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Vector spherical quasi-Gaussian vortex beams
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Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused
higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the
complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly
satisfies the vector Helmholtz and Maxwell’s equations. It is characterized by a nonzero integer degree and order
(n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR ,
and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An
attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent)
vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods.
Closed-form expressions and computational results illustrate the analysis and some properties of the high-order
qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis
on the beam waist.
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I. INTRODUCTION

Modeling the beam forming [1] of tightly focused beams
[2–6] is a subject of particular interest in electromagnetic
(EM), optical, and acoustical research, which received signifi-
cant attention in the development of imaging microscopes, and
other devices for particle manipulation and medical imaging.
Usually, the predictions using numerical integration methods
(commonly performed by means of the angular spectrum
method of plane waves [7–10]) are computationally intensive,
requiring the evaluation of a double integration procedure
that can be time consuming. Higher-order corrections [11–13]
have been also suggested, which may provide an approximate
solution with minimal numerical errors if a set of parameters
is carefully chosen. Nevertheless, the lack of an exact solution
for the description of tightly focused beams without any
approximation provided the impetus to further extend a method
based on the complex source point (CSP) formalism [14–20]
(Note the misprint in Eq. (3) of [20]; as written, Eq. (3) is not
a proper solution of the Helmholtz equation since the angle θ

is real as given in Eq. (2). The polar angle in Eq. (3) should
have been expressed as a complex angle, θ− given after Eq. (1)
in the following), and introduce a solution corresponding to
a fundamental (lowest-order) quasi-Gaussian (qG) beam, that
is an exact solution of the Helmholtz equation and Maxwell’s
equations [21].

In this work, a generalized spherical vectorial solution
of vortex nature that encompasses the lowest-order result
[21] (see also the cylindrical counterpart solution in [22]), is
provided, for which the degree and order (n,m) = (0,0). Vector
solutions, which take into account the vector character of the
field and its polarization, are necessary for the description of
EM fields [23], especially when the wavelength is in the order
of the beam waist. Moreover, it is of particular importance
to develop exact vortex solutions that are applicable to
the computation of tightly focused (or strongly divergent)
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wave fields without any approximations nor the need for the
higher-order corrections usually required for Gaussian beams
[11,12,24], particularly for the computation of the beam-shape
coefficients (BSCs) [25] used to obtain a priori information
on the arbitrary scattering [26–29], radiation force [30,31],
orbital and angular spin momentum [32], and torque [30] in
particle sizing, particle manipulation, and optical tweezers,
to name a few applications. Unlike the lowest-order result
[21], the present solutions are fundamentally different as they
carry an angular momentum [32,33] which sets a particle or
a collection of particles into rotation by inducing a radiation
torque [30]. Although previous vectorial analyses of vortex
[28,34–37] (and nonvortex [38–40]) beams of Bessel type
have been developed, the beams were considered ideally
nondiffracting in an unbounded space, or in other words, of
infinite extent.

The present analysis starts by considering the general
solution to the Helmholtz equation in spherical coordinates
based on the method of separation of variables (i.e., Eq. (42)
in [18]). The same method can be also applied using the CSP
formalism (Eq. (22) in [16]) [14,15,18,19,41–43], and the
result remains an exact solution of the Helmholtz equation.
The effect of having the description of a generalized solution
in a complex coordinates system, which may appear at first
glance a simple artifice, has a major physical meaning in the
description of evanescent waves [44] and the production of
finite directional beams [17]. It is noted that the solutions
presented in [16,18] can be interpreted as a generalized set
of spherical harmonics centered on a CSP. However, such
solutions are singular at the CSP and may not be used to
describe a physically realizable wave field.

The removal of this singularity can be accomplished by
introducing a sink in addition to the point source [45,46], the
sink being identical in amplitude and opposite in sign [47]. The
vectorial solution, termed here a spherical “quasi-Gaussian”
(qG) vortex beam, to make a distinction from the paraxial
Gaussian solution used in conventional laser beams, consists
of products of (nonsingular) spherical Bessel functions of the
first kind and associated Legendre functions with a complex
exponential phase dependency on the azimuthal angle.
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FIG. 1. Geometry of the problem.

II. METHOD

A magnetic vector potential field Ap,x describing an exact
solution of the vector wave equation (i.e., the source-free
Helmholtz equation), and polarized along the x direction is
defined such that [47]

Ap,x = qGvortex
nm x = A0e

±kzR jn(κ±)P |m|
n (cos θ±)ei|m|φx, (1)

where the time dependence in the form of e−iωt is suppressed
from Eq. (1) for convenience, x is the unitary vector along the
transverse x direction, A0 is the characteristic amplitude, e±kzR

is a normalization constant, the parameter κ± = kR±,jn(·)
is the spherical Bessel function of the first kind, P

|m|
n (·)

are the associated Legendre functions of integer degree n

and order m, R± =
√

x2 + y2 + Z2
±, θ± = cos−1(Z±/R±),

φ = tan−1(y/x), Z± = (z ± z0), and zR = kw2
0/2, where w0

is the beam waist, z0 = izR , and zR is the Rayleigh range
(Fig. 1).

The analysis with complex angles introduces a representa-
tion for the field’s characteristics, which allows determining
the direction of propagation as well as field attenuation
interpretations [44]. Moreover, the complex distance function
R± is multivalued (in this case four valued) with branch point
singularities on the circle defined by {x2 + y2 = z2

R,z = 0}.
A branch line (or cut) has to be introduced to make it
single valued [48]. Here, the branch cut is chosen such
that {x2 + y2 � z2

R,z = 0}, for which the complex distance
function is continuous at all points except the branch cut.

It is noted that the azimuthal dependence in Eq. (1) is
expressed under the form of a complex exponential func-
tion which represents a vector potential of vortex nature.
Equation (1) is an exact solution of the vector Helmholtz
equation, and the introduction of a sink along with an
appropriate choice of the branch cut such that {x2 + y2 �
z2
R,z = 0} makes this particular expression free from any

singularities at R± = 0. Unlike the spherical Hankel functions,
the spherical Bessel functions are finite at R± = 0. The cost
of this choice, however, is that the CSP beam as given by

FIG. 2. (Color online) Axial (along the direction z) and cross-
sectional (x,y plane) magnitude and phase plots for qG31 (first row)
and qG33 (second row) for kw0 = 0.1, corresponding to a strongly
focused (or strongly divergent) beam. The units along the axes are
in mm.

Eq. (1), which propagates along the ±z direction, respectively,
possesses a weak field component propagating backwards in
the ±z direction, respectively [45].

To illustrate this type of vortex beam, the magnitude
and phase profiles of the vector potential given by Eq. (1)
are computed for two given pairs (n,m) = (3,1) and (3,3),
respectively. Two examples are chosen for which the values
of kw0 are selected to be kw0 = 0.1, corresponding to a
tightly focused (or strongly divergent) beam, and kw0 = 7,
corresponding to a quasicollimated beam. The parameter k =
25 × 103 m−1, and the axial z and transverse (x,y) coordinates
are varied by increments of δ(x,y,z) = 10−3 mm.

The panels in Fig. 2 show the comparison of both magnitude
and phase profiles for qG beams of third degree (n = 3) and
first (m = 1) and third (m = 3) orders, for a tightly focused (or
tightly divergent) beam (i.e. kw0 = 0.1). The vortex nature of
the beam is clearly manifested in the phase plot (third column)
that varies in the cross-sectional plane according to the order
of the beam. Moreover, the magnitude plots displayed in the
central panels [i.e., cross-sectional plane (x,y)] show close
similarity. On the other hand, the axial plots (first column)
show quite distinct features of the qG vortex beams. To better
visualize the features, isosurface plots corresponding to the qG
vortex beam of third degree and first order (qG31; first column,
first row in Fig. 2) and the third degree and third order (qG33;
first column, second row in Fig. 2) are displayed in Fig. 3.

The effect of changing the size parameter kw0 = 7, which
corresponds to quasicollimated beams, is displayed in Fig. 4.
One clearly notices the difference in the beam shape by
comparing the results with Figs. 2 and 3, as well as the
diameter increase of the hollow region when the order of the
beam increases. This behavior has been previously observed
for high-order Bessel vortex beams [49].

It is, however, important to note that the EM field has an
intrinsic vector structure. Thus, for a complete description of
the qG vortex beams, an electric and magnetic field should be
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FIG. 3. (Color online) Isosurface plots corresponding to a qG31

vortex beam of first order (left panel) and a qG33 vortex beam of third
order (right panel) with a “doughnut” shape.

defined using the vector potential given by Eq. (1) to account
for the vector nature of the waves.

Using Lorenz’s gauge condition [50], a magnetic field Hp

is defined as

∇ × Ap,x = Hpε−1/2, (2)

where ε is the dielectric constant of the medium.
Thus, from Maxwell’s equations and Eq. (2), the electric

field is expressed as

Ep = ik[Ap,x + ∇(∇ · Ap,x)/k2]. (3)

Substituting Eq. (1) into Eqs. (2) and (3) leads to the deter-
mination of the electromagnetic field components. However,
one notices an asymmetry in the mathematical expressions of
the electric and magnetic field components, inappropriate in
the physical description of symmetric beams. Therefore, the
general physical description of beams in free space (with no
imposed boundary conditions) requires using the dual field
setup [42] to produce symmetrical behaviors in the EM field’s
components. The mathematical operation using the dual field
consists of defining another electric vector potential Aq,y

FIG. 4. (Color online) The same as in Fig. 2; however, kw0 = 7.

polarized along the negative (or positive) transverse y direction
such that

Aq,y = −qGvortex
nm y, (4)

where y is the unitary vector along the y direction (note here
that the dual field setup procedure may not be required for the
description of transverse modes [51] with specific boundary
conditions imposed on the wave field).

An electric field Eq may be therefore defined as

∇ × Aq,y = Eq . (5)

Thus, from Maxwell’s equations and Eq. (5), the magnetic
field is expressed as

Hqε
−1/2 = −ik[Aq,y + ∇(∇ · Aq,y)/k2]. (6)

In the final mathematical procedure, the solution of Eqs. (2)
and (3) is added to the solution of Eqs. (5) and (6), and dividing
the end result by 2, leads to the spatial Cartesian components
for a quasi-Gaussian vortex beam of any integer degree n and
order m, which are expressed as

E(x,−y)
nm,x = A0

4
e(i|m|φ±kzR )

[
2jn(κ±)Fnm

R2±
+ Z±P

|m|
n (cos θ±)�n

R2±
+ 2ik

(
jn(κ±)P |m|

n (cos θ±) + 1

k2

{
jn(κ±)Z2

±x2 [2Z±Fnm + 	nm]

R4±(Z2± − R2±)2

+ jn(κ±)Z±Fnm

R2±(Z2± − R2±)
+ 2ixy|m|jn(κ±)Z±Fnm

R2±(R2± − Z2±)(x2 + y2)
+ x2Z±Fnm[3jn(κ±) − �n]

R4±(R2± − Z2±)
+ |m|y[2ix − |m|y]jn(κ±)P |m|

n (cos θ±)

(x2 + y2)2

+ P
|m|
n (cos θ±)�n

2R2±
− i|m|xyP

|m|
n (cos θ±)�n

R2±(x2 + y2)
+ x2P

|m|
n (cos θ±)

2R4±

[
ξn

2
− �n

]})]
, (7)

E(x,−y)
nm,y = iA0

8k
e(i|m|φ±kzR)

{
4jn(κ±)Z2

±xy [2Z±Fnm + 	nm]

R4±(Z2± − R2±)2
+ 4i|m|jn(κ±)Z±Fnm[y2 − x2]

R2±(R2± − Z2±)(x2 + y2)

+ 4xyZ±Fnm [�n − 3jn(κ±)]

R4±(Z2± − R2±)
− 4i|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
+ 4|m|jn(κ±)P |m|

n (cos θ±)y[|m|xy + 2iy]

(x2 + y2)2

+ 2i|m|P |m|
n (cos θ±)�n[x2 − y2]

R2±(x2 + y2)
+ xyP

|m|
n (cos θ±)[ξn − 2�n]

R4±

}
, (8)
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E(x,−y)
nm,z = A0

8
e(i|m|φ±kzR)

(
4iy|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
− 4xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2xP

|m|
n (cos θ±)�n

R2±

+ i

k

{
4jn(κ±)Z±x [Z±Fnm − 	nm]

R4±(R2± − Z2±)
+ 2Z2

±xFnm�n

R4±(Z2± − R2±)
− 2i|m|yP

|m|
n (cos θ±)Z±�n

R2±(x2 + y2)

+ xP
|m|
n (cos θ±)Z± [ξn − 2�n]

R4±
+ 4jn(κ±)xFnm

R2±(Z2± − R2±)
− 4iy|m|jn(κ±)Fnm

R2±(x2 + y2)
+ 2xFnm�n

R4±

})
(9)

H (x,−y)
nm,x = E(x,−y)

nm,y

√
ε, (10)

H (x,−y)
nm,y = A0

√
ε

4
e(i|m|φ±kzR )

[
2jn(κ±)Fnm

R2±
+ Z±P

|m|
n (cos θ±)�n

R2±
+ 2ik

(
jn(κ±)P |m|

n (cos θ±) + 1

k2

{
jn(κ±)Z2

±y2[2Z±Fnm + 	nm]

R4±(Z2± − R2±)2

+ jn(κ±)Z±Fnm

R2±(Z2± − R2±)
− 2ixy|m|jn(κ±)Z±Fnm

R2±(R2± − Z2±)(x2 + y2)
+ y2Z±Fnm[3jn(κ±) − �n]

R4±(R2± − Z2±)
− |m|x [2iy + |m|x] jn(κ±)P |m|

n (cos θ±)

(x2 + y2)2

+ P
|m|
n (cos θ±)�n

2R2±
+ i|m|xyP

|m|
n (cos θ±)�n

R2±(x2 + y2)
+ y2P

|m|
n (cos θ±)

2R4±

[
ξn

2
− �n

]})]
, (11)

H (x,−y)
nm,z = A0

√
ε

8
e(i|m|φ±kzR )

(
−4ix|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
− 4yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2yP

|m|
n (cos θ±)�n

R2±

+ i

k

{
4jn(κ±)Z±y [Z±Fnm − 	nm]

R4±(R2± − Z2±)
+ 2Z2

±yFnm�n

R4±(Z2± − R2±)
+ 2i|m|xP

|m|
n (cos θ±)Z±�n

R2±(x2 + y2)

+ yP
|m|
n (cos θ±)Z± [ξn − 2�n]

R4±
+ 4jn(κ±)yFnm

R2±(Z2± − R2±)
+ 4ix|m|jn(κ±)Fnm

R2±(x2 + y2)
+ 2yFnm�n

R4±

})
, (12)

where the superscript (x,–y) in the EM field’s components [i.e., Eqs. (7)–(12)] denotes the polarization state of the vector
potentials Ap,x and Aq,y , respectively. Moreover, the functions appearing in these expressions are given by

Fnm = [
(n + 1)Z±P |m|

n (cos θ±) + (|m| − n − 1)R±P
|m|
n+1(cos θ±)

]
,

�n = {κ±[jn−1(κ±) − jn+1(κ±)] − jn(κ±)} ,

	nm = {
n(n + 1)P |m|

n (cos θ±)Z2
± + (|m| − n − 1)(2n + 3)R±Z±P

|m|
n+1(cos θ±) + R2

±
[
(n + 1)P |m|

n (cos θ±)

+ (|m|2 − (2n + 3)|m| + n2 + 3n + 2)P |m|
n+2(cos θ±)

]}
,

ξn = {κ2
±[jn−2(κ±) − 2jn(κ±) + jn+2(κ±)] + 2κ±[jn+1(κ±) − jn−1(κ±)] + 3jn(κ±)}. (13)

It has been also recognized that other states of polarization [52], such as the axial polarization scheme, can be particularly
useful in the development of free-electron lasers [53–56]. Thus, the aim here is to further extend the analysis to the case where the
vector potentials are polarized along the axial directions ±z by deriving closed-form expressions for the EM field’s components
in this configuration. Thus, a vector potential field Ap,z denoting an exact solution of the Helmholtz equation, and polarized
along the z direction is expressed as

Ap,z = qGvortex
nm z, (14)

where qGvortex
nm is given by Eq. (1), and z is the unitary vector along the z direction. Following the procedure as given by Eqs. (2)–(6)

after defining another vector potential polarized along the negative axial direction as

Aq,z = −qGvortex
nm z (15)
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and manipulating the results, the spatial Cartesian components for a spherical quasi-Gaussian vortex beam of any
integer degree n and order m in the (z,–z) polarization scheme are found to be

E(z,−z)
nm,x = A0

8
e(i|m|φ±kzR)

(
−4ix|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
− 4yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2yP

|m|
n (cos θ±)�n

R2±

+ i

k

{
2Z±x [2jn(κ±)(2Z±Fnm + 	nm) + Z±Fnm�n]

R4±(Z2± − R2±)
− 2i|m|y[

P
|m|
n (cos θ±)Z±�n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

+ 2xFnm�n

R4±
+ xP

|m|
n (cos θ±)Z±[ξn − 2�n]

R4±
+ 4x(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

})
, (16)

E(z,−z)
nm,y = A0

8
e(i|m|φ±kzR)

(
−4iy|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
+ 4xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
+ 2xP

|m|
n (cos θ±)�n

R2±

+ i

k

{
2Z±y [2jn(κ±)(2Z±Fnm + 	nm) + Z±Fnm�n]

R4±(Z2± − R2±)
+ 2i|m|x[

P
|m|
n (cos θ±)Z±�n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

+ 2yFnm�n

R4±
+ yP

|m|
n (cos θ±)Z± [ξn − 2�n]

R4±
+ 4y(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

})
, (17)

E(z,−z)
nm,z = −iA0

2κ±R4±(|m| + n + 1)
e(i|m|φ±kzR ){jn(κ±)[κ2

±R2
±χnm + (4n2 − 1)Z2

±χnm + R2
±�nm]

−κ± jn+1(κ±)[R2
±nm + (2n − 1)Z2

±χnm]}, (18)

H (z,−z)
nm,x = A0

√
ε

8
e(i|m|φ±kzR )

(
4ix|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
+ 4yZ±jn(κ±)Fnm

R2±(Z2± − R2±)
+ 2yP

|m|
n (cos θ±)�n

R2±

− i

k

{
2Z±x [2jn(κ±) (2Z±Fnm + 	nm) + Z±Fnm�n]

R4±(R2± − Z2±)
+ 2i|m|y[

P
|m|
n (cos θ±)Z±�n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

− 2xFnm�n

R4±
− xP

|m|
n (cos θ±)Z± [ξn − 2�n]

R4±
− 4x(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

})
, (19)

H (z,−z)
nm,y = A0

√
ε

8
e(i|m|φ±kzR )

(
4iy|m|jn(κ±)P |m|

n (cos θ±)

(x2 + y2)
− 4xZ±jn(κ±)Fnm

R2±(Z2± − R2±)
− 2xP

|m|
n (cos θ±)�n

R2±

− i

k

{
2Z±y [2jn(κ±) (2Z±Fnm + 	nm) + Z±Fnm�n]

R4±(R2± − Z2±)
− 2i|m|x[

P
|m|
n (cos θ±)Z±�n + 2jn(κ±)Fnm

]
R2±(x2 + y2)

− 2yFnm�n

R4±
− yP

|m|
n (cos θ±)Z± [ξn − 2�n]

R4±
− 4y(3Z2

± − R2
±)jn(κ±)Fnm

R4±(R2± − Z2±)

})
, (20)

H (z,−z)
nm,z = E(z,−z)

nm,z

√
ε. (21)

Moreover, the additional functions appearing in Eqs. (16)–(21) are expressed as

χnm = [
(|m| − n − 1)Z±P

|m|
n+1(cos θ±) +

√
R2± − Z2±P

|m|+1
n+1 (cos θ±)

]
,

�nm = [
(|m| − n − 1)Z±(|m|2 − 2|m|n + |m| − 3n2 − k2Z2

± − n + 1)P |m|
n+1(cos θ±)

+ (|m|2 − n2 − k2Z2
±)

√
R2± − Z2±P

|m|+1
n+1 (cos θ±)

]
,

nm = [
(−2|m|2 + |m| + 2n2 + 3n + 1)Z±P

|m|
n+1(cos θ±) +

√
R2± − Z2±P

|m|+1
n+1 (cos θ±)

]
. (22)
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FIG. 5. (Color online) Comparison between the axial magnitude (along the direction z), isosurface, and cross-sectional (x,y plane)
magnitude and phase plots for the electric components of a qG31 vortex beam for kw0 = 0.1, corresponding to a strongly focused (or
strongly divergent) beam. The first and second rows correspond to the (x,–y) configuration, whereas the third and fourth rows correspond to
the (z,–z) configuration. The units along the axes are in mm.

For the reader’s convenience, the steps leading to
Eqs. (7)–(12) and Eqs. (16)–(21) are explicitly provided in
the Supplemental Material, Ref. [57].

To illustrate the vectorial analysis, the magnitude, iso-
surface profiles, and phase plots of only the electric field’s
components in both the (x,–y) and (z,–z) configurations [i.e.,
Eqs. (7)–(9) and (16)–(18), respectively] are computed for
the pair (n,m) = (3,1). In the simulations, two values of the
size parameter kw0 are selected to be kw0 = 0.1 (Fig. 5),
corresponding to a tightly focused (or strongly divergent)
beam, and kw0 = 7 (Fig. 6), corresponding to a quasicollimated
beam. The parameter k = 25 × 103 m−1, and the axial z

and transverse (x,y) coordinates are varied by increments of
δ(x,y,z) = 10−3 mm.

Comparisons of the first with the third row, and the second
with the fourth row in Fig. 5 clearly show the effect of
changing the polarization states of the vector potentials from
the transverse (x,–y) to the axial (z,–z) one. One particularly
notices the spatial distributions in the cross-sectional plane
for the components |E(x,−y)

31,x | and |E(x,−y)
31,z | (second row, first

and fifth panel, respectively), which show an asymmetry in

the central part of the plots, only in the transverse (x,–y)
polarization state. The central area of the beam is slightly
rotated in the plane so that the symmetry is broken. This is a
characteristic of the qG31 vortex beam for kw0 = 0.1.

This antisymmetry is removed when the beam becomes
more directional as displayed in Fig. 6 (second row, first and
fifth panel, respectively) for kw0 = 7. Moreover, evolutions
of the components |E(z,−z)

31,x | and |E(z,−z)
31,y | (fourth row) are

perceived; the null observed when kw0 = 0.1 (Fig. 5, fourth
row, first and third panel) is transformed into a maximum in
magnitude with a rotation in the transverse plane (Fig. 6, fourth
row, first and third panel).

As mentioned previously, the high-order qG vortex beams
carry both linear and angular momenta, responsible for the
production of a radiation force and torque [30] on a particle. A
recent analysis dealing with a coherent superposition of Bessel
beams [37] has shown that both linear and angular momentum
density fluxes may reverse sign at particular values of the
half-cone angle of the beam. These behaviors anticipate the
production of a “tractor” beam where particulate matter may
be pulled back toward the source, and a spinning reversal
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FIG. 6. (Color online) The same as in Fig. 5, but the size parameter is kw0 = 7, corresponding to a quasicollimated beam.

effect in which particulate matter may rotate with opposite
handedness to the beam. For the present case of high-order
qG vortex beams, the analysis [37] can be directly extended to
evaluate the linear and angular momentum density fluxes with
particular emphasis on the dimensionless waist kw0, since the
EM components of the qG vortex beam are now available [i.e.,
Eqs. (7)–(12), (16)–(21)]. Further investigations focused on
evaluating the EM radiation force and torque on a particle are
beyond the scope of the present study, and will be the subject
of future research.

III. CONCLUSION

In summary, the vector wave properties for a CSP vortex
solution representing tightly spherically focused beams, are

investigated. Particular emphasis is given to the polarizations
of the electric and magnetic vector potentials, which produce
distinct components for the EM field, with vortex behavior.
In addition, the effect of increasing the beam waist pro-
duces quasicollimated beams in the broad sense. The field’s
expressions are exact solutions of Maxwell’s equations and
are obtained without any approximations. Potential use of
the solutions is in modeling strongly focused (or quasicol-
limated) beams without the need of numerical integration
procedures, nor the higher-order corrections. Other potential
application is the accurate computation of the beam-shape
coefficients used in the generalized Lorenz-Mie theories
(GLMTs) for evaluating the arbitrary scattering, forces,
and torques on particles using tightly focused laser vortex
beams.
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[5] J. Lermé, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and
M. Pellarin, Phys. Rev. B 77, 245406 (2008).

023205-7

http://dx.doi.org/10.1103/PhysRevE.69.036608
http://dx.doi.org/10.1103/PhysRevE.69.036608
http://dx.doi.org/10.1103/PhysRevE.69.036608
http://dx.doi.org/10.1103/PhysRevE.69.036608
http://dx.doi.org/10.1364/AO.22.000658
http://dx.doi.org/10.1364/AO.22.000658
http://dx.doi.org/10.1364/AO.22.000658
http://dx.doi.org/10.1364/AO.22.000658
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1364/JOSAA.25.000493
http://dx.doi.org/10.1364/JOSAA.25.000493
http://dx.doi.org/10.1364/JOSAA.25.000493
http://dx.doi.org/10.1364/JOSAA.25.000493
http://dx.doi.org/10.1103/PhysRevB.77.245406
http://dx.doi.org/10.1103/PhysRevB.77.245406
http://dx.doi.org/10.1103/PhysRevB.77.245406
http://dx.doi.org/10.1103/PhysRevB.77.245406


F. G. MITRI PHYSICAL REVIEW E 89, 023205 (2014)

[6] N. M. Mojarad, V. Sandoghdar, and M. Agio, J. Opt. Soc. Am.
B 25, 651 (2008).

[7] E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
[8] B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358

(1959).
[9] P. Varga and P. Török, Opt. Commun. 152, 108 (1998).

[10] A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A 18, 839
(2001).

[11] J. P. Barton and D. R. Alexander, J. Appl. Phys. 66, 2800 (1989).
[12] P. B. Bareil and Y. Sheng, J. Opt. Soc. Am. A 30, 1 (2013).
[13] J. A. Lock, J. Quant. Spectrosc. Radiat. Transfer 126, 16

(2013).
[14] Y. A. Kravtsov, Radiophys. Quantum Electron. (Engl. Transl.)

10, 719 (1967).
[15] G. A. Deschamps, Electron. Lett. 7, 684 (1971).
[16] M. Couture and Pierre-A. Belanger, Phys. Rev. A 24, 355 (1981).
[17] L. B. Felsen, Geophys. J. R. Astron. Soc. 79, 77 (1984).
[18] B. T. Landesman and H. H. Barrett, J. Opt. Soc. Am. A 5, 1610

(1988).
[19] C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998).
[20] S. Orlov and U. Peschel, Phys. Rev. A 82, 063820 (2010).
[21] F. G. Mitri, Phys. Rev. A 87, 035804 (2013).
[22] F. G. Mitri, Opt. Lett. 38, 4727 (2013).
[23] J. A. Stratton and L. J. Chu, Phys. Rev. 56, 99 (1939).
[24] L. W. Davis, Phys. Rev. A 19, 1177 (1979).
[25] G. Gouesbet and G. Grehan, Generalized Lorenz-Mie Theories,

1st ed. (Springer, Berlin, 2011).
[26] J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys.

64, 1632 (1988).
[27] F. G. Mitri, Opt. Lett. 36, 766 (2011).
[28] F. G. Mitri, IEEE Trans. Antennas Propag. 59, 4375

(2011).
[29] J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, Appl. Opt. 45,

3634 (2006).
[30] J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys.

66, 4594 (1989).
[31] J. A. Lock, Appl. Opt. 43, 2532 (2004).

[32] L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular
Momentum (Institute of Physics, UK, 2003).

[33] A. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).
[34] F. G. Mitri, Opt. Lett. 36, 606 (2011).
[35] F. G. Mitri, Opt. Lett. 38, 615 (2013).
[36] F. G. Mitri, Optik Int. J. Light Electron Opt. 124, 1469 (2013).
[37] F. G. Mitri, Phys. Rev. A 88, 035804 (2013).
[38] F. G. Mitri, Wave Motion 49, 561 (2012).
[39] F. G. Mitri, Phys. Rev. A 85, 025801 (2012).
[40] F. G. Mitri, Eur. Phys. J. D 67, 135 (2013).
[41] J. B. Keller and W. Streifer, J. Opt. Soc. Am. 61, 40 (1971).
[42] A. L. Cullen and P. K. Yu, Proc. R. Soc. London, Ser. A 366,

155 (1979).
[43] C. J. R. Sheppard, J. Opt. Soc. Am. A 18, 1579 (2001).
[44] L. B. Felsen, J. Opt. Soc. Am. 66, 751 (1976).
[45] E. Heyman, B. Z. Steinberg, and L. B. Felsen, J. Opt. Soc. Am.

A 4, 2081 (1987).
[46] M. V. Berry, J. Phys. A 27, L391 (1994).
[47] Z. Ulanowski and I. K. Ludlow, Opt. Lett. 25, 1792 (2000).
[48] E. Heyman and L. B. Felsen, J. Opt. Soc. Am. A 18, 1588 (2001).
[49] F. G. Mitri, Ann. Phys. (NY) 323, 2840 (2008).
[50] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New

York, 1999), p. 240.
[51] A. April, Opt. Lett. 33, 1563 (2008).
[52] J. Lekner, J. Opt. A 5, 6 (2003).
[53] L. W. Davis and G. Patsakos, Opt. Lett. 6, 22 (1981).
[54] J. Verbeeck, H. Tian, and P. Schattschneider, Nature 467, 301

(2010).
[55] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing,

H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192
(2011).
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