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Exit probability in inflow dynamics: Nonuniversality induced by range, asymmetry, and fluctuation
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Probing deeper into the existing issues regarding the exit probability (EP) in one-dimensional dynamical
models, we consider several models where the states are represented by Ising spins and the information flows
inwards. At zero temperature, these systems evolve to either of two absorbing states. The EP, E(x), which is the
probability that the system ends up with all up spins starting with x fraction of up spins, is found to have the
general form E(x) = xα/ [xα + (1 − x)α]. The EP exponent α strongly depends on r , the range of interaction,
the symmetry of the model, and the induced fluctuation. Even in a nearest-neighbor model, a nonlinear form of
the EP can be obtained by controlling the fluctuations, and for the same range, different models give different
results for α. Nonuniversal behavior of the EP is thus clearly established and the results are compared to those of
existing studies in models with outflow dynamics to distinguish the two dynamical scenarios.
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There are many systems in condensed matter physics,
magnetism, biology, and social phenomena [1–4] which are
found to reach an ordered state following certain dynamical
rules. The dynamical rules represent the mechanisms by
which macroscopic structures are generated from microscopic
interactions. The role of the dynamics is reflected in the
scaling behavior of relevant variables. Often we note power
law scaling behavior; e.g., in coarsening phenomena, domains
grow in a power law manner with time. If two different
dynamical schemes lead to identical behavior of the relevant
variables, one may conclude that the two schemes are actually
equivalent. However, careful studies are required to establish
such equivalence.

Of late, a debate on whether inflow dynamics is different
from outflow dynamics has emerged [5–8]. Precisely, in
models involving spins, when the state of the central spin is
dictated by its neighbors, it is a case of inflow of information.
Outflow of information occurs when a group of neighboring
spins dictates the state of all other spins neighboring them. To
settle the debate, the exit probability (EP) is one of the features
which is studied when the spins can be in up or down states.
Starting with x fraction of spins in the up state, the EP E(x) is
the probability of reaching a final state with all spins up.

The Ising-Glauber model [5] is an example of inflow
dynamics where the local field determines whether or not a spin
will flip. An example where outflow of information takes place
is the Sznajd model [6]. In the Ising-Glauber model, a spin is
selected randomly and its state is updated following an energy
minimization scheme. In one dimension, this always leads to
either of two absorbing states: all spins up or all down. In the
Sznajd model, a plaquette of neighboring spins is considered;
if they agree, then the spins on the boundary of the plaquette
are oriented along them. In one dimension, the plaquette is
a panel of two spins. The Sznajd model has the same two
absorbing states as in the Ising model. The two models also
have identical exponents associated with domain growth and
persistence behavior during coarsening [9,10]. However, a
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few other dynamic quantities were shown to be different for
generalized models with inflow and outflow dynamics where
a suitable parameter associated with the spin-flip probability
was introduced [7,11]. The Ising-Glauber and Sznajd models
can be obtained by choosing specific values of the parameters
in the generalized models with inflow and outflow dynamics,
respectively.

The EP plays an important role in the debate, as it shows
a marked difference in behavior for the two models: for the
Ising-Glauber model the EP is linear, E(x) = x, while for the
Sznajd model [8,12,13]

E(x) = x2

x2 + (1 − x)2
, (1)

a distinctly nonlinear function of x.
Another version of a generalized model with inflow and

outflow dynamics was proposed more recently [8] in which the
range r of the interaction was varied. The Sznajd model with
range r [S(r) model] showed a range-independent behavior of
the EP; the EP is given by Eq. (1) for all r . For the generalized
Ising-Glauber model with r neighbors [G(r) model], numerical
simulations were made which showed a very good fit to the
form given in Eq. (1) for r = 2, from which it was claimed
that nonlinear behavior of E(x) can be observed for inflow
dynamics as well.

A generalized q-voter model which involves outflow
dynamics has also been proposed [14], in which q neighboring
spins, if they agree, influence their other neighboring spins. In
one dimension, q = 2 corresponds to the Sznajd model, and
the random version with q = 1 (where only one of the two
boundary spins is updated with equal probability) corresponds
to the Ising-Glauber/voter model. The EP here, again, showed
the property of being independent of range.

The shape of the EP is an important issue. Another
interesting point to be noted is, in all the models studied so
far [8,12–14] in one dimension, no finite-size dependence has
been noted in the EP. However, there is a school of thought
that such effects do exist, and in reality the EP has a step
function behavior in the thermodynamic limit [15] as observed
in higher dimensions [16–18]. Such step function behavior also
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occurs for a special class of one-dimensional models where the
dynamical rule involves the size of the neighboring domains
[19,20]. However, in the present work, we consider only those
models with inflow dynamics (all of which are short range)
which belong to the Ising-Glauber class as far as dynamical
behavior is concerned. Our aim is to find out how the EP
depends on various factors incorporated in the dynamics. Our
main result is that a general form for the EP given by

E(x) = xα

xα + (1 − x)α
(2)

exists, where α, the so-called EP exponent, is very much
dependent on factors like the range of interaction, asymmetry
of the model, and fluctuation present in the dynamics.

Here we summarize the models and results.
(1) The Ising-Glauber model with r neighbors [G(r)]: To

update the ith spin si(=±1) here, one computes

x =
r∑

j=1

[si+j + si−j ]. (3)

If x > 0, si = 1, if x < 0, si = −1 and si is flipped with
probability 1/2 if x = 0. For G(r), results are known for r = 1
(exact) [3] and 2 (numerical) [8]. We have obtained results for
higher values of r .

(2) The cutoff model: A model with a cutoff at r called
the C(r) model, proposed in [21], was also studied. Here only
the spins sitting at the domain boundary are liable to flip. To
update such a spin at site i, we calculate two quantities, r1 and
r2. r1 is determined from the condition

si+1 = si+2 = · · · = si+r1 �= si+r1+1; (4)

and similarly, r2 is calculated from the spins on the left side of
the ith spin. r1 and r2 are both restricted to a maximum value
r . Hence the neighboring domain sizes r1 and r2 are calculated
subject to the restriction that the maximum size is r . When r1

is greater (less) than r2, the state of the right (left) neighbors
is adopted. If r1 = r2, the spin is flipped with probability 1/2.
C(r) is equivalent to G(r) for r = 1.

(3) The ferromagnetic asymmetric (FA) model: The G(2)
and C(2) models can in fact be shown to be special cases
of the Ising model with second-neighbor interaction. The
Hamiltonian for this model is

H = −J1

∑

i

sisi+1 − J2

∑

i

sisi+2. (5)

Here, the role of asymmetry can be studied by varying
κ = J2/J1. The special case κ = 1 is identical to G(2). κ < 1
corresponds to C(2), and for κ > 1 one may expect a different
behavior. This system can be regarded as an ANNNI chain [22]
with both interactions positive (ferromagnetic). By definition
the FA model has range r = 2.

(4) The W(r) model: The W(r) model is exactly like the
Ising-Glauber model except for the fact that when x = 0 in
Eq. (3), the spins are flipped with probability W0 [11]. It
is known that for W0 = 0, which is called the constrained
Glauber model, absorbing states are frozen states which are not
all-up or all-down states . W0 = 0.5 corresponds to the Ising
Glauber model, while W0 = 1 is the case of the metropolis
rule. W0 in a sense quantifies the fluctuation induced by the
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Configurations of the Updated central spin for the

G(1)      G(2)      C(2)       FA

FIG. 1. (Color online) Left: Configuration of the neighboring
spins of the central spin, represented by a filled circle, which means
either of the up or down states at time t . Right: State of the central
spin after it is updated according to the different dynamical rules. An
open circle implies an “undecided” state when the up and down state
occur with equal probability. The other eight states can be obtained
by inversion.

dynamics; the fluctuation is maximum when W0 = 1, which
causes the spins to flip whenever x in Eq. (3) equals 0. In this
model, we have studied the case for r � 1.

In Fig. 1, we present the possible updated configurations
for the central spin corresponding to eight configurations of
its four nearest neighbors for G(1), G(2), C(2), and FA. The
other eight cases can be obtained by inverting all the spins. It
is immediately noted that G(r) and C(r) differ even for r = 2.
For FA, we may expect a new value of α for κ > 1, which,
however, should not depend on the exact value of the κ . It is
also seen that the central spin is “undecided” in the maximum
number of cases in G(1); there are fewer such cases for G(2)
and even fewer for C(2) and FA with κ �= 1. We discuss the
effect of this feature on the EP later.

As mentioned before, the EP follows a behavior given by
Eq. (2) in all cases. Typical variation of the EP for G(r) and
C(r) for r = 3 are shown in Fig. 2. In Fig. 3, we plot the values
of α against r for these two models. We note that α is an
increasing function of r for both models. Hence α for G(r) is
greater than 2 for r > 2 and the value of α = 2 coincides with
the S(r) value only for r = 2. On the other hand, α is less for
C(r) compared to G(r) for all r > 1. We try a general form to
fit α with r ,

(α − 1) = a(r − 1)b, (6)

and note that it shows a fairly good fit for both G(r) and
C(r), with a = 1.04 ± 0.02, b = 0.66 ± 0.02 for G(r) and
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FIG. 2. (Color online) Exit probability versus initial concentra-
tion of up spins in the generalized Ising [G(r); left] and cutoff [C(r);
right] models with r = 3. The L = 1000 curves are fitted with the
best-fit line of the form given in Eq. (2).

a = 0.85 ± 0.01, b = 0.56 ± 0.01 for C(r). Both a and b are
larger for G(r), indicating a stronger dependence on r .

The FA model, as expected, gives α = 1.85 ± 0.03 for κ <

1, which is identical to the C(2) value (1.85 ± 0.02) and α = 2
for κ = 1 [G(2) model]. In the third case, κ > 1, we get the
new value of α = 2.24 ± 0.04. The results are shown in Fig. 4.

The W(r) model leads to both qualitatively and quantita-
tively different results. Even for r = 1, the EP does not have
a linear dependence on x for W0 �= 0.5; α �= 1, unlike the
Ising-Glauber case (Fig. 5). Here too we find α to be dependent
on r . We plot the dependence of α against W0 for r = 1, 2,
and 3 in Fig. 6. For the W(1) model, α behaves as 1/

√
2W0

as W0 → 1. The values of α for r = 2 and r = 1 differ by
unity for any W0 as in the Ising-Glauber model. However,
the differences in the values of α for W(3) and W(2) weakly
increase with W0. It is interesting to note here that the Glauber
(W0 = 0.5) and metropolis (W0 = 1) algorithms give different
values of α, although for any W0 �= 0, the W(r) model belongs
to the Glauber universality class [11].

Some general features can immediately be noted from the
results. If r is increased, α increases, indicating that the EP
becomes steeper in models with inflow dynamics. When r is
the same in the two models, α assumes different values due
to the presence of other factors. For example, both G(2) and
FA (κ > 1) have r = 2, but α is larger in the latter. The two
models differ in the number of so-called “undecided states”
(see Fig. 1), and apparently α is larger when such states are
fewer in number. In order to account for the fact that C(2) has
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FIG. 3. (Color online) Plot of the exponent α against the range r

for G(r) and C(r) models. The solid line corresponds to the fitting
form of Eq. (6).
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FIG. 4. (Color online) Exit probability for the FA model: plot
shows the result for κ = 2 for different system sizes. Top-left inset:
E(x) for κ < 1 and C(2), which give identical results as expected.
Bottom-right inset: For κ > 1, the EP is independent of the exact
value of κ . The solid lines are guides for the eye.

a smaller value of α compared to G(2), although the number
of undecided states is lower here, one must also note that
the effective number of neighbors in C(2) is less than 2. The
combined effect makes the value of α smaller, indicating that
the range has a stronger effect on the EP than the stochasticity.

The results in the W(r) model can be qualitatively explained.
For r = 1, we note that the EP curves have different curvatures
for W0 below and above 0.5. Let us take the case of x < 0.5,
where the EP is larger for W0 > 0.5 than for W0 = 0.5. This
happens since the initial state here contains more spins in the
down state, and the flipping probability is higher than 1/2.
The same logic explains why the EP is lower when x > 0.5.
At x = 0.5, E(x) is equal to 1/2 for all models as E(x) +
E(1 − x) = 1. So the curves cross at x = 0.5 and α has a
value of <1 for W0 > 0.5 and a value of >1 for W0 < 0.5
[as for W0 = 0.5,E(x) = x, or α = 1]. W0 effectively control
the fluctuation and we find that it can alter the value of α. For
larger values of r , similarly, α is larger (smaller) than the G(r)
values for W0 < 0.5 (W0 > 0.5). However, the curvatures are
the same as α > 1 always.

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8

E
(x

)

x

W0=1.0
W0=0.75
W0=0.5
W0=0.2

0  0.2  0.4  0.6  0.8 1

x

FIG. 5. (Color online) Exit probability versus initial concentra-
tion of up spins in the W(r) model: r = 1 (left) and r = 2 (right).
Solid lines are guides for the eye.
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FIG. 6. (Color online) Exponent α versus W0 in the W(r) model
with r = 1, 2, and 3. Solid lines are guides for the eye.

We also note that no system size dependence of the EP
is observed in any of the models even when r is increased,
asymmetry is introduced, or fluctuation is modified. So there is
no indication of a step function like the EP for finite values of r

even in the thermodynamic limit. However, as r is made larger,
α increases, and one can conclude that in the fully connected
model corresponding to the infinite-dimensional case, α will
diverge, giving rise to a step function behavior in the EP at
x = 1/2.

Some of the issues discussed at the beginning of the paper
may be addressed now. First, it is evident that the EP shows
range dependence in models with inflow of information in
general, in contrast to models with outflow of information,
where increasing the range only results in a change in time
scales. In inflow dynamics, increasing r apparently makes the
system approach higher dimensional behavior, although no
system-size dependence appears. The fact that the EPs for
the S(r) and G(2) models [8,13,14] show identical behavior
(α = 2) seems to be purely accidental; there are inflow and
outflow models with r = 2 which have α �= 2. However, α can
be nonintegral in inflow dynamics, in contrast to known models
with outflow dynamics [8,14] (α = q for the q voter model).

An important issue is the question of universality. As
already mentioned, all the models studied here have the

same dynamical behavior as far as coarsening is concerned;
they all belong to the Ising-Glauber class with the dynamic
exponent and persistence exponent identical. In fact, even the
models with outflow dynamics like the Sznajd model belong
to this universality class [10] (we have checked for r = 2 as
well). Thus we find that the EP is a nonuniversal quantity; it
depends on the details of the dynamical rule and is not simply
determined by whether information flows out or in. However,
it seems safe to state that there is a clear difference: outflow
dynamics is characterized by the absence of range dependence
while inflow dynamics shows range dependence.

The question that may naturally arise after this discussion
is, Why does the EP behave differently when the coarsening
behavior is identical? Here it should be remembered that
coarsening behavior is strictly relevant to a completely random
initial configuration corresponding to x = 1/2. Indeed, at
x = 1/2, in all cases E(x) = 1/2. Hence a deviation from the
perfectly random state results in reaching all-up or all-down
states with different probabilities for the different models.

In summary, we present evidence that the EP can be
expressed in a general form. An exponent α associated with the
EP is identified which is strongly dependent on the details of
the system as far as inflow dynamics is concerned. α can have
nonintegral values (even less than unity) for inflow dynamics,
while for the models with outflow dynamics studied so far,
only integral values have been obtained. Most of the observed
results can be qualitatively explained.

The range dependence distinguishes inflow dynamics from
outflow dynamics. Apart from the range dependence, other
factors in the dynamical rules also affect the EP in inflow
dynamics. The effects of these factors on outflow dynamics
may reveal further distinguishing features; a study is in
progress [23].
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