measurements of
the intensity on ∂�. As previously mentioned, this problem
does not have a unique solution, due to the existence of
nonradiating sources; such sources generate fields that vanish
everywhere in their exterior. This difficulty may be overcome,
to some extent, if it is known that S is constant on a fixed
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number of regions of known shape. It is also possible to
determine geometrical properties of the source, such as its
spatial extent.

To address the above mentioned difficulties, we introduce
an acoustic wave field that spatially modulates the source.
This internal control of the medium provides information that
is not available in conventional ISPs. To proceed, we consider
the medium to be a collection of particles (cells) suspended
in a fluid in which the acoustic wave propagates. Some of the
particles absorb and scatter light, while others act as sources
and emit light. If a small amplitude acoustic wave is incident
on the medium, then each particle will experience an acoustic
radiation force and oscillate about its local equilibrium
position. We assume that the acoustic pressure is a standing
plane wave of the form p = A cos(ωt) cos(k · x + ϕ), where
ω is the frequency, A is the amplitude, k is the wave vector
and ϕ is the phase of the wave. For simplicity, we have
assumed that the speed of sound cs is constant with k = ω/cs .
If the particles have positions xi , then their number density is
ρ(x) = ∑

i δ(x − xi). It can be seen that the number density is
spatially modulated according to

ρε(x) = ρ0(x)[1 + ε cos(k · x + ϕ)], (3)

where ρ0 is the number density in the absence of the acoustic
wave and ε = A/(ρc2

s ) � 1 is a small parameter [18]. Now, the
source density is proportional to the density of light-emitting
cells and is thus given by

Sε(x) = S0(x)[1 + ε cos(k · x + ϕ)], (4)

where S0 is the source density in the absence of the acoustic
wave. The optical properties of the medium are also acousti-
cally modulated. In particular, the index of refraction of the
fluid in which the particles are suspended is modulated due to
Brillouin scattering and is given by

n(x) = n0[1 + εγ cos(k · x + ϕ)], (5)

where n0 is the unmodulated index of refraction and γ is the
elasto-optical constant. We note that γ ≈ 0.3 in water. In [18]
it was shown that the absorption and diffusion coefficients are
modulated according to

αε(x) = α0(x)[1 + ε(2γ + 1) cos(k · x + ϕ)], (6)

Dε(x) = D0(x)[1 + ε(2γ − 1) cos(k · x + ϕ)]. (7)

Making use of the above results, we see that (1) and (2) become

− ∇ · Dε∇uε + αεuε = Sε in �, (8)

uε + �
∂uε

∂n
= 0 on ∂�, (9)

where uε = u/n2.
The inverse problem is to recover S0 from knowledge of uε

on ∂�. Here we assume that α0 and D0 are known everywhere
in � as determined, for instance, by an optical tomography
experiment. It will prove useful to consider the auxiliary

problem

− ∇ · D0∇vj + α0vj = 0 in �, (10)

vj + �
∂vj

∂n
= fj on ∂�, j = 1, . . . ,N, (11)

where fj are boundary sources. If we multiply (10) by uε and
(8) by vj , take the difference of the resulting equations and
integrate over �, we obtain the identity

�(j )
ε =

∫
�

d3x[(Dε − D0)∇uε · ∇vj

+ (αε − α0)uεvj − vjSε], (12)

where we have integrated by parts and applied the boundary
conditions (9) and (11). The surface term �

(j )
ε is defined by

�(j )
ε =

∫
∂�

d2x

[
uεD0

∂vj

∂n
− vjDε

∂uε

∂n

]
. (13)

Next, we perform an asymptotic expansion of uε and �
(j )
ε in

the small parameter ε:

uε = u0 + εu1 + ε2u2 + · · · , (14)

�(j )
ε = �

(j )
0 + ε�

(j )
1 + ε2�

(j )
2 + · · · . (15)

We find that to order O(1),

�
(j )
0 =

∫
�

d3x vjS0. (16)

At O(ε) we have

�
(j )
1 (k) =

∫
�

d3x[(2γ − 1)D0∇u0 · ∇vj + (2γ + 1)α0u0vj

− vjS0] cos(k · x + ϕ). (17)

The intensity measured by a point detector on ∂�, which
collects light in the outward normal direction, is given by
Iε = c/(4π )(1 + �∗/�)uε [36]. Here �∗ is the transport length,
which is related to the diffusion coefficient by D = 1/3c�∗.
Making use of the boundary conditions (2) and (11) we see
that (13) becomes

�(j )
ε = 4π

3

�∗

� + �∗

∫
∂�

d2x fj Iε cos(k · x + ϕ). (18)

Evidently �
(j )
1 can be determined from experiment. Thus, by

varying the wave vector k and the phase ϕ and inverting
a Fourier transform, we can recover the so-called internal
functional

Hj = (2γ − 1)D0∇u0 · ∇vj + (2γ + 1)α0u0vj − vjS0

(19)

from measurements. That is,

Hj (x) =
∫

d3k

(2π )3
e−ik·x[�(j )

1 (k; 0) + i�
(j )
1 (k; 3π/2)

]
, (20)

where the dependence of �
(j )
1 on ϕ has been made explicit.

The inverse problem now consists of recovering the source
S0 from the internal functional Hj . We emphasize that this
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is an unusual inverse problem, since the data Hj is known
everywhere in �. This situation can be compared with that of
the ISP, where the data is known only on ∂�. The ISP is thus
underdetermined, which leads to the previously mentioned
problem of nonuniqueness. In contrast, we will see that the
availability of internal data in UMBLT allows for the unique
recovery of S0. We first consider the case of a single boundary
source. Equation (19) then becomes

H

v
= (2γ − 1)D0∇ ln v · ∇u0 + (2γ + 1)α0u0 − S0, (21)

which is well defined since v does not vanish in �. Using the
fact that

S0 = −∇ · D0∇u0 + α0u0, (22)

we can eliminate S0 from (21). We then find that u0 obeys the
equation

− (L − 2γα0)u0 = H

v
in �, (23)

u0 + �
∂u0

∂n
= 0 on ∂�, (24)

where Lu0 := −∇ · D0∇u0 − (2γ − 1)D0∇ ln v · ∇u0. If 0
is not an eigenvalue of L − 2γα0 with the above prescribed
boundary conditions (which holds with suitable smallness
conditions on α0 or �) [37], we can uniquely solve (23) for u0

with

u0 = −(L − 2γα0)−1 H

v
. (25)

Once u0 is known, we can obtain the source S0 from (22).
It follows immediately that S0 can be reconstructed with
Lipschitz stability. That is, errors in H propagate linearly
to errors in S0. More precisely, suppose that H and H ′ are
the internal data corresponding to the sources S0 and S ′

0,
respectively. We then have the stability estimate

‖S0 − S ′
0‖L2(�) � C‖H − H ′‖L2(�), (26)

where C is a fixed constant [37]. See [37] for the case when 0
is an eigenvalue of L − 2γα0.

Next we consider the inverse problem with multiple
boundary sources. Note that since the coefficients α0 and D0

are assumed to be known, the solutions vj can be computed
numerically and thus additional experiments do not need to
be performed. To proceed, we assume that (∇vj ,vj ) form a
basis for every point in �. It can be seen that this condition
holds if the boundary sources fj are appropriately chosen
[37]. Assuming this is the case, (19) forms a system of linear
equations for the vector field A = (2γ − 1)D0∇u0 and the
function f = (2γ + 1)α0u0 − S0 of the form Mg = H . Here
g = (f,A), H = (H1, . . . ,H4), and

M =

⎛
⎜⎜⎝

v1 (∇v1)t

...

v4 (∇v4)t

⎞
⎟⎟⎠ . (27)

Solving the above equations for f and A we obtain

f =
∑

j

(M−1)1jHj , (28)

Ai =
∑

j

(M−1)i+1,jHj . (29)

Since A/D0 is a gradient field, it follows that

u0(x) − u0(x0) = 1

2γ − 1

∫
�

1

D0
A · dx, (30)

where � is an arbitrary path beginning at a point x0 ∈ � and
ending at x. Using the above results, we find that the source S0

may be obtained from the formula

S0(x) = S0(x0) + (2γ + 1)[α0(x)u0(x) − α0(x0)u0(x0)]

− f (x) + f (x0), (31)

which is the main result of this Rapid Communication. As
before, it is readily seen that S0 can be reconstructed with
Lipschitz stability. The corresponding stability estimate is of
the form

‖S0 − S ′
0‖L2(�) � C

∑
j

‖Hj − H ′
j‖L2(�), (32)

where we have assumed that S0(x0) = S ′
0(x0).

We now illustrate the above reconstruction procedure with
numerical simulations. For simplicity, we consider the case
of an infinite homogeneous medium. The absorption and
diffusion coefficients are given by α0 = 1.0 ns−1 and D0 =
1.0 cm2 ns−1, which is typical for biological tissue at optical
wavelengths. The fj are taken to be unit-amplitude point
sources which occupy the vertices of a square of dimensions
L × L. Since the inverse problem is linear, it suffices to restrict
our attention to a point source, which we place at the center of
the square. In this setting, it is possible to compute the data Hj

in closed form. In Fig. 1 we present a reconstruction of S0 in

FIG. 1. (Color online) Reconstructed image of a point source.
The field of view is L/10 × L/10.
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FIG. 2. (Color online) One-dimensional profile of the recon-
structed source in arbitrary units. The inset shows the peak in greater
detail. The curve shown in red (higher) is the transmitted intensity
due to the source.

the plane containing the source. Here we take L = 1 cm and
the integration in (30) is performed with a step size of L/100.
Figure 2 shows a one-dimensional profile of the reconstructed
source along a line passing through the center of the source. It
can be seen that the resolution, as measured by the full width
at half maximum (FWHM) is approximately L/50. We note
that this must be considered to be a best-case estimate since
the effects of noise have not been considered. However, the
stability estimate (32) indicates that there will be relatively
little degradation of the resolution in the presence of noise.
It is instructive to contrast the above results with those that
can be obtained by conventional bioluminescence imaging. To
this end, also shown in Fig. 2 is the transmitted intensity due
to the source measured on a line coinciding with an edge of

the square region in which the measurements are performed.
The FWHM of the intensity is approximately L/5. Thus the
resolution of the reconstructed image is a factor of 10 higher
than in conventional bioluminescence imaging.

We close with several remarks. (i) In general, the absorption
coefficient α0 and diffusion coefficient D0 will not be known
with high spatial resolution, as would be the case if they were
determined from optical tomography experiments [35]. Thus,
it would be of interest to determine the effect of errors in
α0 and D0 on reconstruction of the source S0. It may be
anticipated from the stability estimate (32), that such errors
would propagate linearly. However, a more refined analysis is
necessary to separate the effects of low- and high-frequency
errors in α0 and D0. (ii) The diffusion equation (1) is valid
when the energy density varies slowly on the scale of the
transport mean free path. This condition breaks down when
the acoustic wavelength is sufficiently small. It would thus be
useful to extend the theory we have developed to the regime in
which light propagation is described by the radiative transport
equation [35]. (iii) In many biomedical applications, the speed
of sound in tissue is not constant. Our results generalize
straightforwardly to this case. In particular, we note that for
known, sufficiently localized fluctuations in the sound speed,
recovery of the internal functional is possible by a suitably
modified Fourier transform [38].

In conclusion, we have developed a hybrid imaging method
for reconstructing the source density in bioluminescence
tomography. Our approach is based on the solution to an
inverse problem for the diffusion equation with interior control
of boundary measurements.
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