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Acoustics and precondensation phenomena in gas-vapor saturated mixtures

C. Guianvarc’h*

Laboratoire Commun de Métrologie, LNE-Cnam, 61 rue du Landy, 93210 La Plaine Saint Denis, France

M. Bruneau
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Starting from fundamental hydrodynamics and thermodynamics equations for thermoviscous fluids, a new
modeling procedure, which is suitable to describe acoustic propagation in gas mixtures, is presented. The
model revises the boundary conditions which are appropriate to describe the condensation-evaporation processes
taking place on a solid wall when one component of the mixture approaches saturation conditions. The general
analytical solutions of these basic equations now give a unified description of acoustic propagation in an infinite,
semi-infinite, or finite medium, throughout and beyond the boundary layers. The solutions account for the coupling
between acoustic propagation and heat and concentration diffusion processes, including precondensation on the
walls. The validity of the model and its predictive capability have been tested by a comparison with the description
available in the literature of two particular systems (precondensation of propane and acoustic attenuation in a
duct filled with an air-water vapor saturated mixture). The results of this comparison are discussed to clarify
the relevance of the various physical phenomena that are involved in these processes. The model proposed here
might be useful to develop methods for the acoustic determination of the thermodynamic and transport properties
of gas mixtures as well as for practical applications involving gas and gas-vapor mixtures like thermoacoustics
and acoustics in wet granular or porous media.
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I. INTRODUCTION

During the last three decades, important research work
has been carried out to improve the description of acoustic
fields in binary gas mixtures, pure saturated vapors, and
gas-saturated vapor mixtures. On one hand, the analysis of
mixture separation phenomena inside the boundary layers
(experimentally observed in thermoacoustic engines) led Swift
et al. to suggest analytical models of acoustic fields coupled to
heat and concentration diffusion processes in thermoacoustic
cores filled with binary gas mixtures [1–3]. More recently,
the experimental work of Gavioso et al., aimed at an accurate
measurement of the acoustic fields in a resonant cavity filled
with a binary inert gas mixture, indicated the need for advanced
acoustic modeling in the bulk of the gas as well as in the
boundary layers [4]. Recently, two of us provided a more
general and unified analytic procedure whereby the acoustic
field in binary gas mixtures can be expressed, throughout
and beyond boundary layers, from coupled solutions for the
propagative and diffusive fields [5].

On the other hand, the results of accurate speed of sound
measurements in cavities filled with a pure saturated vapor
(i.e., a gas in static pressure and temperature conditions
close to the vapor-liquid equilibrium) led several authors
[6–8] to point out and address (Mehl and Moldover [7]) the
significant influence of precondensation effects taking place
on the walls of the cavity. Indeed, due to the difference
between the intermolecular potential in the bulk of the gas
and at the vapor-solid interface, an adsorbed liquid film can
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exist in a thermodynamic equilibrium state, even when the
thermodynamic state of the vapor lies below the liquid-gas
phase transition line in the phase space (P,T ) diagram. The
thickness of the liquid film coating the wall is determined by
the pressure and temperature of the vapor. Therefore, pressure
and temperature variations due to the acoustic cycle, being
coupled to heat diffusion processes in the boundary layers,
result in liquid-vapor phase changes on the walls, whose effects
on the acoustic field involve the liquid film rate of change, the
latent heat of vaporization, and the balance of the heat flows at
the liquid-vapor interface, as suggested in the analytical model
first developed by Mehl and Moldover [7], which predicts the
enhancement of the acoustic admittance of a solid wall coated
with a liquid film.

Finally, both Mao [9] and Raspet et al. [10–13] observed
experimentally the relevant influence of humidity on the
acoustic attenuation in porous materials and the functional
properties of thermoacoustic engines. Following these obser-
vations, several attempts were made to improve the existing
theory to provide a better understanding of the boundary water
evaporation-condensation effects on the acoustic propagation
in ducts filled with an air-water vapor mixture [9–13]. These
attempts correctly include heat and concentration diffusion
processes throughout the boundary layers and their coupling
to phase changes on the walls. However, in these models
the thickness of the interfacial film is assumed to be null,
and the influence of the liquid film rate of change is
neglected even though it could be significant, as previously
demonstrated [7].

To sum up, previous work has considered either the
coupling between heat and concentration diffusion processes
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in binary mixtures or the description of the physical processes
which determine precondensation in a pure vapor. The quest
for a unified coherent acoustic description of all these phenom-
ena was the initial motivation of this work, which deals with
acoustic wave propagation in gas-vapor saturated mixtures in
an infinite, semi-infinite, or finite medium throughout and be-
yond the boundary layers. Here, the evaporation-condensation
processes take place only on the walls, which are permanently
coated with a liquid film of variable thickness.

This study is extensively analytical and relies on a standard
formulation based on the classical equations of acoustics in
thermoviscous fluids and the formalism developed by Landau
and Lifshitz for binary gas mixtures [14] (Sec. II).

In Sec. III, the acoustic behavior of the gas-vapor mixture
near the boundaries is modeled as follows: (1) the coupling
between the thermal diffusion and the concentration diffusion
inside the boundary layers is described using the formulation
first suggested by Swift and Spoor [1] and later revised
in Ref. [5], (2) the effect of the heat flows related to the
vaporization latent heat of the precondensed liquid film and
the state of equilibrium of this liquid film are introduced as
suggested by Mehl and Moldover [7], and (3) in addition
to the classic nonslip conditions on the walls, we make
use of the boundary conditions first presented by Mao [9]
and later by Raspet et al. [10–13] to describe the mass
transfers between the vapor and the wet wall. However, we
do not use quasi-isothermal boundary conditions as they do
not suitably account for the latent heat associated with the
condensation-evaporation processes.

Within this rather convoluted framework, complete and
tractable solutions expressing the variation of temperature,
concentration, and particle velocity are derived in Sec. IV.
These solutions are used in Sec. V to deal with two specific
acoustic problems, namely, the reflection off the liquid coated
wall and the propagation of quasi-plane waves in cylindrical
waveguides.

Finally, in Sec. VI, we apply our extended acoustic model
and discuss its impact for two particular cases previously
considered in the literature, i.e., a determination of the acoustic
admittance of the boundary layer in nearly saturated propane
and the acoustic attenuation within a duct filled with a mixture
of air and saturated water vapor.

II. LINEARIZED FUNDAMENTAL EQUATIONS

The variables describing the dynamic and thermodynamic
states of the binary mixture and each of its components (the
subscript index i = 1,2 refers to the gas and the saturated
vapor, respectively) are the pressure variations p and pi , the
particle velocities v and vi , the mass density variations ρ ′ and
ρ ′

i , the mass fraction variation of the gas c (i.e., 1 − c for the
vapor), and the temperature variation τ of the mixture.

The parameters specifying the state of the mixture are the
total and partial static pressures P0 and Pi and the mass
densities ρ0 and ρi of the mixture and of each component,
respectively, and the static temperature T0.

Finally, the parameters specifying the nature of the mixture
are the adiabatic speed of sound a0, the static mass and mole
fractions C0 and x of the gas (1 − C0 and 1 − x, respectively,
for the vapor), the number of moles per unit volume of the

mixture and each component n and ni , the molar masses M and
Mi , the heat capacity ratios of the mixture and each component
γ and γi , the heat capacities at constant pressure per unit
of mass of the mixture and each component CP and CPi ,
the pressure and thermal diffusion ratios kP = x(1 − x)(M2 −
M1)/M and kT , respectively, the mutual diffusion coefficient
D, the increase in pressure per unit increase in temperature at
constant density β̂, the shear and bulk viscosity coefficients
μ and η, respectively, and the thermal conductivity λh of the
mixture.

The set of linear equations governing acoustic fields in a
gas-vapor mixture are the following [5,9,10,14].

(1) The Navier-Stokes equation for the mixture

1

a0

∂ v
∂t

= − 1

ρ0a0
∇p + 	v ∇(∇ · v) − 	 ′

v ∇ ∧ ∇ ∧ v , (1)

where 	v = (4μ/3 + η)/(ρ0a0) and 	 ′
v = μ/(ρ0a0).

(2) The mass conservation equations are

∂ ρ ′
i

∂t
+ ρi∇ · vi = 0 , (2a)

∂ ρ ′

∂t
+ ρ0∇ · v = 0 , (2b)

where ρ0v = ρ1v1 + ρ2v2.
(3) The equation describing the mutual diffusion of the

mixture components, involving the concentration flux density
i, defined as the density flow rate through the unit surface
per unit time due to the diffusion process of component 1
of concentration C [−i for component 2 of concentration
(1 − C)] is

i = −ρ0a0	D

M1M2

M2

[
M2

M1M2
∇c + kP

P0
∇p + kT

T0
∇τ

]
,

(3a)

with M = xM1 + (1 − x)M2 and 	D = D/a0; the concentra-
tion flux density is also related to the particle velocities v1 and
v2 by

i = −ρ0x(1 − x)
M1M2

M2
(v2 − v1) (3b)

and to the expression of the mass fraction field variation c by,
neglecting the second order term ρ0v · ∇c,

∂ c

∂t
≈ − 1

ρ0
∇ · i . (3c)

The fundamental equations may be more conveniently ex-
pressed by introducing the variable b, defined as

∂ b

∂t
= M2

M1M2

∂ c

∂t
= − M2

M1M2

1

ρ0
∇ · i . (4)

(4) The entropy continuity for the mixture is(
1

a0

∂

∂t
− 	h 


)
τ = γ − 1

γ β̂

1

a0

∂

∂t
[p + P0αT b] , (5)

where 	h = λh/(ρ0a0CP ) and αT = kT /[x(1 − x)].
The last term, which involves the normalized mass fraction

variation b, arises from the expressions of both the concentra-
tion flux density i [having the same dimension as a heat flux;
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see Eq. (3a)] and the heat flux [14, Eq. (58.12)]:

q =
[
kT

(
∂ g

∂C

)
P,T

− T0

(
∂ g

∂T

)
P,C

+ g

]
i − λh∇τ, (6)

where g = g1/M1 − g2/M2 and gi are the chemical potentials
of the mixture and of the component i, respectively.

(5) The equation of state of the mixture (ideal gas, Dalton’s
law)

1

ρ0

∂ ρ ′

∂t
= 1

P0

∂ p

∂t
− 1

T0

∂ τ

∂t
− αP

M2

M1M2

∂ c

∂t
, (7)

where αP = kP /[x(1 − x)].
Therefore, the set of fundamental equations needed to

describe harmonic motion expressed as ejω t (with angular
frequency ω and adiabatic wave number k0 = ω/a0), involving
the variables p, v, τ and b, takes the following form [5]:

v = − 1

jω ρ0
∇p + 	v

jk0
∇(∇ · v)

+ 1

k2
v

∇ ∧ ∇ ∧ v, (8a)

∇ · v = −jω γ

ρ0a
2
0

(p − β̂τ ) + jω αP b, (8b)

(
1 + 1

k2
h




)
τ = γ − 1

γ β̂
(p + P0αT b), (8c)

(
1 + 1

k2
D




)
b = − γ

ρ0a
2
0

1

k2
D

(kP 
p + β̂kT 
τ ), (8d)

where the wave numbers, defined as

k2
v = −jk0

	 ′
v

, k2
h = −jk0

	h

, k2
D = −jk0

	D

, (8e)

are, respectively, related to the shear displacement (significant
only within the viscous boundary layer), the thermal diffusion
process, and the mutual diffusion process.

In the following, we make the limiting assumption that
the evaporation-condensation process may be neglected within
the bulk of the fluid, as there the nucleation energy is much
higher than close to the wall of the enclosure. Therefore, the
appropriate description for the acoustic field is that given in
Ref. [5]. In agreement with the approximations made above,
terms of order higher than 1 for the characteristic lengths
are neglected below (i.e., order 2 of the penetration depths
δv,h,D = √

2/|kv,h,D|).

III. EQUATIONS INSIDE BOUNDARY LAYERS AND
BOUNDARY CONDITIONS

We consider a rigid solid wall, locally assumed to be
a plane, which is coated with a liquid film of variable
thickness (Fig. 1). The coordinate normal to the wall inwardly
directed is denoted u, with u = d at the interface between the
liquid and the gas mixture and u = 0 on the solid wall; the
coordinate tangent to the wall is denoted w with components
w1,w2 on the wall. To simplify the description of the small
amplitude acoustic disturbance within the boundary layer
and the corresponding formulation, we assume the validity
of the following approximations: (1) the component normal

u

Solid wall

0

d

(w1, w2)

vw

Gas-vapor mixture

ḋ

v vu

S

τ

τ

τ

Liquid film

FIG. 1. Temperature and particle velocity fields in a gas-vapor
mixture close to a solid wall coated with a liquid film.

to the wall vu of the acoustic velocity is much lower than
the tangential components vwi (mostly within the boundary
layers), and (2) the spatial variation of the acoustic velocity and
the temperature and concentration variations are much higher
in the normal direction u than in the tangential directions
(w1,w2).

Under these assumptions, the normal and tangential com-
ponents of Navier-Stokes equation (8a) lead to the following
relations, using expression (8b) for ∇ · v and assuming that
τ ≈ (γ − 1)/(γ β̂)p in the higher order terms:

jω ρ0vu = −(1 + jk0	v )
∂ p

∂u
+ jk0	v ρ0a

2
0αP

∂ b

∂u
,

(9a)(
1 + 1

k2
v

∂ 2

∂u2

)
vw = −1 + jk0	v

jω ρ0
∇wp + 	v a0αP ∇wb, (9b)

with ∇w being the del operator in coordinate system (w1,w2)
(Fig. 1).

We can note that by substituting the expressions obtained
in the following for ∂

∂u
vu and ∂ 2

∂u2 b (Secs. IV B and IV D) into
the derivative of Eq. (9a) with respect to the variable u, we get
the propagation equation that governs the pressure variation p.

The tangential particle velocity, the temperature and con-
centration variations, and the normal particle velocity are then
governed by the following set of equations:

∂

∂u
vu + ∇w · vw = −jω γ

ρ0a
2
0

(p − β̂τ ) + jω αP b, (10a)

(
1 + 1

k2
v

∂ 2

∂u2

)
vw = −1 + jk0	v

jω ρ0
∇wp + 	v a0αP ∇wb,

(10b)(
1 + 1

k2
h




)
τ = γ − 1

γ β̂
(p + P0αT b), (10c)

(
1 + 1

k2
D




)
b = − γ

ρ0a
2
0

1

k2
D

(kP 
p + β̂kT 
τ ). (10d)

The general solutions of these equations are subjected to the
following boundary conditions at the interface u = d between
the liquid film and the gas mixture.
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(1) The tangential components vwi of the particle velocity
of the mixture vanish (nonslip condition):

vw(d) = 0. (11)

(2) On the surface u = d of the liquid film, the normal
component of the gas particle velocity v1u must be equal to the
velocity ḋ = ∂d/∂t of the interface between the liquid and the
gas-vapor saturated mixture:

v1u(d) = ḋ. (12a)

The thickness of the liquid film is equal to d, and ḋ is related
to the u component of the vapor particle velocity v2u(d) by

ρ	ḋ = −ρ2v2u(d), (12b)

with ρ	 being the density of the liquid. Then, the relation
ρ0v = ρ1v1 + ρ2v2 expressed at u = d leads to the following
relationship between the normal component of the particle
velocity and the vibration velocity of the liquid film, under the
reasonable assumption that ρ	 � ρ1:

ρ0vu(d) = (ρ1 − ρ	)ḋ ≈ −ρ	ḋ . (12c)

The particle velocity vu(d) is related to the first derivative of
the acoustic pressure with respect to the u coordinate (9a),
leading to

∂ p

∂u

∣∣∣∣
d

≈ jω ρ	ḋ (12d)

to the lowest order of the characteristic lengths. This result
shows that the spatial variation of the acoustic pressure in the
direction normal to the wall is nonzero due to the thickness
variations of the liquid film.

Also, the concentration density flux is nonzero at the liquid-
gas mixture interface since it is related to the vibration velocity
of the liquid film ḋ . Making use of relations (12a), 12(b), and
12(c) in expressions (3a) and 3(b) of the concentration flux
density allows us to write, assuming that ρ	/ρ2 � 1,

iu(d) = x
M1

M
ρ	ḋ

= −ρ0D
M1M2

M2

[
∂ b

∂u
+ kP

P0

∂ p

∂u
+ kT

T0

∂ τ

∂u

]
d

, (13)

and, finally, at the lowest order of the characteristic lengths,

x
M

M2

ρ	

ρ0

ḋ

a0
= −	D

[
∂ b

∂u
+ β̂γ

ρ0a
2
0

kT

∂ τ

∂u

]
d

. (14)

Note that when ḋ vanishes (no liquid film on the wall), this
boundary condition takes the form [1,5]

∂ b

∂u

∣∣∣∣
d

= − β̂γ

ρ0a
2
0

kT

∂ τ

∂u

∣∣∣∣
d

.

(3) Even though the temperature variation τ on the wall is
much lower than the adiabatic temperature variation in the bulk
of the fluid, the usual isothermal boundary condition τ (d) = 0
no longer holds, as it would imply that the temperature vari-
ations due to the latent heat of vaporization and condensation
are negligible. As emphasized in the literature [7], although
this latent heat is convected in the liquid layer and the wall,
the balance of heat flow at the liquid-vapor interface implies

that a slight non-negligible temperature variation occurs on the
liquid boundary.

Assuming the conservation of heat flux at the interface
between the wall and the liquid film (u = 0) and the temper-
ature continuity at both interfaces, wall-liquid film and liquid
film-gas mixture (u = d), the equations describing the spatial
dependence of the temperature waves, created at the liquid-gas
mixture interface u = d (by the energy source due to the latent
heat), in the wall and in the liquid are respectively given by

τS(u) = τ (d)

cos k	d + j� sin k	d
ejkSu , u < 0, (15a)

τ	(u) = τ (d)
cos k	u + j� sin k	u

cos k	d + j� sin k	d
, 0 < u < d, (15b)

where kS,	 = (1 − j )
√

ωρS,	CS,	/(2λS,	) are the complex
propagation constants of thermal waves in the wall and the
liquid, respectively, λS,	 are the thermal conductivities, CS,	

are the heat capacities, and ρS,	 are the densities of the wall
and the liquid, respectively, and � = √

ρSCSλS/(ρ	C	λ	).
Using the expression, which would strictly hold for an ideal

gas [14, Eq. (58.10)],(
∂ g

∂c

)
P,T

= P0

kP

(
∂ (1/ρ)

∂c

)
P,T

= P0

ρ0

M2

M1M2

1

x(1 − x)
,

the normal component of the heat flux (6) can be written as

qu(d) =
[
P0

ρ0

αT M2

M1M2
+ g − T0

(
∂g

∂T

)
P,C

]
iu(d) − λh

∂τ

∂u

∣∣∣∣
d

.

The first term of qu(d) indicates the contribution to the
concentration of the heat flux associated with the temperature
gradient. This is usually assumed to be much larger than
the effects associated with the chemical potentials, namely,
−T0(∂g/∂T )P,C and g. Thus one can write here

qu(d) ≈ αT

P0

ρ0

M2

M1M2
iu(d) − λh

∂ τ

∂u

∣∣∣∣
d

. (16)

Then, the energy balance for heat flow at the liquid-gas mixture
interface u = d takes the following form (L being the latent
heat of vapor per unit mass of liquid, provided at u = d):

ρ	Lḋ ≈ αT

P0

ρ0

M2

M1M2
iu(d) − λh

∂ τ

∂u

∣∣∣∣
d

+ λ	

∂ τ	

∂u

∣∣∣∣
d

,

or, accounting for the first expression in (13) and expression
(15b) for iu and τ	, respectively,

γ − 1

γ β̂

(
ρ0L

P0
− xαT

M

M2

)
P0

ρ	

ρ0

ḋ

a0

= jkh	h �τ (d) − 	h

∂ τ

∂u

∣∣∣∣
d

, (17a)

where

� =
√

ρ	C	λ	

ρ0CP λh

j tan k	d + �

1 + j� tan k	d
. (17b)

The boundary condition in Eqs. (17a) and 17(b) is more
realistic than that used by Slaton et al. [12, Eq. (3)] as it
accounts for the coupling of the nonzero concentration flux
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density at the liquid-gas interface with the heat flux generated
by thermodiffusion effects within the gas mixture.

(4) The boundary conditions that involve the normal
component of the gas particle velocity (condition 2) and
the temperature variation (condition 3) depend on the time
derivative ḋ of the liquid film thickness d. Therefore, we
need to express ḋ as a function of the variables of interest
here, namely, p, τ , and b. We achieve this by expressing the
thermodynamical equilibrium of the condensation liquid film
by an equation of state relating d to the partial pressure of the
vapor P2 = (1 − x)P = P (1 − C)M/M2 and the temperature
T of the gas mixture. The following approximate form was
used by Mehl and Moldover:

ln[Ps(T )/P2] ≈ (d0/d)ν , (18)

which considers the saturated vapor pressure Ps(T ) of the
vapor, with d0 being approximately equal to 1 nm and ν varying
between 3 and 4 depending on the thickness of the liquid
film [7].

The validity of this approximate equation is limited by the
assumption that the solid wall is perfectly smooth. However,
in practice, this condition is hardly reached, and to our
knowledge, there is no work available to account for the
influence of the roughness of the wall on the molecular
interactions between the vapor and the wall surface and then
on precondensation.

Making use of Eq. (18), the velocity ḋ of the liquid-gas
mixture interface (u = d) is given by the following differential
expression:

ḋ =
(

∂ d

∂P

)
T ,C

∂ p

∂t
+

(
∂ d

∂T

)
P,C

∂ τ

∂t
+

(
∂ d

∂C

)
T ,P

∂ c

∂t
,

and it can be written as

ḋ

d
= jω

ν ln(Ps/P2)

[
p(d)

P0
− T0

Ps

dPs

dT

τ (d)

T0
− b(d)

1 − x

]
. (19)

It is worth noting that Eqs. (18) and (19) express the
evaporation-condensation process on the interface between the
liquid film and the mixture during each acoustic cycle.

The last expression can be rearranged as follows:

ρ	

ρ0

ḋ

a0
= jk0d	

P0

[
p(d) − β̂hsτ (d) − P0

1 − x
b(d)

]
, (20)

where d	 = (ρ	/ρ0)d/[ν ln(Ps/P2)] and hs =
(T0/Ps)(dPs/dT ). The latent heat L and the slope dPs/dT ,
related in a first approximation (through the ideal gas law)
by the Clausius-Clapeyron law, are numerically expressed
separately herein.

Let us notice that this result is somewhat equivalent to those
suggested by Slaton et al. [12, Eq. (9)] if ḋ/d is assumed to
be negligible or P2 is assumed to be equal to Ps (which cannot
be achieved in practice and is not consistent with the phase
change hypothesis).

Therefore, the velocity ḋ is removed, first from Eqs. (17)
and (20) and then from Eqs. (20) and (14), leading to the
two relationships used below. Then we make use of Eq. (10c)
to remove the variable b, and finally, a lengthy but straight-
forward calculation leads to the two following boundary

conditions:

αT

[
jkh�τ (d) − ∂ τ

∂u

∣∣∣∣
d

]
= jk0δ	

	h (1 − x)

[
M2

M
h0 − xαT

]
�,

(21a)

(1 + ε)
∂ τ

∂u

∣∣∣∣
d

+ 1

k2
h

∂ 3τ

∂u3

∣∣∣∣
d

= − jk0δ	x

	D (1 − x)
� , (21b)

where

h0 = Lρ0

P0
, δ	 = M

M2
d	, ε = γ − 1

γ
x(1 − x)α2

T , (21c)

and

� = γ − 1

γ β̂
[1 + (1 − x)αT ]p(d) −

[
1 + γ − 1

γ
hsαT (1 − x)

]

× τ (d) − 1

k2
h

∂ 2τ

∂u2

∣∣∣∣
d

. (21d)

Without condensation-evaporation, both the thickness of
the liquid film d and its velocity ḋ vanish. As a con-
sequence, the concentration flux density also vanishes at
the boundary, and the coefficient � simplifies to the ratio√

ρSCSλS/(ρ0CP λh), where λS is much higher than λh (the
quantities khτ and ∂τ/∂u|d are of the same order of magni-
tude). The boundary conditions (21a) and (21b) respectively
become

τ (d) = 0, (1 + ε)
∂ τ

∂u

∣∣∣∣
d

+ 1

k2
h

∂3τ

∂u3

∣∣∣∣
d

= 0 ,

which are equivalent to those given in Refs. [1,5].
Alternatively, for the case of a pure vapor (x = 0), the

variable b and the concentration flux density i vanish. Then, as
expected, the second boundary condition (21b) also vanishes,
and the first boundary condition (21a) leads to

jkh�τ (d) − ∂ τ

∂u

∣∣∣∣
d

= jk0d	h0

	h

γ − 1

γ β̂
[p(d) − β̂hsτ (d)] .

Finally, for the study of gas-vapor mixtures, we are left with
three boundary conditions: (11), (21a), and (21b).

IV. SOLUTIONS

A. Solutions for the temperature variation

We apply the operator (1 + 1
k2
D


) on the diffusion equation
(10c), and we use equation (10d), which leads to the following
equation for τ :[

1 +
(

1

k2
h

+ 1 + ε

k2
D

)

 + 1

k2
hk

2
D





]
τ

≈ γ − 1

γ β̂

[
1 + 1

k2
D

(1 − αT kP )


]
p. (22)

Equation (22) may be more conveniently rearranged to
highlight the coupling between temperature and concentration
variations inside the boundary layers. The appropriate form of
the operator on the left hand side is a “product” of two spatial
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second order operators [1]:(
1 + 1

k2
hD




) (
1 + 1

k2
Dh




)
τ

≈ γ − 1

γ β̂

[
1 + 1

k2
D

(1 − αT kP )


]
p, (23)

where

1

k2
hD,Dh

= −A ± √
�

2jk0
= −	hD,Dh

jk0
, (24)

with A = 	h + (1 + ε)	D and � = (	h − 	D )2 +
2ε	D [	h + 	D (1 + ε/2)].

Then, the Laplacian 
 may be expressed as the sum

 = ∂2/∂u2 + 
w. Thus, the particle displacement along the
direction which is tangent to the wall is nearly coincident
with the acoustic displacement [which implies 
wτ ≈ (γ −
1)/(β̂γ )
wp], and the terms of order greater than 1 for the
characteristic lengths 	hD and 	Dh are neglected. Finally,
Eq. (23) takes the following form [1,5]:(

1 + 1

k2
hD

∂ 2

∂u2

) (
1 + 1

k2
Dh

∂ 2

∂u2

)
τ ≈ γ − 1

γ β̂
pτ , (25a)

with (
p is identified with −k2
ap)

pτ (w) ≈
[

1 + k2
a

k2
D

x(1 − x)αT α + k2
a

k2
h

]
p , (25b)

where k2
a = k2

0(1 + jk0	vhd ) is the acoustic wave number
accounting for viscous, thermal, and mutual diffusion effects
in the bulk and α = αT (γ − 1)/γ + αP .

Equations (25a) and 25(b) show that the temperature
variation within the boundary layer is determined by the
superposition of two diffusion processes, labeled hD and Dh,
due to the complex interaction of concentration and thermal
gradients. Note that the following relations can be readily
obtained:

1

k2
hD

+ 1

k2
Dh

= 1

k2
h

+ 1 + ε

k2
D

, k2
hDk2

Dh = k2
hk

2
D, (26)

with the thicknesses of the boundary layers associated
with these diffusion processes respectively given by δhD =√

2/|khD| and δDh = √
2/|kDh|.

In Eqs. (25a) and (25b), the pressure variation p is assumed
to be quasi-uniform along the u direction inside the boundary
layers. The solution for the temperature variation τ , subjected
to the boundary conditions (21a) and (21b), then takes the
following form:

τ (u,w) = γ − 1

β̂γ
pτ (w) [1 − AτϕhD(u) − BτϕDh(u)]

= γ − 1

β̂γ
pτ (w)[1 − ψτ (u)] , (27)

where functions ϕX(u) (the subscript X in the following
stands for subscripts v, hD, and Dh indifferently) are the
normalized solutions of the homogeneous equations associated
with Eqs. (25a) and (25b) and the integration constants Aτ and
Bτ are given by boundary conditions (21a) and (21b).

Functions ϕX(u) and integration constants Aτ and Bτ

depend on the geometry of the wall surface and of the
propagation domain (see examples in Sec. V).

B. Expression of the concentration variation

We may solve Eq. (10c) to express the variation of the
normalized concentration on the wall, using the general form
(27) for the temperature τ ,

b(u,w) = p

P0
x(1 − x)

{
k2
a

k2
D

α[1 − ψτ (u)] − 1

kT

ψb(u)

}
,

(28)
with

ψb(u) = Aτ

[
1 − 	h

	hD

]
ϕhD(u) + Bτ

[
1 − 	h

	Dh

]
ϕDh(u) .

(29)

C. Solutions for the tangential particle velocity

We next consider a simplified form of Eq. (10b) by
neglecting the rightmost term a0αP 	v ∇wb, which would lead
to a second order function of the characteristic lengths. Thus,
imposing the boundary condition (11), the particle velocity on
the wall is given by

vw(u,w) ≈ − 1

jω ρ0
(1 + jk0	v )∇wp(w)[1 − ϕv(u)] , (30)

where ϕv(u) is a solution of Eq. (10b) and depends on the
particular geometry of the wall surface and of the propagation
domain.

D. Relation between the particle velocity normal to the wall and
the pressure variation

Together, solutions (27), (28), and (30), which define the
temperature and concentration variations and the tangential
particle velocity, are used in Eq. (10a), leading to the final
relation between the normal component vu of the particle
velocity v and the acoustic pressure p, at first order in the
characteristic lengths:

jω ρ0
∂

∂u
vu = [1 − ϕv(u)]
wp + k2

0

×
{

1 − jk0	vhd + γ
kP

kT

ψb(u)

+ (γ − 1)ψτ (u) + jk0	v ϕv(u)

+ jk0[(γ − 1)	h + 	D γ x(1 − x)α2]ψτ (u)

}
p,

(31)

where 	vhd = 	v + (γ − 1)	h + γ x(1 − x)α2	D accounts
for the energy dissipation in the bulk of the mixture.

Depending on the geometry of the solid boundary, the
propagation domain, and accuracy requirement, simplified
versions of Eq. (31) may hold, as discussed below for two
cases of practical interest.

Finally, the pressure variation is governed by the second
order differential equation obtained from the derivative of
Eq. (9a) with respect to the variable u, accounting for the
expression of ∂

∂u
vu [Eq. (31)].
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τ

δ

τ

d film

FIG. 2. Quasi-plane rigid wall coated with a liquid film: temper-
ature and particle velocity fields within the boundary layers.

V. SPECIFIC APPLICATIONS

A. Reflection on a quasi-plane rigid wall

Within the boundary layers, the acoustic pressure p is nearly
uniform. It is then appropriate here to identify 
wp with −k2

wp

(
w and kw are, respectively, the components of the Laplacian
and of the acoustic wave number tangent to the wall) and
to substitute the following terms in Eq. (31) with their mean
values: ∫ u

d

∂

∂y
vudy = vu(u) − vu(d), (32a)

∫ u

d


w[1 − ϕv(y)]pdy ≈ −k2
wp

(
δ −

∫ u

d

ϕv(y)dy

)
,

(32b)

where δ = (u − d) has the same order of magnitude as the
boundary layer thickness and the relative variations of the
functions ϕX in the boundary layers are much larger than those
of p.

Considering the reflection on a wall in a semi-infinite
domain (Fig. 2), we may express the functions ϕX(u) as
exponential functions e−jkX(u−d), which rapidly vanish when
δ ≈ δX (evanescent waves associated with diffusion processes
from the wall), leading to

∫ u

d

ϕX(y)dy ≈ 1 − j√
2

√
	X

k0
,

∂ ϕX

∂u

∣∣∣∣
d

= 1 + j√
2

√
k0

	X

.

Therefore, expressions (27), (28), and (30) for τ , b, and vw
are used in Eq. (31); then we integrate it from d to u, and we
use expression (20) for ḋ in relation (12c). It turns out, with a
lengthy but straightforward calculation, that

−ρ0a0
vu

p

≈ 1 + j√
2

√
k0

[
k2
w

k2
0

√
	 ′

v + (γ − 1)

√
	h

qhD

]

+ jk0δ	 γ

qhD

[(
1 − γ − 1

γ
h2

)
ζs

�
+ fhD√

	hD + √
	Dh

]
,

(33a)

where h2 = h0M2/M , ζs = 1 − hs(γ − 1)/γ , and

qhD =
√

	h + √
	D√

	hD + √
	Dh

[
1 + jkhδ	

�

(
γ − 1

γ
hsh2 + ζ

)]

+ 1

�
+ jkhδ	 ζ + jkhδ	

√
	D xαT

�(
√

	hD + √
	Dh )

γ − 1

γ

× (xαT − h2 − hs), (33b)

fhD =
(

1 + γ − 1

γ
ζ

)
(
√

	h +
√

	D )

−γ − 1

γ
xαT

(
1 − γ − 1

γ
xαT

)√
	D, (33c)

with ζ = √
	h /	D x/(1 − x).

In a gas mixture or a pure gas without evaporation-
condensation (d	 = 0, or x = 1), expressions (33a)–(33c)
coincide with the results previously obtained in [5,15].

Equations (33a)–(33c) show that the two components of
the mixture do not symmetrically contribute to the diffusion
phenomena due to the combined effect of evaporation and
condensation within the boundary and the variations of the
film thickness (effects expressed by the terms factor of d	).

On the other hand, for a pure saturated vapor (x = 0 and
M = M2), expression (33a) gives

−ρ0a0
vu

p
≈ 1 + j√

2

√
k0

[
k2
w

k2
0

√
	 ′

v + (γ − 1)

√
	h

qh

]
+ βf ,

(34a)

where qh = 1 + [1 + jkhd	h0hs(γ − 1)/γ ]/� and

βf = jk0d	γ

qh

[
1 +

(
1 − γ − 1

γ
h0

)
ζs

�

]
. (34b)

Equation (34b), which expresses the specific acoustic admit-
tance of the liquid film, differs from the result previously
obtained by Mehl and Moldover [7, Eq. (21)]:

−ρ0a0
vu(d)

p
= jk0d	γ

qh

(
1 + ζs

�

)
, (34c)

as adapted to the notation used in this work. In fact, while both
expressions account for the acoustic effects of the variation
of the film thickness, Eqs. (34a) and (34b) additionally take
into account the influence on the rate of evaporation and
condensation due to thermal diffusion in the boundary layers.
The quantitative influence of this additional contribution is
further discussed below in Sec. VI A.

B. Quasi-plane waves in cylindrical waveguides

We consider a waveguide with perfectly rigid walls (Fig. 3).
By calculating the mean value of Eq. (31) over the section S

of the guide, we derive the wave equation which governs the
pressure variation of quasi-plane waves. To achieve this, we
initially remark that the mean value of the normal velocity vu

over the waveguide section is null:

〈∂vu/∂u〉S = 0.

Then, in Eq. (31), the mean values of the variables τ , b, and
vw are substituted by the mean values of their respective
expressions, Eqs. (27), (28), and (30). Here, the functions
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vw

vhd

Liqui

(w1, w2)

u

p

u

Solid wall

δ

d film

FIG. 3. Acoustic pressure and particle velocity fields across a
section of a waveguide.

ϕX(u) are a linear combination of calculable Bessel or
trigonometric functions, depending on the geometry of the
waveguide. Finally, by denoting KX = 〈ϕX(u)〉S and using
V/A as the volume to surface ratio of the waveguide, we have

∂ ϕX

∂u

∣∣∣∣
d

= V

A
k2
XKX,

and the mean value of Eq. (31) corresponds to the propagation
equation (


w + k2
w

)
p = 0, (35)

where terms of order greater than 1 for the characteristic
lengths are neglected and the wave number kw takes the
following form:

k2
w

k2
0

≈ 1

1 − Kv

{
1 + 	Dh − 	hD

	D

KhDKDh

QhD

[
γ − 1 − jkhδ	 γ

�
ζs

(
γ − 1

γ
h2 + xαP

)]

− A

V

δ	 γ x

QhD

[
αP �hD + γ − 1

γ

(
�Dh

1 − x
+ xαT M2

M
(KDh − KhD)

)]}
− jk0	vhd , (36a)

with

�hD =
(

1 − 	h

	Dh

)
KDh −

(
1 − 	h

	hD

)
KhD, (36b)

�Dh =
(

1 − 	Dh

	D

)
KDh −

(
1 − 	hD

	D

)
KhD, (36c)

and

QhD =
(

1 + jkhδ	

�

γ − 1

γ
h2hs

)
�hD − jkhδ	 x

�(1 − x)
�Dh

+ 	Dh − 	hD

	D

(
A

V

δ	x

1 − x
+ jkhV

�A
KhDKDh

)

− jkhδ	 x

�

γ − 1

γ
αT (h2 − hs)(KDh − KhD). (36d)

We remark that the terms of order 1 for the characteristic
lengths 	v , 	h , and 	D are included in the formalism, and
the bulk effects are included in the same model by the
term 	vhd .

For a gas mixture without evaporation-saturation (d	 = 0),
this expression is consistent with the one obtained from the
model presented in Ref. [5]. For the case of a pure saturated
vapor, the wave number kw reduces to

k2
w

k2
0

≈ 1

1 − Kv

×
[

1 + (γ − 1)Kh

1 − jkhd	h0ζs/�

1 + jkh

(
V
A
Kh + γ−1

γ
h0hsd	

)/
�

]

− jk0	vhd . (37)

VI. SPECIFIC RESULTS IN PURE VAPORS AND
GAS-VAPOR MIXTURES

A. Reflection on a quasi-plane rigid wall in pure propane
saturated vapor

As a first application of the model discussed above, we
compare its prediction of the acoustic admittance of a wall
in contact with saturated propane with the theoretical results
obtained by Mehl and Moldover [7] to account for the observed
anomalous decrease of the speed of sound in precondensation
conditions.

For this comparison T0 = 287.65 K and P0 is varied
near the nominal saturation pressure Ps = 0.72 MPa so
that 1.0 × 10−12 < (Ps − P0)/Ps < 0.6, with a corresponding
variation [based on the assumption that ν = 3 in Eq. (18)] of
the thickness d of the condensed liquid film coating the wall
between 5 × 10−10 (a few molecular layers) and 1.0 × 10−5.
The thermophysical properties of propane used as input data
in the model are the same as tabulated in Table 1 in Ref. [7],
while the sensitive dependence on static pressure of the vapor
density, speed of sound, and heat capacity were taken from the
equation of state of propane of Younglove and Ely [16].

For a normal incident wave (kw = 0), the expression of
the total specific admittance describing the “classical” thermal
effects in the boundary layers and the effects of the adsorbed
liquid film on the acoustic field as previously modeled by
Mehl and Moldover [7, Eq. (21)] takes the following form [see
Eq. (34c)]:

jβMM
tot = j − 1√

2
(γ − 1)

√
k0	h − k0d	γ

qh

(
1 + ζs

�

)
. (38)

The real and imaginary parts of the total acoustic admittance
calculated using Eq. (38) (dotted lines) are compared in Fig. 4
to the same quantities as predicted by Eq. (33) in this work
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FIG. 4. Real and imaginary parts of the specific total admittances
jβtot [Eq. (33), solid lines] and jβMM

tot [Eq. (38), dotted lines] and
thermal admittance jβth [Eq. (39), dashed line, with equal real and
imaginary parts] of a plane rigid wall coated with a liquid film of
depth d , in propane near saturation for f = 24 kHz.

(solid lines) as functions of the liquid film thickness d (the
equivalent relative pressure scale is also represented in Fig. 4).

Also represented in Fig. 4 (dashed line) is the specific
admittance

jβth = (j − 1)/
√

2(γ − 1)
√

k0	h , (39)

expressing the “classical” thermal effects in the boundary
layers [15].

When the thickness of the liquid film is at its minimum
(i.e., d � 10−9 m), the specific admittance tends to the
“classical” thermal admittance βth as expected. However, we
shall notice that the relative difference between the total
specific admittance of the wall βtot and its thermal admittance
βth starts to be relevant from d = 10−9 and P0 ≈ 0.37Ps

since it is at least 10% there and could be even more when
considering nonsmooth walls.

For a “thin” liquid film, when 10−9 m � d � 10−8 m
[i.e., 0.632 � (Ps − P0)/Ps � 10−3], the expression of �

in Eq. (17b) is reduced to its limit for small values of d

because the effect of thermal diffusion inside the liquid film is
negligible. As a consequence, in this range of static pressures,
the expression of the total specific admittance βtot simplifies
to

jβthin ≈ j − 1√
2

(γ − 1)
√

k0	h − k0d	γ , (40)

showing that precondensation effects within the boundary
layer are purely reactive with the corresponding contributions
to the total admittance of the boundary layer which have the
same order of magnitude.

Finally, for d � 10−8 m [i.e., (Ps − P0)/Ps � 10−3],
namely, for a “thick” liquid film, the multiplying factors in
the term including d	 prevail, leading to, for the specific
admittance of the wall,

jβthick ≈ j − 1√
2

√
k0	h

�γ

h0hs(γ − 1)/γ
. (41)
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FIG. 5. Relative differences (percent) between the real parts
(solid line) and imaginary parts (dotted line) of the specific total
admittances jβtot [Eq. (33)] and jβMM

tot [Eq. (38)] in propane near
saturation for f = 24 kHz.

In Eq. (41), “classical” thermal effects may be neglected as
they have the same order of magnitude of the characteristic
thermal length 	h . In fact, the acoustic and thermal fields
within the boundary are governed by the combined effect of
precondensation and thermal diffusion, expressed by the hs

and h0 factors.
The relative influence of the latter contribution, which is

accounted for in this work but not in Ref. [7], is evident in
Fig. 5, which displays the relative differences of the specific
total admittance as predicted by these alternative models.

We next consider the relevance of the perturbing effect of
boundary layer precondensation and thermal phenomena on
the complex resonance frequencies measured in a spherical
acoustic cavity. As an example, the induced shift 
f0n to the
unperturbed resonance frequency f0n and the corresponding
contribution to the half width g0n of the nth radial mode of the
resonator used in Ref. [7] (radius R = 6.35 cm) to measure
these effects in nearly saturated propane is

(
f0n + jg0n)/f0n = jβtot/z0n , (42)

with z0n being the nth zero of the spherical Bessel function of
first order j0.

The model discussed above for the specific admittance βtot

can be used to predict the contribution of precondensation
effects to the total energy loss that takes place within the
boundary layer of the resonator. When this is done, it is found
that the contribution of precondensation to the half width g0n

of a radial mode can be as high as 4.5 × 10−3 when scaled to
the corresponding resonance frequency f0n.

Thus, the predictions of the theoretical model presented in
this work may be subject to accurate verification with this type
of instrument, which has a demonstrated agreement between
experiment and theory on the order of a few parts per million
[17]. When available, these experimental data may lead to a
more realistic equation describing the influence of the wall
surface roughness on the minimum pressure at which the
presence of the liquid film is detectable.
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B. Attenuation in a cylindrical duct filled with a mixture of air
and saturated water vapor

In this section, we consider the acoustic propagation in
a cylindrical duct of 1 mm in diameter made of different
materials and filled with an air-water vapor mixture. This case
has been previously considered by Raspet et al. [10,12] to test
their models of acoustic propagation in wet porous materials.
There, the composition and total static pressure of the air-water
vapor mixture vary as a function of the temperature with the
partial pressure of air P1 remaining constant at 101.325 kPa
and the partial pressure of water P2 being equal to the vapor
pressure Ps(T ). With this rule, when temperature T0 is varied
from 0.1 ◦C to 100 ◦C, the molar fraction of water vapor
xw = 1 − x varies between 6.0 × 10−3 and 0.506, and the
static pressure of the mixture P0 = P1 + P2 varies from about
101.959 to 202.74 kPa.

The thermophysical properties of air and water, which are
needed as input data to model acoustic propagation within the
bulk of the mixture and in the boundary layer, are retrieved
from the following sources: the thermodynamic and transport
properties of dry air from correlations worked out by Lemmon
and coworkers [18,19]; the thermodynamic properties of liquid
and gaseous water, including the saturated vapor pressure,
from the International Association for the Properties of Water
and Steam (IAPWS) equation of state of Wagner and Pruß
[20]; the transport properties of water from the correlation of
Kestin et al. [21]; the enhancement factor of humid air from
the pioneering work of Hyland [22]; the density of humid
air from a virial expansion truncated at second order using
recent correlations of the second virial coefficient of water [23]
and the interaction virial coefficient of the air-water system
[24]; the speed of sound in the mixture, including relaxation
effects, using the method of Zuckerwar and references therein
[25]; the transport properties of the humid mixture, namely,
the diffusion coefficient, the thermal diffusion ratio, shear
viscosity, and thermal conductivity, with the methods and the
data discussed and tabulated for a mixture of nonpolar and
polar components by Hirschfelder et al. [26].

For the sake of the comparison between the acoustic
models discussed below, it should be noted that the agreement
of our estimate of the mixture properties with those reported
by Raspet et al. [10] is in every case satisfactory, with the
exception of the thermal conductivity of gaseous water and
the thermal diffusion ratio of the mixture, which show relative
differences up to 25% and 50%, respectively, originating from
the different estimate of the thermal conductivity of water
vapor.

Finally, the physical properties of the duct material (steel
or cork) are the same as those tabulated by Slaton et al. [12].

The quantity of interest here is the attenuation coefficient of
the duct (as a function of the temperature in the interval 0 ◦C
to 100 ◦C at 10 kHz), which is proportional to the imaginary
part of the wave number kw given by Eq. (36) in the present
work or by Eq. (30) in the work of Slaton et al. [12].

As shown in Fig. 6, the theoretical duct attenuation obtained
herein is comparable in magnitude but shows a rather different
trend from that of Slaton et al. [12, Fig. 2].

Regarding the case in which precondensation effects
are neglected (i.e., no liquid film and isothermal boundary

air − water vapor mixture

dry air

4

4.5

5

5.5

6

6.5

7

0 20 40 60 80 100

no liquid film liquid film (d = 10−5 m)
T (◦C)

R
e(

jk
w
)

(m
−

1
)

FIG. 6. Attenuation coefficient of a cylindrical duct (diameter
1 mm) filled with dry air (solid line) or an air-water vapor mixture, in
the presence or absence of a boundary liquid film (dashed and dotted
lines, respectively) at 10 kHz as a function of the temperature.

conditions on the solid wall), according to the model presented
here, the effects of mutual diffusion on the attenuation are very
small. Indeed, in this case, when we use the well-known simple
expression of kw in a duct filled with a thermoviscous gas
available in Refs. [5,15] (mutual diffusion effects neglected),
the final results for the duct attenuation are very close to those
shown in Fig. 6 (dotted line), which lead to approximately
4 m−1 at T = 100 ◦C. These results are coherent with those
found by Slaton et al. when the same kind of expression is
used to calculate the duct attenuation (case denoted “effective
fluid” in [12, Fig. 2]), even though the method used here for
calculating the properties of humid air differs from those used
by Slaton et al.

However, still neglecting precondensation effects, Slaton
et al. also found that taking into account mutual diffusion
effects in the gas-vapor mixture makes duct attenuation reach
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FIG. 7. Attenuation coefficient of a cylindrical duct (diameter
1 mm) of different materials, steel (dotted line) and cork (dashed
line), filled with an air-water saturated vapor mixture, with a boundary
liquid film of different thicknesses d (10−5 m for solid line and 10−8 m
for dotted and dashed lines), at 10 kHz as functions of the temperature.
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nearly 9 m−1 at T = 100 ◦C (case denoted “no temperature
fluctuation” in [12, Fig. 2]). Also, the model of Slaton
et al. predicts total attenuation in the air-water vapor mixture
which is larger or smaller than that in dry air, depending on
the material of the duct, whereas in the present work, the
predicted attenuation is always smaller in the mixture with
respect to dry air (see Fig. 7 and explanation below). These
discrepancies reflect the different assumptions made by the dif-
ferent models to justify their approximations of the boundary
conditions.

In agreement with our previous model of mutual diffusion
effects in binary gaseous mixtures away from saturation [5],
the results in Fig. 6 show that mutual diffusion effects in the

gas, which do not involve the exchange of molecules between
the gas and the liquid [expressed by the terms which contain
the parameter δ	 , Eq. (36a)], give a very small contribution
to the total attenuation (less than 0.1% at approximately
0 ◦C to 10 ◦C). On the other hand, we can see in Fig. 6
that the thermal and concentration diffusion effects related to
the liquid film and to the phase changes on the boundaries are
significant since they have a relative contribution up to 17% at
100 ◦C.

It is worth noticing that for a thick film [i.e., d � 10−8 m
and (Ps − P2)/Ps � 10−3], the expression of the wave number
kw [Eqs. (36a)–(36c)] is mostly governed by the terms which
contain the parameter δ	 and reduces to

k2
w

k2
0

≈ 1

1 − Kv

{
1 − jkhγ

�
ζs

(
γ − 1

γ
h2 + xαP

)
	Dh − 	hD

	D

KhDKDh

QhD

− A

V

γx

QhD

[
αP �hD + γ − 1

γ

(
�Dh

xw

+ xαT M2

M
(KDh − KhD)

)]}
,

with

QhD = A

V

x

xw

	Dh − 	hD

	D

+ jkh

�

[
γ − 1

γ
h2hs�hD − x

xw

�Dh

]
.

Slaton et al. noted important discrepancies between the
results for acoustic attenuation depending on the material of
the duct [12]. In Fig. 7, we also note this effect, but with
a rather different trend. So we next consider the influence
of the solid material of the duct, choosing steel and cork to
represent radically different physical properties. In spite of
this difference, the calculated acoustic attenuation for these
two materials when the wall is coated with a 10−5 m depth
liquid film displays negligible differences (relatively less than
1.5 × 10−6, with the solid line in Fig. 7 standing for both a steel
and a cork duct). For this case, in fact, the thermal diffusion
processes inside the liquid film and the wall, as expressed by
the boundary condition (21a), which involves � and �, take
place almost completely within the thick liquid film, where the
major part of the thermal wave is dissipated.

On the contrary, if we consider a 10−8 m depth liquid film
[i.e., for (Ps − P2)/Ps ≈ 10−3], the thermal diffusion in the
solid wall and its thermodynamic behavior are significant,
and the physical properties of the solid material have great
influence on the total acoustic attenuation, as shown in Fig. 7
(dashed and dotted lines). When we compare these results with
those calculated for a 10−5 m depth adsorbed liquid film (solid
line), the relative discrepancies in the behavior of the mixture
are 4% for the steel duct and 18% for the cork duct. Therefore,
it is evident that correct estimates of the thickness d of the
liquid film and of the quantity (Ps − P2)/Ps are necessary to a
reliable calculation of the total acoustic attenuation within the
duct.

VII. CONCLUSION AND PROSPECTS

An analytical model for acoustic propagation has been
worked out which accounts for the coupled effects of
heat and mutual diffusion processes and phase changes at
the vapor-liquid interface coating a solid wall. The model
is suited for application to a gaseous mixture when the
thermodynamic state of one of its constituents approaches
saturation. Therefore, its predictions should be useful to
improve the description of acoustic phenomena encoun-
tered in a variety of applications, including the metrol-
ogy of the thermophysical properties of gaseous mixtures,
the estimate of acoustic attenuation in porous media, and
thermoacoustics.

As a preliminary test of the effectiveness of the model, it
was used to predict salient acoustic properties of two systems,
which were previously described in the literature, namely,
the variation of the boundary layer acoustic impedance of
an acoustic resonator and the total attenuation in a small duct
coated with a liquid film. In both cases an overall satisfactory
agreement was found between the results presented here
and those calculated with more simplified models, increasing
confidence in the correctness of the derived solutions and
their implementation. Minor differences highlighted by this
comparison were used to quantify the relevance of diffusion
processes.

So far, no experimental attempt has been carried out to
validate the prediction capability of the model, and this
is likely to be the subject of future investigation. Such
experimental activity might improve our knowledge of the
acoustic effects of an adsorbed liquid film at low pressure.
Acoustic quasi-spherical resonators are the most suitable
experimental technique for this aim because of the accuracy
demonstrated in the determination of the speed of sound and
boundary layer losses.
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