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Dynamical systems theory for the Gardner equation
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The Gardner equation ut + auux + bu2ux + μuxxx = 0 is a generic mathematical model for weakly nonlinear
and weakly dispersive wave propagation when the effects of higher-order nonlinearity become significant. Using
the so-called traveling wave ansatz u(x,t) = ϕ(ξ ), ξ = x − vt (where v is the velocity of the wave) we convert
the (1+1)-dimensional partial differential equation to a second-order ordinary differential equation in φ with an
arbitrary constant and treat the latter equation by the methods of the dynamical systems theory. With some special
attention on the equilibrium points of the equation, we derive an analytical constraint for admissible values of
the parameters a, b, and μ. From the Hamiltonian form of the system we confirm that, in addition to the usual
bright soliton solution, the equation can be used to generate three different varieties of internal waves of which
one is a dark soliton recently observed in water [A. Chabchoub et al., Phys. Rev. Lett. 110, 124101 (2013)].
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I. INTRODUCTION

The Gardner equation

ut + auux + buu2
x + μuxxx = 0, u = u(x,t), (1)

for some specific values of the parameters a, b, and μ, first
arose as an auxiliary mathematical equation in the derivation of
the infinite set of conservation laws of the Korteweg–de Vries
(KdV) equation [1]. Many important properties of (1), includ-
ing its integrability by the inverse spectral method, can be
realized in terms of the invertible transformation given by [2]

t ′ = μt, x ′ = x + a3

4b
t,

(2)

u′(x ′,t ′) =
(

b

4μ

)1/2(
u(x,t) + a

2b

)
.

Using (2) in (1), we obtain the modified KdV equation

ut + 6u2ux + uxxx = 0. (3)

We have omitted the primes in writing (3). The spectral
problem for the modified KdV equation was solved by
Wadati [3] and we now know all the remarkable properties of
it including the Lie symmetries, Lax pair, rational solutions,
and soliton solutions [4]. Despite that, there exists a vast
amount of literature [5] to obtain particular traveling wave
solutions of (1) by the use of ansatz methods such as the tanh
method and Jacobi elliptic function method. Such studies have
mainly been motivated by the applicative relevance [6–8] of
the equation. In particular, the Gardner equation has played
a pivotal role in the description of large-amplitude internal
waves observed in coastal oceans [9]. Absorption of solar
radiation in the near surface layers in an ocean results in
warmer water and lower density in that region and leads to
stratified fluid. Any excitation in a zone within which sea
water density changes maximally tends to propagate away
from the region as an internal wave. During the past few years
Grimshaw et al. [10] envisaged a large number of studies
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to generate physically important traveling internal waves by
taking recourse to the use of different nonlinear evolution
equations. Grimshaw et al. [11] discovered the inverse spectral
method for (1) with positive cubic nonlinearity and made use
of it to generate solitons and breathers.

In the present work we employ certain concepts from the
dynamical systems theory [12] to investigate the physico-
mathematical origin of the traveling wave solutions that the
Gardner equation can support and thereby provide results for
internal waves that might be physically relevant to different
density stratification in the sea water. In addition to the usual
bright soliton, the results presented by us include a dark soliton
and some other traveling wave solutions that involve doubly
periodic Jacobi elliptic functions and trigonometric functions.

To implement the methods of dynamical systems theory
we consider the so-called traveling coordinate ξ = x − vt and
convert (1) to an ordinary differential equation by introducing

u(x,t) = φ(ξ ). (4)

Here v stands for the velocity of the wave. From (1) and (4)
we can write

aϕφ′ + bφ2φ′ + μφ′′′ − vφ′ = 0, (5)

where primes over φ denote appropriate derivatives with re-
spect to ξ . In Sec. II we first try to solve (5) by imposing bound-
ary conditions for the existence of a localized solution [13]
and thus obtain the result for the bright soliton solution as
reported in Ref. [11]. We then relax these conditions, find
the equilibrium points of the equation, and study their nature
using the method for linear stability analysis. The treatment
presented here, on the one hand, leads to a useful constraint
for the choice of the parameters of the equation and, on the
other hand, provides a natural framework to visualize the re-
lationship between the equilibrium points of (5) and solutions
of the Gardner equation. We devote Sec. III to converting
(5) to a Hamiltonian system and obtaining traveling wave
solutions of the Gardner equation corresponding to different
values of the explicitly-time-independent Hamiltonian or total
energy of the system. Finally, in Sec. IV we summarize
our outlook on the present work and make some concluding
remarks.
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II. EQUILIBRIUM POINTS OF EQ. (5) AND THEIR
STABILITY

Dividing (5) by μ, we integrate the resulting equation to
write

φ′′ = c1

2
+ v

μ
φ − 1

2μ
aφ2 − 1

3μ
bφ3, (6)

where c1 is a constant of integration. On multiplication by φ′,
(6) can again be integrated to obtain

φ′2 = c1φ + v

μ
φ2 − 1

3μ
aφ3 − 1

6μ
bφ4 + c (7)

with c a new constant of integration. If we now impose on
(7) the boundary conditions for the existence of a localized
solution [13], both constants c1 and c are equal to zero. In this
case (7) can be solved by simple quadrature. For values of a,
b, and μ used in Ref. [11] we obtain

φ(x,t) = v

1 + √
1 + v cosh[

√
v(x − vt)]

. (8)

If we now take v = 4λ2 with λ the eigenvalue of the spectral
problem [11] used to solve the Gardner equation, we find
that the result in (8) is in exact agreement with that given by
Grimshaw et al.

If we do not restrict ourselves to the case of localized
solutions, then c1 �= 0 in (6). In this case we can rewrite it
as a system of two first-order differential equations given by,
say,

φ′ = ψ = P (φ,ψ) , ψ = ψ(ξ ), (9a)

ψ ′ = c1

2
+ v

μ
φ − 1

2μ
aφ2 − 1

3μ
bφ3 = Q(φ,ψ). (9b)

The equilibrium points of (6) can now be found by equating
the right-hand side of each equation in (9) to zero. From (9a)
we have ψ = 0 for all values of φ. As apparent from (9b), the
values of φ can be obtained by solving an algebraic equation
of the form

x3 + αx2 + βx + γ = 0. (10)

Three roots of the cubic equation in (10) will be real only if

(2α3 − 9αβ + 27γ 2)2 � 4(α2 − 3β2)3. (11)

Comparing (10) with ψ ′ = 0 in (9b), the condition in (11) can
be rewritten as

b4c2
1μ

2

1296
− a3b2c1μ

3888
− ab3c1μv

648
− a2b2v2

3888
− b3v3

729
� 0.

(12)
Henceforth we shall work with a = 6, b = 6, and μ = 1, as
used in Ref. [11]. With this choice for the parameters, the
Gardner equation and inequality in (12) reduce to

ut + 6uux + 6uu2
x + uxxx = 0, (13)

(c1 − v)2 − 2c1 − 4v2

3

(
1 + 2v

9

)
� 0. (14)

The inequality in (14) is satisfied by a wide variety of values
of c1. Interestingly, for c1 = v the relation (14) is true for any
value of v. In contrast, if we take any other value of c1, the

choice will impose restriction on the velocity of the traveling
wave. In view of this, we shall work with c1 = v to obtain
solutions of (13). In this context one may like to know our
motivation for using the constraint in (12) or (14). The reason
is fairly simple. If the condition (14) is satisfied, then all three
roots of ψ ′ = 0 will be real to give all physically possible
equilibrium points of the equation. We shall thus be able to
obtain maximum information about the system modeled by
the equation.

For c1 = v = 10 we found (−2.919 37,0), (1.875 87,0),
and (−0.456 51,0) as the stable or equilibrium points of the
equation. Our choice for the value of c1 is entirely arbitrary. It is
of interest to examine how a perturbation grows if the system
is disturbed infinitesimally near an equilibrium point. This
can be done by calculating the eigenvalues λ of the Hessian
determinant [12]


 =
∣∣∣∣α − λ β

γ δ − λ

∣∣∣∣ (15)

with

α =
(

∂P

∂φ

)
(φ0,ϕ0)

, β =
(

∂P

∂ψ

)
(φ0,ϕ0)

,

(16)

γ =
(

∂Q

∂φ

)
(φ0,ϕ0)

, δ =
(

∂Q

∂ψ

)
(φ0,ϕ0)

.

Here (φ0,ψ0) stands for the equilibrium point. We found
the imaginary eigenvalues λ1,2 = ±4.860 05i and λ1,2 =
±4.7295i for the first two equilibrium points, while for
the third one we got λ1,2 = ±3.389 49. This implies that
(−2.919 37,0) and (1.875 87,0) are center-type (case 1) equi-
librium points and (−0.456 51,0) is of hyperbolic type (case 2).
In the first case the perturbation neither decays to zero nor
diverges, but it varies periodically with time such that the
time evolution of the perturbation corresponds to a periodic
solution of the differential equation. Here phase trajectories
or trajectories in the (φ,ψ) plane form closed curves. In
contrast, trajectories reach the hyperbolic equilibrium point
(case 2) along two directions only and in all other directions
the trajectories diverge from it. Any phase path that joins an
equilibrium point to itself is a form of separatrix known as a
homoclinic path. A separatrix is generally a phase path that
separates obvious distinct regions in the phase plane. In the
presence of homoclinic paths, a nonlinear differential equation
can have localized solutions [12]. Since for (13) we have
both center-type and hyperbolic-type equilibrium points, the
equation will have both periodic and solitonic traveling wave
solutions.

III. EQUATIONS (9) AS A HAMILTONIAN SYSTEM AND
SOLUTION OF THE GARDNER EQUATION

In analogy with the form of Hamilton’s equations of
classical mechanics, a system of planar equations

ẋ = X(x,y), ẏ = Y (x,y), x = x(t),
(17)

y = y(t), ẋ = dx

dt
, ẏ = dy

dt
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is called a Hamiltonian system provided there exists a function
H (x,y) such that

X = ∂H

∂y
, Y = −∂H

∂x
. (18)

Then H is called a Hamiltonian of the system. A necessary
and sufficient condition for (17) to be Hamiltonian is that

∂X

∂x
+ ∂Y

∂y
= 0. (19)

If we now use c1 = v and values of a, b, and μ as given in
(13), the planar equations (9a) and (9b) become

φ′ = ψ, (20a)

ψ ′ = v

2
+ vφ − 3φ2 − 2φ3. (20b)

Dividing (20b) by (20a), we can integrate the resulting
equation to obtain a constant of integration c2 as

c2 = ψ2 + φ4 + 2φ3 − vφ2 − vφ. (21)

In the traveling coordinate ψ can be regarded as the
velocity of φ. It is thus reasonable to regard c2

2 as the
Hamiltonian H (φ,ψ) of the system. One can easily verify
that the expression for H (φ,ψ) via an appropriate Hamilton
equation such as those in (18) leads to (20a) and (20b). This
confirms that the Gardner equation is a Hamiltonian system.
Since ψ = dφ

dξ
we can write (21) as a first-order differential

equation for φ, which permits separation of variables so as to
write

dφ√
χ

= dξ, (22)

with, say,

χ = 2H − φ4 − 2φ3 + vφ2 + vφ = f (φ). (23)

We shall now work with v = 10 and integrate (22) to obtain
traveling solutions of the Gardner equation for different values
of the HamiltonianH .

Case 1. First we take H = 3. In this case the plot of χ

as a function of φ is shown in Fig. 1. The curve χ = f (φ)
intersects the φ axis only at two real points marked by A and
D in the figure such that two roots of the biquadratic equation
χ = 0 are real while two others (middle two) are complex.
The numerical solution of χ = 0 gives the roots as

α1 = −2.7838, α2,3 = −0.7894 ± 0.5377i, α4 = 2.3627.

(24)

The phase diagram (plot of ψversus φ) drawn by using (21)
is given in Fig. 2. It consists of a closed curve so that α1(A) and
α4(D) on the φ axis correspond to its boundary points. In the
presence of such a phase diagram the corresponding evolution
equation has been found to possess a triangular traveling wave
solution [14]. In the following we show that this is also true in
the present case.

Writing (22) in the form

dφ√
φ4 + 2φ3 − vφ2 − vφ − 2H

= idξ, (25)

A D

4 2 0 2 4
30

20

10

0

10

20

Φ

Χ

FIG. 1. Hamiltonian H = 3. Here χ is a function of φ showing
that the equation χ = 0 has two real roots indicated by A and D and
two other middle roots are imaginary.

we can integrate the equation by using the general result [15]∫
dx√

(x − α1)(x − α2)(x − α3)(x − α4)

= 2

(α2 − α3)(α1 − α4)
sn−1(z,β), (26)

with

z =
√

(α2 − α3)(α1 − x)

(α1 − α3)(α2 − x)
(27a)

and

β = (α1 − α3)(α2 − α4)

(α3 − α2)(α1 − α4)
. (27b)

Here sn−1(·) stands for the inverse Jacobi sine function. From
(24)–(26) we find the traveling wave solution of the Gardner
equation for H = 3 in the form

φ = ρ1 + ρ2sn2(κξ,ν)

ρ3 + 5.6133 sn2(κξ,ν)
, (28)

A D

3 2 1 0 1 2

4

2

0

2

4

Φ

Ψ

FIG. 2. Phase diagram from (21) for H = 3 or c2 = 6 showing
the closed curve with the roots α1(A) and α4(D) at its boundary.
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8 6 4 2 0 2 4 6 8
4

3

2

1

0

1

2

Ξ

Φ

FIG. 3. Solution φ(ξ ) from (28) as a function of ξ .

with

ρ1 = 7.6112 + 2.7492i, ρ2 = 1.3117 + 4.2589i,
(29a)

ρ3 = −2.2389 − 0.8087i

and

κ = −0.3867 + 1.2916i, ν = 0.6040 + 0.9183i. (29b)

In Fig. 3 we display φ of (28) as a function of ξ .
Clearly, the traveling wave solution closely resembles the
so-called triangular wave. The Fourier series representation
of a triangular wave is given by [14]

U =
∞∑

k=0

(−1)k
sin(2k + 1)ξ

(2k + 1)2
. (30)

The plot of Uas a function of ξ is symmetric about the ξaxis.
However, φ(ξ ) in Fig. 3 is not symmetrical about the ξ axis.
Rather it behaves more like an internal wave.

Case 2. For H = 2 the plot of χas a function of φ is shown
in Fig. 4. Looking closely at this figure we see that the curve
χ = f (φ) has undergone a lower vertical displacement with
respect to that in Fig. 1 such that the φ axis is now a tangent

A B, C D

4 2 0 2 4
30

20

10

0

10

20

Φ

Χ

FIG. 4. Hamiltonian H = 2. Here χ is a function of φ showing
that the equation χ = 0 has two real roots indicated by A and D and
only one real root in between them (point B or C).

A
B, C

D

3 2 1 0 1 2

4

2

0

2

4

Φ

Ψ

FIG. 5. Phase diagram from (21) for H = 2 showing a homo-
clinic phase path that enters into or emerge from the saddle or
hyperbolic equilibrium point (α2,0) denoted by B or C in the figure.

to the minimum of the curve. We have labeled the point of
contact by B or C. In this case the roots of the equation χ = 0
are given by

α1 = −2.692 23, α2(= α3) = −0.8175, α4 = 2.3272.

(31)

The corresponding phase diagram is presented in Fig. 5. The
phase trajectories join the equilibrium point (α2,0) to itself and
thereby complete the homoclinic path. With α2 as a repeated
root we will now have to integrate (25) in order to find φ(ξ ).
Unfortunately, the integral (26) becomes undefined in this case
and cannot be used to get the solution. We therefore make use
of another integral given by [15]∫

dx√
(x − α1)(x − α2)2(x − α4)

= ln

(
a+(x)[c(x) + α1a−(x) − b−(x)]

a−(x)[c(x) + α1a+(x) − b+(x)]

)
, (32)

where

a±(x) = √
α2 − α1 ± √

x − α1, (33a)

b±(x) = α4
√

α2 − α1 ± α2
√

x − α1, (33b)

8 6 4 2 0 2 4 6 8
3

2

1

0

Ξ

Φ

FIG. 6. Solution φ(ξ ) of (35) as a function of ξ .
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A B C D
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20

Φ

Χ

FIG. 7. Hamiltonian H = 1. Here χ is a function of φ showing
that the equation χ = 0 has four distinct real roots indicated by points
A, B, C, and D.

and

c(x) =
√

(α2 − α1)(α2 − α4)(x − α4). (34)

From (25), (31), and (32) we obtain

φ = −2.1953 + 1.0757 sinh2(1.1965ξ )

0.8154 + 1.3159 sinh2(1.1965ξ )
. (35)

We plot in Fig. 6 φ(ξ ) of (35) as a function of ξ . Here the
internal traveling wave corresponds to a dark soliton. Dark
solitons have been experimentally observed in a number of
systems ranging from optics to plasmas [16], but not in water.
Only recently, Chabchoub et al. [17] found these solitons on
the surface of water.

Case 3. For H = 1 the plot of χ as a function of φ as
displayed in Fig. 7 shows that the curve χ = f (φ) intersects
the φ axis at four different points denoted by A, B, C, and D.

Note that in Fig. 4 for H = 2 points B and C were
coincident. In the present case, however, these two points are
separated by a distance BC. The separation resulting from
the vertical displacement of the curve χ = f (φ) leads to two
different closed curves in the phase space (Fig. 8).

A B C D

3 2 1 0 1 2 3

4

2

0

2

4

Φ

Ψ

FIG. 8. Phase diagram from (21) for H = 1 or c2 = 2 showing
two different closed curves separated by a distance BC.

8 6 4 2 0 2 4 6 8

2.5

2

1.5

Ξ

Φ

FIG. 9. Solution φ(ξ ) of (35) as a function of ξ .

The roots of χ = 0 are now given by

α1 = −2.5408, α2 = −1.5125,
(36)

α3 = −0.2281, α4 = 2.2814.

From (25), (26), and (36) we get the trigonometric solution

φ = 1.5297 − 1.6397 sin2 θ

−0.6020 + 1.0841 sin2 θ
, (37)

with

θ = am(1.2343iξ,1.417). (38)

Here am(·) stands for the Jacobi amplitude function. We
display in Fig. 9 the trigonometric solution (37) as a function
of ξ . As expected, the curve represents an oscillatory solution
of the Gardner equation. We now examine what happens if
we choose to work with H = 0 and negative values of the
Hamiltonian.

Case 4. For H = 0 we plot χ as a function of φ in Fig. 10.
By comparing this plot with that in Fig. 7 we see that points A

and B have now merged into one point A or B. Consequently,
the equation χ = 0 will have one repeated root. The values of
the roots are

α1(α2) = −2.1150, α3 = 0.0099, α4 = 2.2337. (39)

A, B C D

4 2 0 2 4
30

20

10

0

10

20

Φ

Χ

FIG. 10. Hamiltonian H = 0. Here χ is a function of φ showing
that the points A and B of Fig. 7 have merged at A or B.
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C D
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4

Φ

Ψ

FIG. 11. Phase diagram from (21) for H = 0 showing one closed
curve.

We present in Fig. 11 the phase plot obtained from (21). The
phase trajectory consists of a single closed curve. Comparing
the curves in Figs. 8 and 11, it appears that one of the closed
loops (small one on the left) in Fig. 8 has disappeared in the
phase diagram for H = 0. Using the values of the roots in (39),
the solution of the Gardner equation can be found as

φ = 4.9148 − 4.7844 sin θ ′

−2.2572 + 2.3155 sin θ ′ , (40)

with

θ ′ = am(1.5334iξ,0.9737). (41)

Figure 12 gives φ of (40) as a function of ξ . From Figs. 9
and 12 it is clear that curves in both figures look alike;
however, there is a striking difference. The amplitude of the
wave represented by (35) is about ten times larger than that
represented by (40). This implies that the solution found for
H = 0 represents a really feeble wave. Thus it remains an
interesting curiosity to examine if the Gardner equation for
our chosen values of the parameters could support solutions
for H < 0. It is easy to verify that for H < 0, ψ in (21) is
complex for all values of φ such that we do not have any phase
trajectory in this case. Consequently, there exists no physical
solution for negative values of H .

IV. CONCLUSION

The Gardner equation can model a wide variety of physical
phenomena that appear in plasma physics [6], stratified fluid
flows [8], and quantum fluid dynamics [7]. In view of this,

8 6 4 2 0 2 4 6 8
2.18

2.15

2.1

2.05

Ξ

Φ

FIG. 12. Solution φ(ξ ) of (40) as a function of ξ .

many special methods have been used to obtain solutions
of the Gardner equation. Inverse spectral method has also
been discovered by Grimshaw et al. [11] with a view to
generate solitons and breathers in the equation. Based on
some elementary concepts in the dynamical systems theory, we
present in this work a direct method to construct different types
of solutions supported by the equation. Using the so-called
traveling coordinate we convert (1) to an ordinary differential
equation. The stable points of the converted equation provide,
in a rather natural way, a useful constraint for the physically
admissible parameters of the Gardner equation. The param-
eters used in [11] are found to obey the constraint relation.
For these parameters we reduced the Gardner equation to the
Hamiltonian form and subsequently presented its traveling
wave solutions for different values of the Hamiltonian H .

The results presented by us for H = 3, 2, and 1 are
found in terms of Jacobi elliptic, hyperbolic, and trigonometric
functions, respectively. The choice H = 0 led to an extremely
weak trigonometric solution and there exists no physically
acceptable solution for H < 0. The Gardner equation con-
sidered here can provide us with only three types of internal
waves as found by us. The Jacobi elliptic function solutions
can be obtained for all values of H satisfying 3 � H > 2.
The solution for H > 3 can also result in terms of the Jacobi
elliptic function. Hyperbolic function solutions in the form of
dark solitons can be found for 2 � H > 1. A trigonometric
traveling wave solution of appreciable amplitude can appear
for 1 � H > 0. The dark solitons reported here have not been
observed as internal waves, although recently these have been
generated on the surface of water [17]. The numerical values
of the coefficients a, b, and μ in (1) depend on the stratification
feature and water depth [18]. The theoretical model presented
in this work is quite straightforward such that it can be
judiciously used to generate internal waves corresponding to
any form of stratification and any depth of water.
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