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Detrended cross-correlation analysis consistently extended to multifractality
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We propose an algorithm, multifractal cross-correlation analysis (MFCCA), which constitutes a consistent
extension of the detrended cross-correlation analysis and is able to properly identify and quantify subtle
characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this
algorithm is that the already existing methods, like multifractal extension, have at best serious limitations for most
of the signals describing complex natural processes and often indicate multifractal cross-correlations when there
are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to
their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes
as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time
and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In
particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the
generalized Hurst exponent and the multifractal scaling parameter λq . This relation provides information about
the character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics
of the analyzed processes than allowed by any other related method available so far. By using examples of
time series from the stock market, we show that financial fluctuations typically cross-correlate multifractally
only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum
of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged
cross-correlations.
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I. INTRODUCTION

Analysis of time series with nonlinear long-range corre-
lations is often grounded on a study of their multifractal
structure [1–8]. Existing algorithms used in such an analysis
allow for determining generalized fractal dimensions or Hölder
exponents based either on statistical properties of time series
[9,10] or on time-frequency information [3,11]. Because of
implementation simplicity and their utility, these algorithms
have already been applied to characterize correlation structure
of data in various areas of science like physics [12,13], biology
[14–16], chemistry [17,18], geophysics [19,20], economics
[21–28], hydrology [29], atmospheric physics [30], quantita-
tive linguistics [31,32], music [33,34], and human communi-
cations [35]. As an important step towards quantifying com-
plexity, in recent years algorithms designed for investigation of
fractal cross-correlations were proposed [36,37] followed by
the new statistical cross-correlation tests [38,39]. These devel-
opments are based on the detrended cross-correlation analysis
(DCCA), which constitutes a straightforward generalization of
the fractal autocorrelation (DFA) [40] in the case of fractally
cross-correlated signals. In that case, the cross-correlation
scaling exponent λ can be obtained. However, the literature
still lacks comprehensive interpretation of this quantity.

Subsequently, the multifractal extension (MF-DXA) of the
DCCA method was proposed [41]. Other closely related meth-
ods to deal with multifractal cross-correlations have also been
introduced [42]. However, these extensions naturally involve
computation of arbitrary powers of cross-covariances and
this leads to serious limitations since such cross-covariances
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may, in general, become negative. In such a case the net
result, expressed in terms of the usual fluctuation functions,
thus becomes complex-valued, which does not allow us to
determine the scaling exponents by use of conventional means.
A simplistic resolution, so far available in the literature, to
this difficulty is based on taking modulus [43–46] of the
cross-covariance function in order to get rid of its negative
signs. In most realistic cases, as our analysis below shows,
this, however, seriously distorts or even spuriously amplifies
the multifractal cross-correlation measures. Our motivation
therefore is to elaborate an algorithm that we call multifractal
cross-correlation analysis (MFCCA), such that for any two
signals it allows us to compute their arbitrary-order covariance
function and, at the same time, it properly takes care of the
relative signs in the signals.

The proposed method allows us to calculate the spectrum
of the exponents λq , which characterize multifractal properties
of the cross-covariance. However, unlike the method proposed
earlier, in our procedure, the scaling properties of the qth-order
cross-covariance function are estimated with respect to the
original sign of the cross-covariance. This procedure makes the
method both more sensitive to the cross-correlation structure
and free from limitations of other algorithms. It also turns out
that the proposed method is a more natural generalization of
the monofractal DCCA than is MF-DXA. The robustness of
our algorithm makes it applicable to different data types in
various fields of science.

II. DESCRIPTION OF THE MFCCA ALGORITHM

MCCA consists of several steps which are described
in detail below. As mentioned above, MFCCA has been
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developed based on the DCCA procedure [36]; therefore the
initial steps are the same.

Consider two time series xi , yi where i = 1,2 . . . N . At
first, the signal profile has to be calculated for each of them,

X(j ) =
j∑

i=1

[xi − 〈x〉], Y (j ) =
j∑

i=1

[yi − 〈y〉]. (1)

Here 〈〉 denotes averaging over entire time series. Then both
signal profiles are divided into Ms = N/s disjoint segments
ν of length s. For each box ν, the assumed trend is estimated
by fitting a polynomial of order m (P (m)

X,ν for X and P
(m)
Y,ν for

Y ). Based on our own experience [11], as optimal we use
a polynomial of order m = 2 throughout this paper but the
proposed procedure is not restricted to this particular order
and can be used for much larger one when needed (as, for
instance, in signals involving a highly periodic component
[47,48]). Next, the trend is subtracted from the data and the
detrended cross-covariance within each box is calculated,

F 2
xy(ν,s) = 1

s
�s

k=1

{(
X[(ν − 1)s + k] − P

(m)
X,ν (k)

)

× (
Y [(ν − 1)s + k] − P

(m)
Y,ν (k)

)}
. (2)

In contrast to the detrended variance calculated in the MFDFA
procedure [9], in the present case, F 2

xy(ν,s) can take both
positive and negative values (for an example see Sec. III C
Fig. 12). Therefore, gradual investigation of scaling properties
from small to large fluctuations through their covariances of
increasing order should take into account also the sign of
F 2

xy(ν,s). Accordingly, the most natural form of the qth-order
covariance function is postulated by the following equation:

Fq
xy(s) = 1

Ms

�
Ms

ν=1sgn
(
F 2

xy(ν,s)
)∣∣F 2

xy(ν,s)
∣∣q/2

, (3)

where sgn(F 2
xy(ν,s)) denotes the sign of F 2

xy(ν,s). The param-
eter q can take any real number except zero. However, for
q = 0, the logarithmic version of Eq. (3) can be employed [9],

F 0
xy(s) = 1

Ms

�
Ms

ν=1sign
(
F 2

xy(ν,s)
)

ln
∣∣F 2

xy(ν,s)
∣∣. (4)

As we can see in Eq. (3), for negative values of q, small
values of the covariance function F 2

xy(ν,s) are amplified,
while for large q > 0, its large values dominate. Moreover,
the formula for calculating F

q
xy(s) respects the genuine signs

of the amplified (or supressed) fluctuations of the detrended
cross-covariance function [Eq. (2)] and, at the same time,
it allows us to avoid complex numbers associated with the
arbitrary powers of negative fluctuations. The above described
steps of MFCCA should be repeated for different scales s.
If the so-obtained function F

q
xy(s) does not develop scaling,

by, for instance, fluctuating around zero, there is no fractal
cross-correlation between the time series under study for
the considered value of q. Multifractal cross-correlation is
expected to manifest itself in the power-law dependence of
F

q
xy(s) (if the qth-order covariance function is negative for

every s, we may take F
q
xy(s) −→ −F

q
xy(s) [36]) and the

following relation is fulfilled:

Fq
xy(s)1/q = Fxy(q,s) ∼ sλq (5)

[or exp (F 0
xy(s)) = Fxy(0,s) ∼ sλ0 for q = 0], where λq is an

exponent that quantitatively characterizes fractal properties of
the cross-covariance. For the monofractal cross-correlation,
the exponents λq are independent of q and equal to λ as
obtained from the DCCA method. In the case of multifractal
cross-correlation, however, λq varies with q, with λ retrieved
for q = 2. The minimum and maximum scales (smin and smax,
respectively) depend on the length N of the time series under
study. In practice, it is reasonable to take smax < N/5.

III. ANALYSIS OF EXAMPLARY MODELS AND STOCK
MARKET DATA

In order to verify the usefulness of the MFCCA algorithm,
we test it by using both artificially generated cross-correlated
time series and real-world signals. In order to avoid divergent
moments due to fat tails in the distribution of fluctuations, we
restrict q to 〈−4,4〉 with a step 0.2 throughout this paper. In the
case of computer-generated signals, results for each process
are averaged over its 20 independent realizations.

A. ARFIMA processes

We start our study from an analysis of the well-
known autoregressive fractionally integrated moving average
(ARFIMA) processes [49], which are examples of monofrac-
tal, long-range correlated signals. In Ref. [36], such processes
were used to show usefulness of the DCCA algorithm. Our
goal is to show the cross-correlation structure of the above-
mentioned processes more completely. To generate a pair
(xi,yi) of the cross-correlated ARFIMA processes, we use
the following equations:

xi = �∞
j=1aj (dx)xi−j + εi, (6)

yi = �∞
j=1aj (dy)yi−j + εi, (7)

where dx and dy are parameters characterizing linear long-
range autocorrelations of the times series. These quantities
can be related to the Hurst exponents [40] by the relation
H = 1/2 + dx(y) (−1/2 < dx(y) < 1/2). Positively correlated
(persistent) time series are characterized by H > 0.5, whereas
negative autocorrelation (antipersistent signal) is characterized
by H < 0.5; H = 0.5 means no linear autocorrelation. The
quantity aj (dx(y)) is called weight and is defined by aj (dx(y)) =
�(j − dx(y))/[�(−dx(y))�(1 + j )], where �() stands for the �

function. εi is an i.i.d. Gaussian random variable. The pro-
cesses xi and yi are cross-correlated, because the same noise
component εi is used in both Eqs. (6) and (7). We generate
three pairs of cross-correlated signals as follows: (H1 = 0.5,
H2 = 0.6), (H1 = 0.5, H2 = 0.7), and (H1 = 0.5, H2 = 0.9),
where H1 and H2 characterize long-range autocorrelation of
the first and the second time series, respectively. In order to
obtain statistically significant results, we generate time series
of lengh N = 100 000 points each.

In the left panels of Fig. 1, we present the calculated
Fxy(q,s) for all the signal pairs. Each line corresponds to a
different value of q. As it can be seen, in all the cases, Fxy(q,s)
is a power function of scale s. This indicates the fractal
nature of the cross-correlations. Moreover, for all types of
signals, the functions Fxy(q,s) are almost parallel to each other,
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FIG. 1. (Color online) Left: Family of the qth-order cross-covariance functions Fxy(q,s) calculated for ARFIMA processes for three
different combinations of the parameters H1 and H2. The lowest and the highest line in each panel refers to q = −4 and q = 4, respectively.
Right: Multifractal cross-correlation scaling exponents λq (black circles) and the average generalized Hurst exponents hxy(q) [red (gray)
squares]. Error bars indicate standard deviation calculated from 20 independent realizations of the corresponding processes.

implying largely homogeneous character of the corresponding
cross-correlations. Indeed, as shown in the right panels of
the Fig. 1, the difference between the extreme values of
λq expressed by �λq = max(λq) − min(λq) is approximately
0.005, 0.007, and 0.011 for the top, middle, and the bottom
panels, respectively. These narrow ranges of λq indicate
that the ARFIMA processes reveal correlations that are
monofractal regardless of the types of linear autocorrelation
of signals.

In the literature, the estimated fractal cross-correlations are
often related to the fractal properties of the individual signals
themselves [36,50,51]. Therefore, in Fig. 1, we also show the
average of the generalized Hurst exponents as follows [9]:

hxy(q) = [hx(q) + hy(q)]/2, (8)

where hx(q) and hy(q) refer to fractal properies of individual
time series, respectively, and, for q = 2, they correspond to
the Hurst exponent H . It is worth noticing that the relation
between λq and hxy(q) depends on the temporal organization
of the signals as determined by their Hurst exponents. For two
signals whose Hurst exponents H are alike, their multifractal
cross-correlation characteristics described by λq and hxy(q) are
almost identical, while the divergence between λq and hxy(q)
becomes more sizeble for time series with more significant
differences in autocorrelation (different Hurst exponent H ).

This result means that, in the case of the ARFIMA
processes, the relation λ ≈ [hx(2) + hy(2)]/2 introduced in
Ref. [36] applies only to a situation when differences between
hx and hy are negligible.

B. Markov-switching multifractal model

As an example of multfractal process, we consider the
Markov-switching multifractal model (MSM) [52]. MSM
is an iterative model which is able to replicate the hi-
erarchical, multiplicative structure of real data and, thus,
insures multifractal properties of the generated time series.
Because of its properties, MSM is commonly used in finance,
where multifractality of price fluctuations is one of the main
stylized facts [53,54]. Equally well, this model can be used
to simulate many other multifractal time series representing
natural phenomena as it is able to generate the volatility
clustering responsible for the underlying nonlinear temporal
correlations [7]. Below, we present the main stages of the
model’s construction.

In MSM, evolution of an observable rt in time t is modeled
by the following formula [53]:

rt = σtut , (9)

where ut stands for a Gaussian random variable and σt

(multifractal process) stands for the instantaneous volatility
component. The volatility σt is a product of k multipliers
M1(t),M2(t), . . . ,Mk(t) such that

σ 2
t = σ 2

k∏
i=1

Mi(t), (10)

where σ 2 is a constant factor. A common version of the
model assumes that the multipliers Mi(t) are drawn from
the binomial or from the log-normal distribution. Here we
use the binomial one with Mi(t) ∼ {m0,2 − m0}, 1 � m0 < 2.
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FIG. 2. (Color online) Left: Family of the qth-order cross-covariance functions Fxy(q,s) calculated for two pairs of the MSM time series
corresponding to m

(1)
0 = 1.2, m

(2)
0 = 1.35 (top) and m

(1)
0 = 1.2, m

(2)
0 = 1.6 (bottom). The lowest and the highest line on each panel refers to

q = −4 and q = 4, respectively. Right: Multifractal cross-correlation scaling exponents λq (black circles) and the average generalized Hurst
exponents hxy(q) [red (gray) squares]. Insets present the differences between λq and hxy .

Any change of a multiplier in the hierarchical structure of
volatility is determined by the following transition probabili-
ties [52]:

γi = 1 − (1 − γk)b
i−k

, i = 1,2 . . . k. (11)

Thus, a multiplier Mi(t) is renewed with probability γi and
remains unchanged with probability 1 − γi . The parameter γk

is taken from the range (0,1) and b > 1. We put γk = 0.5 and
b = 2, which leads to the following relation:

γi = 1 − (0.5)2i−k

, i = 1,2 . . . k. (12)

Thus, for the initial stages of the cascade, a renewal of the
multipliers Mi(t) occurs with relatively small probability,
while the largest γi = 0.5 appears for i = k.

1. Unsigned version of the MSM model

For the purpose of this analysis, we generate a set of
multifractal time series (σt ) of length 131 072 points each.
However, in all realizations of the model, we conserve the
hierarchical structure of the multipliers, since the renewals of
Mi(t) appear for the same i and t in each generated series.
This procedure insures cross-correlations between series with
different m0.

In Fig. 2, we present sample results of MFCCA obtained
for two pairs of MSM series with the parameters m

(1)
0 = 1.2

and m
(2)
0 = 1.35 (top panels) and m

(1)
0 = 1.2 and m

(2)
0 = 1.6

(bottom panels). The qth-order covariance functions Fxy(q,s)
(left-hand side of the figure) display a clear multifractal scaling
within the whole range (−4,4) of the q values. The resulting
λq is a decreasing function of q, which is a hallmark of
multifractality. Moreover, the rate of decrease of λq depends

on the values of mutlipliers. For the first pair of signals
(with m

(2)
0 = 1.35), the exponents λq are contained in the

range (0.81,1.25), while for the second pair (with m
(2)
0 = 1.6),

0.75 � λq � 1.7. In the same Fig. 2, we also show the average
of the generalized Hurst exponents calculated for each time
series independently [red (gray) squares].

Interestingly, for the signals with a relatively small dif-
ference �m12 = m

(2)
0 − m

(1)
0 —in other words, for similar

multifractals—λq approximately equals the average of hx(q)
and hy(q). A tiny difference between hxy(q) and λq is
here visible only for q > 0. This effect is depicted more
quantitatively in the insets of Fig. 2, where hxy(q) − λq is
presented as a function of q. The maximum deviation from
zero can be seen for q = 2.2, reaching a value of 0.02. For
the second pair of signals, the difference hxy(q) − λq is more
pronounced and concerns both negative and positive q’s. In
this case, the largest difference of hxy(q) and λq is for q = −2
and equals 0.07.

2. Relation between λq and hx y

To have some insight into the relation between λq and
hxy(q), we perform a systematic MFCCA study for the set of
time series pairs such that one of them is generated with m

(1)
0 =

1.2 and the other one with m
(2)
0 from the range 〈1.25,1.9〉

(the step is 0.05). However, the multifractal characteristics
were possible to estimate only for �m12 < 0.6. In the case of
�m12 > 0.6, F

q
xy takes both positive and negative values and

Eq. (5) is not satisfied. At first, we focus on the relationship
between λ2 = λ and the average Hurst exponent hxy(2). In
the inset of Fig. 3, we present these quantities as a function
of �m12. It is clearly visible that both these quantities are
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FIG. 3. (Color online) Inset: Average λ2 = λ and average hxy(2)
as a function of �m12 = m
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correspond to the λ and hxy(2), respectively. Error bars indicate
standard deviation calculated from 20 independent realizations of
the corresponding process. Main figure: Difference of the average λ

and the average hxy(2) as a function of �m12.

monotonically decreasing and they take approximately the
same values for small �m12. However, for �m12 > 0.25,
λ(�m12) decreases slower than the Hurst index (thus λ > H )
and the statistics diverge. To highlight this result, we calculate
also the difference between these two quantities, which is
shown in Fig. 3. As one can see, λ − hxy(2) is an increasing
function of �m12. This result indicates that the difference
between λ and the average Hurst exponent becomes larger
for time series whose multifractal characteristics depart more

from each other, while the opposite is observed when these
characteristics are alike, which at the same time results in
stronger cross-correlations.

To better understand this effect, we analyze a covariance
function Fxy(2,s) ∼ sλ and an expression based on fluctuation

functions [9] as follows:
√

Fxx(2,s)Fyy(2,s) ∼ s
hx (2)+hy (2)

2 =
shxy (2). In Fig. 4, we show these functions calculated for
different values of �m12. It is easy to notice that the presented
functions are almost identical to each other for small �m12.
However, the larger �m12 is, the more visible is a departure
between the analyzed statistics. In all cases, the values of
Fxy(2,s) are at most equal to

√
Fxx(2,s)Fyy(2,s) and estimated

λ is larger than hxy(2). These numerical results are in accord
with the following relation:

Fxy(2,s) �
√

Fxx(2,s)Fyy(2,s), (13)

which straightforwardly results from the definitions of these
quantities considered in terms of the scalar products of vectors
formed from the underlying time series [44]. In order to more
clearly see the relationship between λ and hxy(2), we can
reformulate Eq. (13) in the case when the relations Fxy(2,s) =
axys

λ, Fxx(2,s) = axs
hx (2), and Fyy(2,s) = ays

hy (2) apply to
obtain

axys
λ � (axay)1/2s

hx (2)+hy (2)
2 . (14)

This leads to

λ � logs

(
(axay)1/2

axy

)
+ hx(2) + hy(2)

2
. (15)
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FIG. 4. (Color online) Comparision of covariance function Fxy(2,s) (black circles) with its equivalent
√

Fxx(2,s)Fyy(2,s) [red (gray)
squares] derived from the variance functions of individual MSM time series. The slope of this functions refers to λ2 and hxy(2), respectively.
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For two identical time series, the equality in Eq. (13) holds,
leading to the obvious λ = hx (2)+hy (2)

2 . In general, however,

Ar = (axay)1/2

axy

�= 1, (16)

and thus a difference between λ and hxy(2) in either direction
is allowed or even forced, depending on a sign of logs(Ar ).
For negative values of this quantity, λ has to be smaller than
hxy(2), while for positive values it can become larger. An
example demonstrating the rate of changes of ln(Ar ) as a
function of �m12 for q = 2 is shown in Fig. 5. In this case,
ln(Ar ) is positive and quickly increases with �m12, thus with
the degree of dissimilarity between the two series. The related
dependencies are even more involved and appear to strongly
vary with the parameter q as it is more systematically shown
in Fig. 6. The ln(Ar ) is seen to be positive for q > 0 with
an increasing value at maximum with increasing �m12 and
a larger amplitude of changes with increasing q. Similarly,
but with a reversal in sign and with an even larger amplitude
of changes, is the situation for q < 0. These results nicely
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calculated for two ranges of the parameter q.

coincide—and thus point to their origin—with those presented
in Fig. 2, where λq is larger than hxy(q) for positive values of
q and smaller for negative ones. Even the maxima of these
differences occur for those values of q, where they are seen in
Fig. 6 and they are larger on the negative side of q. Of course,
they are also larger for larger �m12.

The difference between λq and hxy(q) has its reflection—
also consistent with the findings presented in Figs. 2 and
6—in another popular multifractal measure, namely in the
range of scaling exponents. In Fig. 7, we display �λq as a
function of �m12 for the two ranges of q: −2 � q � 2 and
−4 � q � 4. For comparison, in the same figure, we show
�hxy = max(hxy) − min(hxy) calculated for the same ranges
of q. The �hxy(q) and �λq are seen to be monotonically
increasing functions of �m12 in all the cases. However,
for −4 � q � 4 these characteristics are almost the same,
while for −2 � q � 2 the difference between �hxy and �λq

systematically increases with �m12. This suggests that for
relatively large values of |q| (magnifying the largest and the
smallest fluctuations of instantaneous volatility components)
the fractal character of the considered processes is similar,
which may reflect the effect of preserving the same hierarchical
structure of multipliers for all generated multifractals, where
only relative changes of volatility are possible. The above
results thus indicate that the difference between hxy(q) and λq

is to be considered an important ingredient of the measure of
the fractal cross-correlation between two time series.

3. Performance comparison of MFCCA and MF-DXA

In the next stage of our study of the MSM generated σt

time series, we analyze output of MFCCA if one time series
of a pair is gradually being shifted in time with respect to
the other one. Then the correlations, especially their fractal
character, should undergo an obvious weakening. This test is
aimed at further verifying performance of the algorithm. As
an input, we use a time series with m0 = 1.2 and the same one
but shifted by a certain number of points. We notice that the
larger the relative shift between the time series, the shorter the
scaling range of Fxy . However, in all cases, the estimated λ is
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FIG. 8. (Color online) Lower bound of the scaling regime that
can be used in the calculation of λq as a function of the shift between
two independent realizations of the MSM time series with m0 =
1.2. Black circles and red squares refer to calculations performed by
means of MFCCA and a commonly adopted “modulus” variant of the
MF-DXA procedure, respectively.

equal to the generalized Hurst exponent calculated for a single
series. This shortening of the range of scaling is not symmetric
from both sides of the scale range but gradually arrives entirely
from the small scale side. The shift dependence of the lower
bound of the scaling regime that can be used to determine λq

is shown in Fig. 8. As expected, lifting of this lower bound is
seen to be almost linear. In the same figure, we also present the
result of an analogous analysis but performed by means of the
common variant of the MF-DXA procedure that, in order to
resolve the sign problem, makes use of the absolute values of
the fluctuation functions [43–46]. In this case, the procedure
is seen not to be sensitive to this type of surrogate and, thus,
evidently generates spurious cross-correlations.

In order to elaborate more in detail on this last issue,
we generate an example of a pair of the MSM time series
with m0 = 1.2 drawn independently, i.e., with no taking care
about preserving the hierarchical structure of the multipliers.

Even though individually both such series are multifractal with
the same multifractality characteristics, there is no reason to
expect them to be multifractally cross-correlated. Indeed, in the
present case the corresponding qth-order covariance functions
determined through the Eq. (3) do not scale and for small
and moderate scales they even assume the negative values by
fluctuating around zero. An example of F 2

xy(s) demonstrating
this behavior is shown in the left panel of Fig. 9. In fact,
this dependence closely resembles the DCCA result [Fig. 1(b)
in Ref. [36]] obtained in an analogous situation of the two
uncorrelated series. This correspondence thus provides an
additional argument that it is MFCCA proposed here that
constitutes a natural and correct multifractal generalization of
DCCA. Application of a previously postulated [41] extension
of DCCA in the present example would lead to complex-valued
qth-order covariances. As already mentioned in Introduction,
a commonly adopted resolution to this difficulty is based
on taking modulus of the cross-covariance before computing
its qth order. The result of such a procedure applied to our
example of two independently generated MSM time series
with m0 = 1.2 is shown in the right panel of Fig. 9 and it clearly
indicates a convincing multifractal scaling. This, of course, is,
however, a false signal as these series are not expected to be
multifractally correlated.

4. Signed version of the MSM model

The time series of σt considered above represent unsigned
fluctuations (volatility in financial terms) and therefore their
individual Hurst exponents are significantly larger than 0.5.
By incorporating the Gaussian random variable ut drawn from
N (0,1) through Eq. (9), one obtains the signed time series
rt with the Hurst exponents close to 0.5 (as for the financial
returns, for instance). A very similar effect is obtained when
multiplying the original unsigned fluctuations simply by a
randomly drawn +1 or −1. The influence of such procedures
on the generalized Hurst exponents h(q) is shown in Fig. 10
for the same pairs of the MSM time series as before, i.e.,
with m0 = 1.2,m0 = 1.35 and m0 = 1.2,m0 = 1.6. Circles
indicate h(q) for the original unsigned series while squares
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FIG. 9. Left: Second-order covariance function F 2
xy(s) obtained by means of MFCCA for two independently generated MSM time series

with m0 = 1.2. Inset: The same function for a shorter range of scales s. Right: A family of the Fxy(q,s) functions calculated by means of the
“modulus” variant of MF-DXA. The lowest and the highest line refers to q = −4 and q = 4, respectively.
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FIG. 10. (Color online) Generalized Hurst exponent h(q) cal-
culated for individual MSM time series. The circles refer to the
original unsigned series while squares and triangles refer to the series
signed by the Gaussian random variable and by pure random sign,
respectively.

and triangles indicate the series signed by the Gaussian random
variable and by the pure random sign, respectively. Introducing
sign clearly shifts the lines down relative to the unsigned
case, such that the usual Hurst exponent H = h(2) assumes
a value of 0.5 for all the signed series. The q dependence
of h(q), naturally stronger for larger m0, remains, however,
essentially preserved after introducing the sign, which reflects
the fact that such an operation influences primarily the linear
temporal correlations in the series, leaving the nonlinear
ones, related to the volatility clustering [7], preserved. As

far as multifractal cross-correlations between such series are
concerned, more care is needed. Drawing the term ut in
Eq. (9) independently for the two series destroys their original
(unsigned) cross-correlations and the corresponding qth-order
covariances calculated through the Eq. (3) develop similar
fluctuations as those in the left panel of Fig. 9. One most
straightforward way to preserve multifractal cross-correlations
is to use the same ut for the two series under consideration.
Examples of the so-prepared pairs of series, for the same
combination of the parameters m0 as before for the unsigned
series, i.e., m0 = 1.2 versus m0 = 1.35 and m0 = 1.2 versus
m0 = 1.6, are analyzed in Fig. 11 in terms of λq and hxy(q).
For the first of these pairs, irrespective of the sign adding
variant, the multifractal cross-correlations are seen to remain
essentially on the same level of strength as those for the
corresponding unsigned signals shown in the upper panel of
Fig 2. The departures between λq and hxy(q) for the other
pair (m0 = 1.2 and m0 = 1.6) of the signed series can be seen
to be somewhat larger relative to their unsigned counterparts,
which signals a slight weakening of their multifractal cross-
correlations. This in fact is consistent with the generalized
Hurst exponents h(q) seen in Fig. 10. When sign is applied to
the series, the distance between the corresponding h(q) routes
increases, especially on the negative q side, as compared to
the unsigned case.

C. Examples of stock market data

The financial fluctuations can be considered a physical pro-
cess which constitutes one of the most complex generalizations
of the conventional Brownian motion carrying at the same
time convincing traces of nontrivial fractality [55–57]. They
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FIG. 11. (Color online) The qth-order fluctuation function scaling exponent λq (black circles) and the average generalized Hurst exponent
hxy(q) [red (gray) squares] calculated for two pairs of signed MSM time series corresponding to m
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0 = 1.6 (bottom). Left: MSM time series signed by a Gaussian random variable. Right: MSM time series signed by a pure random sign.
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therefore offer a very demanding territory to test the related
concepts and algorithms. For this reason, as final examples
of utility of the MFCCA method, we present an analysis
of empirical data coming from the German stock exchange.
Furthermore, since multifractal analysis of financial data is one
of the most informative methods of investigating such complex
systems [6,24,26,54,58], we believe that MFCCA will be very
useful in this field as well. We consider logarithmic price
increments g(i) and linear time increments �t(i) representing
dynamics of a sample German stocks, with E.ON (ticker: EOA)
and Deutsche Bank (ticker: DBK) (from the same database
as used before [6]) being part of the DAX30 index. These
quantities are obtained according to the following formulas:

g(i) = ln[p(i + 1)] − ln (p(i)), (17)

�t(i) = t(i + 1) − t(i), (18)

where p(i),i = 1, . . . ,N is a time series of price quotes
taken in discrete transaction time t(i). As it has been
shown previously [6], both g(i) and �t(i) are processes
with self-similar structure and could be analyzed by use
of the multifractal methods. Quantifying the character of
cross-correlations just between these two characteristics of
the financial dynamics is also of particular importance for
forecasting volatility within models such as the multifractal
model of asset returns [2,55,59–61]. Our analysis is performed
on time series comprising the period between November 28,
1997, and December 31, 1999. The time series consists of
T = 294 862 and T = 497 513 points for EOA and DBK,
respectively. Therefore, the time series are long enough to
bring statistically significant results.

In Fig. 12, we show one of the first steps of our algorithm,
i.e., the detrended cross-covariance function F 2

xy(ν,500) (for
the scale s = 500) as a function of the box number ν
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FIG. 12. Top and middle: Detrended variance functions
F 2

xx(ν,500) and F 2
yy(ν,500) calculated for time series of price incre-

ments and waiting times of E.ON stock (ticker: EOA), respectively.
Bottom: Detrended cross-covariance function F 2

xy(ν,500) calculated
for the same data. Calculations were carried out for segments of
length of 500 points.

[Eq. (2)]. For comparison, in the same Fig. 12, we depicted
the detrended variance function F 2

xx(ν,500) and F 2
yy(ν,500)

(obtained from MFDFA) calculated for individual time series
of price increments and waiting times, respectively. It is
easy to notice that the detrended variance calculated for
individual time series takes only positive values, whereas
the detrended cross-covariance function F 2

xy(ν,s) takes both
negative and positive values. This constitutes the already-
mentioned principal problem in the straightforward calculation
of the qth-order cross-covariance function Fxy(q,s) for odd qs
that results in complex values of this function [see Eq. (5)]. It
is worth stressing that this difficulty does not affect the fractal
analysis of individual time series (MFDFA), because then the
detrended variance function F 2

xx(ν,s) may only be positive. It
follows that proper handling of the sign of F 2

xy(ν,s) is of crucial
importance for a consistent extension of DCCA to treat the
multifractally correlated signals. At present, a solution of this
problem is offered only by the MFCCA algorithm proposed in
Sec. II.

In order to characterize the cross-correlations in the present
case, the function Fxy(q,s) is calculated. As far as the
multifractal scaling is concerned, the situation is significantly
more subtle than in the previous model cases. It turns out
that the scaling property of Fxy(q,s) applies only selectively.
First, for the negative qs, F

q
xy(s) fluctuates around zero and

Eq. (5) is not satisfied. For positive values of q, the function
F

q
xy(s) assumes positive values but clear scaling of Fxy(q,s)

begins with q = 1 upwards. For q < 1, these functions develop
increasing fluctuations when q moves towards zero. This effect
is especially strong for DBK. Furthermore, the lower limit
of scales where Fxy(q,s) develops the convincing power-law
behavior varies and it takes place at the higher values of
s for DBK than for EOA, which signals a weaker form
of multifractal cross-correlation in the former case. The
corresponding characteristics are shown in the upper panels
of Fig. 13 with the scaling bounds both in q and in s indicated
by the dashed lines.

The calculated λq and hxy(q) are shown in the bottom
panels of Fig. 13. It is clearly visible that, for EOA, both
functions converge to each other for large values of q, while
λq is significantly larger than hxy(q) for smaller values of q.
These results imply that the scaling properties of Fxy(q,s)
strongly depend on the considered time span and they cannot
be fully quantified by a unique exponent λ. Moreover, based on
our results for the MSM model, we can infer that the analyzed
processes are ruled by the similar fractal dynamics only in
periods with relatively large F 2

xy(ν,s) (associated with large q).
For smaller q’s, the difference between λq and hxy(q) is more
evident, which suggests that the dynamics of these processes
differs significantly but is still cross-correlative. It is worth
mentioning that large values of F 2

xy(ν,s) can be a consequence
of cross-correlation both in the signs and the amplitudes of
the signals. However, the waiting times are unsigned and the
price increments are signed, but the sign is uncorrelated. This
means that, in our case, the amplitude of F 2

xy(ν,s) is only
a result of the cross-correlation of the observed amplitude.
The strong cross-correlation of volatility (modulus of time
series) is confirmed by Fig. 14, where the cross-correlation
function for the waiting times and absolute values of the
price increments is depicted. Therefore, we conclude that large
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FIG. 13. (Color online) Top: Family of the Fxy(q,s) functions calculated for time series of price increments and waiting times of E.ON
(EOA) and Deutsche Bank (DBK). The lowest and the highest line on each panel refers to q = 0.2 and q = 4, respectively. The dashed lines
indicate scaling bounds both in q and s. Bottom: Multifractal cross-correlation exponent λq (black circles) and the average generalized Hurst
exponents hxy(q) [red (gray) squares] for the same data as above. The exponents λq are estimated only for 1 � q � 4.

fluctuations are much more strongly cross-correlated than the
smaller ones. Complexity of the multifractal cross-correlation
is expressed by the range of λq that is approximately 0.32 in
this case.

As may be anticipated already from the structure of
Fxy(q,s) for DBK, the behavior of λq differs slightly and the
difference between hxy(q) and λq is substantial for both small
and large values of q (Fig. 13, right panel). Also �λq for DBK
is smaller than in the case of EOA and takes a value of 0.22.
This suggest that although structure of the cross-correlation
between the intertransaction times and the price increments for
DBK is multifractal, its heterogeneity is poorer than in the case
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FIG. 14. (Color online) Cross-correlation function Cxy(τ ) =
|xi+τ ||yi | corresponding to modulus of price increments and trans-
action times of EOA (black squares) and DBK [red (gray) circles].
Inset: The same function but calculated for randomly shuffled data.

of EOA. Moreover, similarity between the fractal dynamics
of large fluctuations is not so evident than in the former case.
These results are also confirmed by Fig. 14, where a difference
between the strength of volatility cross-correlations for both
considered stocks is easily visible.

The results presented here indicate that the multifrac-
tal cross-correlation characterizes only relatively large fluc-
tuations of the signals under study. Smaller fluctuations
that are filtered out by q < 1, from the perspective of
multifractal cross-correlation, may be considered mutually
independent.

In connection with the present example, we also wish to
mention—but without showing the results explicitly in order
not to confuse the reader—that taking absolute values of
the fluctuation functions to get rid of the sign problem (as
recently often done in the literature [44–46]), in the present
financial data case, would result in a convincing but apparent
multifractal scaling for all values of q, similarly to one that
we have already seen for the MSM model in Fig. 9. Also,
the so-determined λq equals hxy(q) as in the MSM model.
This way one, however, does not extract genuine correlations
but only measures the averaged multifractal properties of
individual time series.

Another type of correlations that are of theoretical as
well as of practical interest are the correlations among stock
returns [4,62]. These are typically quantified in terms of
the Pearson correlation coefficients or, more generally, in
terms of the correlation matrix. This way of quantifying
correlations is, however, restricted to their linear component
only. The present formalism of studying the multifractal
cross-correlations allows one to reveal some of their potential
nonlinear components. As an example, we therefore use the
same two stocks as above (EOA and DBK) and, in addition,
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FIG. 15. (Color online) Top: Family of the qth-order cross-covariance functions Fxy(q,s) calculated for 1-min returns of two pairs of
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Calculation of λq was restricted to 0.6 � q � 4.

Commerzbank (CBK) from the same German stock exchange
over the same period and perform a similar analysis as
above for two pairs of time series (CBK-DBK and DBK-
EON) representing the corresponding 1-min returns. Over
the period considered, this yields 267 241 data points. The
results in the same representation as before are presented in
Fig. 15.

For q < 0, the Fxy(q,s) are not drawn since the correspond-
ing F

q
xy(s) functions fluctuate around zero. As we go to the

positive q values, however, they start developing a convincing
scaling already for q = 0.6 (as indicated by the dashed lines)
for both pairs and for all the scales considered. This scaling
is clearly multifractal and the resulting λq and hxy(q), shown
in the lower panels of Fig. 15, are somewhat closer to each
other than the ones previously considered for correlations
between the price increments and the intertransaction times.
Slight differences in relation between the present two pairs
of time series are also visible, however. For DBK-EON, the
departures between λq and hxy(q) are largely independent on
q in the region where scaling applies, while for CBK-DBK it
starts from larger values for the smallest q values (0.6), but it
converges to even smaller values with an increasing q. This can
be interpreted as an indication that the multifractal character
of the cross-correlations resembles each other more for CBK
and DBK on the level of large fluctuations and weakens for
the smaller ones, while, within the pair DBK-EON, they are of
similar strength in the comparable range of fluctuation size. Of
course, in both cases this kind of cross-correlation disappears
on the level of small fluctuations that are filtered out by the
negative values of q, and this seems quite a natural effect in
the financial context.

As a final example indicating possible applications of
the MFCCA method introduced in this paper, we study
the cross-correlations between the two world leading stock
market indices, the Dow Jones Industrial Average (DJIA)
and the Deutscher Aktienindex (DAX), based on their daily
returns. The period considered for both these indices begins on
January 12, 1990, and ends on October 12, 2013. This results
in time series of length of 5881 data points. Due to the different
time zones which the two indices are traded in and in order to
test potential applicability of the present algorithm in detecting
possible time lags or asymmetry effects in correlations, we
study three possible variants of positioning the time series
relative to each other. The first variant is most natural, i.e.,
data points in the two time series meet each other at the same
date they are recorded. The other two variants are such that the
time series are shifted by 1 day relative to each other, either
DAX is advanced by 1 day or DJIA is. The corresponding
Fxy(q,s) functions are displayed in the upper panel of Fig. 16.
Unlike the high-frequency recordings discussed above, the
significantly shorter time series in the present case restrict us to
cover a smaller scale range. Nevertheless, evident multifractal
scaling can still be identified in this case, as indicated by the
dashed lines in Fig. 16, provided the range of q is restricted
as well. Similarly to the situation with the high-frequency
cross-correlations within the German stocks, here F

q
xy(s) also

fluctuates around zero for negative qs, and therefore the
corresponding functions Fxy(q,s) are not shown. Interestingly,
the lower bound in s where scaling starts visibly lifts up as we
move from the same date, through the situation described as
“DJIA leads,” and becomes the shortest in the situation “DAX
leads.” Accordingly, the departures between hxy(q), which, of
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FIG. 16. (Color online) Top: Three families of the qth-order
cross-covariance functions Fxy(q,s) calculated for different syn-
chronization levels of time series representing daily returns of two
market indices, DJIA and DAX: (1) the synchronous (original) index
positions, (2) DAX retarded by 1 day with respect to DJIA (DJIA
leads), and (3) vice versa (DAX leads). For clarity, the functions
Fxy(q,s) for “DJIA leads” and “DAX leads” are vertically shifted. The
lowest and the highest line for each considered case refers to q = 0.2
and q = 4, respectively. The dashed lines indicate scaling bounds
both in q and s. Bottom: Multifractal cross-correlation exponent λq

and the average generalized Hurst exponents hxy(q) calculated for
the corresponding time series (0.8 � q � 4).

course, remain invariant with respect to such relative shifts
of the time series, and λq increase as we go through the
above three relative locations of DJIA versus DAX (lower
panel of Fig. 16). The strongest DJIA-DAX multifractal cross-
correlation is detected when the series are originally arranged
relative to each other. Their relative 1-day shifts reveal an
effect of asymmetry, however. The situation “DJIA leads”
preserves significantly more of such cross-correlations than
the opposite “DAX leads” one. This result can be interpreted
as an indication that the DJIA close has more influence on
the DAX close next day than the DAX close has on the DJIA
close next day. In fact, as verified additionally, splitting the
time series considered here into two halves shows that this
effect is more evident in the 1990s than more recently. Such
an asymmetry in information transfer between these two stock
markets is understandable in economic terms, and, in fact,
it is also consistent with the previous study [63] based on
the correlation matrix formalism. Finally, we wish to mention
that more distant relative shifts of the two present time series
quickly deteriorate the multifractal cross-correlation, while, at
the same time, the modulus-based MF-DXA approach leaves
them unchanged.

IV. SUMMARY AND CONCLUSIONS

We proposed an algorithm, which we called multifractal
cross-correlation analysis, that allows for a quantitative de-
scription of multiscale cross-correlations between two time
series and that is free of the limitations of the other existing
algorithms, like MF-DXA. The key point that distinguishes
MFCCA from other related methods is construction of the
qth-order cross-covariance function F

q
xy(s) in Eq. (3), which

preserves the sign of the cross-covariance fluctuation function
F 2

xy(ν,s) after its modulus has been raised to a power of q/2.
This step has two immediate consequences: (1) it eliminates
the risk of the appearance of complex values that might
lead to problems with their correct interpretation and (2) it
prohibits losing information that is stored in the negative cross-
covariance. It follows that, as we showed in Sec. III B regarding
known model data, the results obtained with MFCCA are
more logical and better coincide with intuition than do the
parallel results of MF-DXA. This was true both for the
signed and the unsigned, volatility-like processes. On this
ground we concluded that MFCCA provides us with the most
complete information about fractal cross-correlations possible
as compared to the other related methods existing so far.
Having realized this, we applied MFCCA to sample real-world
data from the stock markets. We found that both the cross-
stock correlations and the lagged intermarket correlations of
returns, as well as the correlations between price movements
and the corresponding transaction time intervals, are clearly
multifractal. Moreover, we showed that carriers of these
cross-correlations are predominantly the large fluctuations
in both signals, while the smaller fluctuations contribute
rather little. This outcome may suggest that an important
ingredient of financial complexity, which manifests itself here
as multifractality, might be temporal relations between large
events.

Apart from the introduction of MFCCA, we also focused
our attention on the relation between the qth-order scaling
exponent λq and the averaged generalized Hurst exponents
hxy(q). Both these measures are equally important if one
intends to comprehend fractal structure of the data under study.
This is because their spectra analyzed in parallel for each signal
separately contain information about similarity of their fractal
structure. For example, based on model data, we found that the
larger the difference between λq and hxy(q), the more different
the considered (multi-)fractals. We thus strongly recommend
investigation of both these quantities in parallel.

We believe that our approach presented here will allow for
a wider application of multifractal cross-correlation analysis
to empirical data in different areas of science.
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Lett. 88, 60003 (2009).
[8] B. B. Mandelbrot, Pure Appl. Geophys. 131, 5 (1989).
[9] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde,

S. Havlin, A. Bunde, and H. E. Stanley, Physica A 316, 87
(2002).

[10] D. Grech and Z. Mazur, Phys. Rev. E 87, 052809 (2013).
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