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Plasma pressure broadening for few-electron emitters including strong electron collisions
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To apply spectroscopy as a diagnostic tool for dense plasmas, a theoretical approach to pressure broadening is
indispensable. Here, a quantum-statistical theory is used to calculate spectral line shapes of few-electron atoms.
Ionic perturbers are treated quasistatically as well as dynamically via a frequency fluctuation model. Electronic
perturbers are treated in the impact approximation. Strong electron-emitter collisions are consistently taken into
account with an effective two-particle T-matrix approach. Convergent close-coupling calculations give scattering
amplitudes including Debye screening for neutral emitters. For charged emitters, the effect of plasma screening
is estimated. The electron densities considered reach up to ne = 1027 m−3. Temperatures are between T = 104

and 105 K. The results are compared with a dynamically screened Born approximation for Lyman lines of H
and H-like Li as well as for the He 3889 Å line. For the last, a comprehensive comparison to simulations and
experiments is given. For the H Lyman-α line, the width and shift are drastically reduced by the Debye screening.
In the T-matrix approach, the line shape is notably changed due to the dependence on the magnetic quantum
number of the emitter, whereas the difference between spin-scattering channels is negligible.
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I. INTRODUCTION

Plasma pressure broadening (PPB), i.e., broadening and
shift of spectral lines due to the plasma surroundings, has been
studied for a long time. In particular, it can be used for plasma
diagnostics, as reviewed, e.g., in [1]. The charged plasma
particles affect the atomic states of the emitting atom or ion.
The mechanisms are the same, no matter if the plasma is part of
an astrophysical object or created in the laboratory, e.g., in arc
discharges or by laser impact. A sound theory to calculate line
profiles is needed in order to obtain accurate information about
plasma parameters such as composition, temperature, and
density from the measured line spectrum. Several approaches
are applied to calculate the spectrum of bound-bound electron
transitions, emitted from or absorbed by a plasma. Some use
pure quantum mechanics [2], others involve a semiclassical
view of the perturbers, e.g., the standard theory [3,4], or they
depend on molecular dynamics (MD) simulations, e.g., [5].

All theories are based on the calculation of the dipole-
dipole correlation function, which describes the emission or
absorption of radiation from charged particles. Within our
quantum-statistical theory, the dipole-dipole correlation, i.e.,
the polarization function, is calculated with the help of ther-
modynamic Green’s functions; see [6–8]. For dense plasmas,
strong electron-emitter collisions are important and perturba-
tive methods are no longer applicable. One way to include
strong collisions in the framework of the standard theory has
been discussed in Ref. [9], allowing for penetrating collisions.

The aim of this work is to treat strong electron-emitter
collisions consistently within quantum-statistical theory. For
this reason, we combine sophisticated scattering theory with
our line shape formalism; thus, we go beyond the perturbative
Born approximation. We show that plasma screening has to
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be included in the scattering process, otherwise the line shift
and width are overestimated. Furthermore, we discuss the
resulting line shapes, when different spin-scattering channels
and emitter states with different magnetic quantum numbers
are considered separately.

The theory is briefly reviewed in Sec. II with a focus on the
treatment of strong electron-emitter collisions. They can be in-
cluded by ladderlike diagrams in our theory. Neglecting the dy-
namical screening, an effective two-particle T-matrix approach
can be derived; see [10]. Then, the electronic contribution to
PPB is given by the electron-emitter scattering amplitude. It is
obtained from convergent close-coupling (CCC) calculations
for electron scattering on a Debye-screened neutral emitter;
see [11,12]. Hence, we go beyond the close-coupling approach
presented by Unnikrishnan and Callaway [13] which does not
include screening. In our theory, electron scattering on charged
emitters in a plasma surrounding is approximated by isolated
electron-emitter scattering [14–16]. We show in Appendix A
that the divergent Coulomb part of the scattering amplitudes
can be removed. We estimate the error made by neglecting the
screening in Appendix B. PPB by perturbing ions is treated
quasistatically or dynamically using the renewed formulation
of the frequency fluctuation model (FFM) [17].

Our first example is the H Lyman-α (Lα) line in Sec. III.
Its simplicity makes it an ideal test case; however, its shape
has recently been discussed controversially at the spectral line
shapes in plasmas code comparison workshop [18]. For H Lα ,
we compare the PPB of electrons in the effective T-matrix
approach with and without Debye screening to a dynamically
screened Born approximation for ne = 1025 m−3 at T =
11 604 K. Furthermore, we give a comparison to the measured
H Lα profiles of Grützmacher and Wende [19]. In Sec. IV,
we apply the effective T-matrix approach to a charged H-like
emitter. Full Lyman line profiles of Li2+ are calculated
for the free-electron densities of ne = 4 × 1025 m−3 and
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4 × 1026 m−3 at a temperature of T = 3 × 105 K. Here,
the asymmetry of Lβ and Lγ lines is drastically changed
when applying the T-matrix approach without screening.
Screening corrections are estimated and lead to a better
agreement between the two approaches. A comparison of
the linewidth from the two approaches is carried out for
ne = 1025–1027 m−3. The last example on the He 3889 Å line
is given in Sec. V. There, results for the linewidth and shift
of the T-matrix approach are compared to experimental data,
results of computer simulations, and other theories for the
density range ne = 1022–1024 m−3 and T ∼ 104 K

II. QUANTUM-STATISTICAL APPROACH TO PLASMA
PRESSURE BROADENING

The quantum-statistical theory for pressure broadening has
been described in detail in [6–8]. Here, we give only the key
formulas in atomic Rydberg units, i.e., � = 2me = e2/2 = 1.
These units are used throughout this paper. In the case
of local thermodynamic equilibrium, the emitted spectral
intensity I (�ω) at �ω = ω − ω0 near the frequency ω0 of
the unperturbed transition is given by

I (�ω) = (ω0 + �ω)4

8π4c3
e−(ω0+�ω)/kBT

× Im

⎡
⎣ ∑

ii ′ff ′
{〈i|�r|f 〉〈f ′|�r|i ′〉〈i|〈f |U (�ω)|f ′〉|i ′〉}

⎤
⎦

(1)

with the speed of light c and the Boltzmann constant kB. The
sum runs over all initial i and final f emitter states. The double
sum is not necessary for isolated lines. The contributions to
the line profile are weighted with the transition probability,
which is given by the dipole matrix elements 〈i|�r|f 〉. The
time evolution operator U (�ω) can be taken in different
approximations. For the quasistatic approximation, it is
given by

U (�ω)static = 〈L(�ω,E)−1〉s

=
∫ ∞

0
dE W (E)L(�ω,E)−1, (2)

where 〈· · · 〉s stands for the average over the static ion
microfield with the microfield distribution function W (E). For
neutral emitters, i.e., hydrogen and helium, we use Hooper’s
low-frequency tables [20] to determine W (E) for weakly
coupled plasmas. Outside the validity range of Hooper’s
approach, we use the fit formula of Potekhin et al. [21].
The fit formula is based on Monte Carlo simulations and is
appropriate for strongly coupled plasmas as well. For the
charged H-like emitter Li2+, we use APEX [22] to calculate
W (E) with Debye-Hückel pair correlation functions.

The line profile operator L(�ω,E) contains the width
and shift of atomic energy levels caused by the plasma
surroundings according to

L(�ω,E) = �ω − Re[�ii ′(�ω) − �ff ′(�ω)]

+ ı Im[�ii ′(�ω) + �ff ′(�ω)] + 	ii ′ff ′(�ω).

(3)

Here, �ii ′ and �ff ′ are the self-energies, i.e., the shift (real
part) and broadening (imaginary part), of energy levels i and f

due to the surrounding plasma, respectively, and 	ii ′ff ′ is the
upper-lower level coupling term. Due to different interaction
time scales, the self-energy can be split into a nondiagonal E-
field-dependent ionic part and a diagonal frequency-dependent
electronic part,

�νν ′(E,�ω) = �i
νν ′(E) + �e

ν(�ω)δνν ′ , (4)

with ν = i,f . Now, we discuss the details of the self-energy
calculation for ions and electrons separately.

A. Perturbing ions

The perturbation of the emitter by the plasma ions is
mainly caused by the linear and quadratic Stark effects. The
linear Stark effect is nonzero for H and H-like emitters and
given analytically in parabolic coordinates [23]. For He, the
quadratic Stark effect gives the first nonvanishing contribution.
The wave functions enter into the calculation for He. As they
are not given analytically, we approximate their spherical part
by a linear combination of H-like wave functions. The radial
part is calculated by the Coulomb approximation after Bates
and Damgaard [24]; for more details see [25]. Furthermore,
the inhomogeneity of the ionic microfield is treated by the
quadrupole Stark effect after Halenka [26], leading to a
nondiagonal term in the ionic self-energy �i

νν ′(E).
For high densities and low temperatures, the ions’ move-

ment during the time of emission is negligible and the qua-
sistatic limit can be applied. Then, the time evolution operator
is given by Eq. (2). In the opposite regime, ion dynamics
has to be treated seriously. There exist several methods to
include ion dynamics; for an overview see Refs. [1,27]. In
particular, molecular dynamics simulations are a useful tool to
treat the dynamics of the system. However, we want to keep
the line shape calculations analytic. Recently, a comparison of
two analytic methods—the model microfield method (MMM)
[28,29] and the FFM [17]—was presented for a broad range
of plasma parameters for H Lyman lines [30]. For H Lα ,
differences between the two approaches up to ±30% were
observed for the full width at half maximum (FWHM). As
the focus of this communication is on the contribution of
strong electron collisions, we present only the FFM briefly
here and use it throughout the paper. However, since the use of
the MMM leads to a better agreement with the Grützmacher-
Wende experiment, we give results for MMM ion dynamics
there, too. Details of our implementation of MMM can be
found in [30].

The FFM connects microfield fluctuations with frequency
fluctuations. It assumes that the emitting system can be
described by a set of dressed two-level transitions each with a
certain frequency, amplitude, and width [17]. Starting from the
area-normalized line profile Is(ω) calculated in the quasistatic
limit, e.g., with Eqs. (1) and (2), the dynamic profile is
given by

IFFM(ω) ∼ Re
Q(ω,γ )

1 − γ Q(ω,γ )
(5)
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with

Q(ω,γ ) =
∫ ∞

0

Is(ω′)dω′

γ + ı(ω − ω′)
. (6)

Here, γ is the inverse state lifetime

γ = vtherm

di
. (7)

It depends on the thermal velocity of ions vtherm =√
8kBT /(πmi) and the mean ion distance di = [3/(4πni)]1/3,

where mi and ni are the mass and density of the perturbing
ions, respectively. For large γ , the high-frequency limit is
reproduced and a Lorentzian line shape is obtained. Although
the FFM does not reproduce the second moment of the
microfield distribution correctly, the resulting line profiles
compare well to simulated line shapes [17].

B. Perturbing electrons

In contrast to the ions, the electron dynamics plays a crucial
role, and thus the quasistatic approximation is not applicable.
Furthermore, multiple electron-emitter collisions occur and
have to be treated. Within our quantum-statistical view of
spectral line shapes, two approaches have been developed
to account for the contribution by free electrons. Perturbing
electrons are considered either within a dynamically screened
Born approximation (first order) or within an effective two-
particle T-matrix approach which can so far take only static
(Debye) screening into account.

1. Dynamically screened Born approximation

The self-energy in the Born approximation is given by [6]

�e
ν(�ω) = −

∫
d3q

(2π )3
V (q)

∑
α

∣∣M0
να(q)

∣∣2

×
∫ ∞

−∞

dω

π
[1 + nB(ω)]

Im ε−1(�q,ω + ı δ)

�ω + ωνα − (ω + ıδ)
.

(8)

The dielectric function ε(�q,ω + ıδ) is approximated by the
dielectric function in the random phase approximation. M0

να(q)
is the vertex contribution for virtual transitions from ν to
α. For H and Li2+, we restrict the main quantum number
nα to run from nν − 1 to nν + 2 for the real part of
�e

ν(�ω). For the imaginary part, we use the no-quenching
approximation nα = nν , since it gives the main contribution
to the line broadening. For He, nα runs always from nν − 2
to nν + 2. V (q) = Zione

2/ε0q
2 is the Fourier-transformed

Coulomb potential and nB(ω) = {exp[�ω/(kBT )] − 1}−1 is
the Bose function. For the evaluation of Eq. (8) we consider
the frequency-independent case �ω = 0 which corresponds
to the binary collision approximation. This alters the line
profile negligibly, e.g., for H Lα at T = 11 604 K and ne = 1 ×
1025 m−3, the resulting FWHM is 1% smaller in test calcula-
tions with full �ω dependence in Eq. (8). For all considered
lines, we followed the method in Refs. [31,32] and checked
that correlated collisions can be neglected for our plasma
parameters.

The coupling contribution—also called the vertex term—is
given in a similar way:

	ii ′ff ′ = −ı

∫
d3q

(2π )3
M0

i ′i(−�q)M0
f ′f (�q)V (q)

×
∫ ∞

−∞
dω[1 + nB(ω)]Im ε−1(�q,ω + ıδ)δ(ω). (9)

The correct dynamical screening of weak collisions is
included in Eqs. (8) and (9) by the imaginary part of the
inverse dielectric function. However, the Born approximation
overestimates strong collisions. This can be rectified to some
extent by a cutoff qmax = 1/ρmin. For the case of H, qmax,H

has been adjusted in such a way that the self-energies of an
advanced T-matrix approach are recovered; see Ref. [33]. For
Li2+, we use a cutoff scaled by the square of the atomic number
Z = 3, i.e.,

qmax,Z = Z2qmax,H. (10)

Since there are no advanced T-matrix calculations available
for He, we follow the cutoff procedure introduced by Griem
et al. [3,34]. There, the minimum impact parameter ρmin is cal-
culated under the assumption of straight electron trajectories
in order to assure the unitarity of the scattering matrix. Then a
strong collision term for the width is added [34],

��e
strong ≈ 1.21ınevthermπq−2

max, (11)

depending on the free-electron density ne and the thermal
velocity vtherm of the electrons. Further details about the
evaluation of Eqs. (8) and (9) can be found in Refs. [6–8,25].

2. Effective two-particle T-matrix approximation

The effective T-matrix approach is a reduced version of the
T-matrix approach presented in [33]. It can describe weak and
strong collisions equally well, but so far only includes static
screening [10,35]. For a nondegenerate plasma, the electronic
self-energy, again evaluated at �ω = 0, is then given by

�e
ν = − 2

π
ne�

3
th

∫ ∞

0
dk k2e−k2/kBT fν(0,k). (12)

Plasma properties enter via the electron density ne and the
thermal wavelength �th = √

4π/kBT as well as the forward
scattering amplitude fi,f (0,k) for elastic electron scattering
at the Debye-screened emitter in state i and f , respectively.
This expression, Eq. (12), was also found by Baranger in [2].
He uses the impact approximation and treats the perturbing
electrons quantum-mechanically. Fluctuating interactions are
replaced by a constant effective one-perturber-atom interac-
tion. In Ref. [2], a level coupling term is derived as well,
which is given by

	if = 2ı

π
ne�

3
th

∫ ∞

0
dk k3e−k2/kBT

×
∫ π

0
dθ sin(θ )ff (θ,k)f ∗

i (θ,k). (13)

Here, θ is the scattering angle and the dependence of the
scattering amplitudes on θ has to be known, too.

The scattering amplitudes, which enter Eqs. (12) and (13),
are obtained from a convergent close-coupling calculation.

023106-3



LORENZEN, OMAR, ZAMMIT, FURSA, AND BRAY PHYSICAL REVIEW E 89, 023106 (2014)

For the neutral emitters (H, He), it is modified to include
Debye screening in the interaction potentials. For the charged
emitter (Li2+), we neglect screening and estimate the error thus
made. Details of the CCC method and its modification can be
found in [14–16] and [11,12], respectively. For H and Li2+,
we use 54 (Sturmian) Laguerre functions as a basis for bound
and continuous emitter states. With this choice, the emitter
states up to 4f are reproduced with the correct energies. 153
pseudostates are used to describe electron-He scattering; all
details can be found in Ref. [12].

The electron-electron interaction is treated within a partial
wave decomposition, where the first partial waves (up to 70)
are considered directly. For larger numbers of partial waves,
scattering amplitudes are extrapolated following O’Malley
et al.’s approach [36]. The coupled equations are solved in
momentum space and lead to the scattering amplitude. Our
method gives separate results for singlet and triplet scattering
channels as well as for scattering at the emitter with initial
and final states ni,li ,mi → nf ,lf ,mf . Here, we consider
only elastic scattering ni,li ,mi → ni,li ,mi to calculate the
self-energies and level coupling term.

III. HYDROGEN

The Lα line of hydrogen serves as a testbed. It is
emitted in the electron transition from n = 2 to the ground
state 1s. First, we study the contributions of the electrons
for the example of a plasma with Debye screening length
D = √

kBT /8πne = 44a0. This corresponds, e.g., to plasma
conditions T = 11 604 K and ne = 1 × 1025 m−3, where
strong electron collisions are relevant due to the high electron
density. Then, we reconsider the measured Lα spectra of
Grützmacher and Wende [19] with larger screening length
D ∼ 300a0.

A. Strong collisions and Debye screening

We investigate the influence of screening in the convergent
coupling calculation. This has been done in detail for the
cross sections σ in [11]. Now, we are explicitly interested
in real and imaginary part of the forward scattering amplitude
f (θ = 0,k), as they enter in Eq. (12) and lead to shift (real part)
and broadening (imaginary part) of the line. We concentrate
on the upper 2p states, as the contribution of the lower
level 1s is small. The effect of screening can be seen in

FIG. 1. Forward scattering amplitude for scattering of an electron
with momentum k on a H atom in state 2p (m = ±1) without
screening (broken line) and with Debye screening for D = 44a0 (full
line). Spikes are due to resonances.

Fig. 1 for the forward scattering amplitude of e-H(2p,m = ±1)
scattering. The scattering amplitudes are reduced by screening.
Thus, the resulting self-energies are reduced, too. As the
different spin-scattering channels lead only to slightly different
scattering amplitudes in the low-energy region k < 0.7a0,
averaging over spin-scattering channels has been carried out.
The results for �e

2p and 	2p;1s can be found in Table I together
with the ones obtained from the dynamically screened Born
approximation from Eqs. (8) and (9). The Born approximation
gives the same results for different magnetic quantum numbers
m. The shift (Re[�e

2p]) is still overestimated by a factor of 3
even after the cutoff has been applied to account for strong
collisions. The width (Im[�e

2p]) is sufficiently reduced by the
cutoff procedure. The width from the Born approximation

TABLE I. Self-energy �e
2p from Eqs. (8) and (12) and coupling term 	2p;1s from Eqs. (9) and (13) in different approximations in units of

10−4Ry: The spin-averaged, m-dependent T-matrix approach is given without screening and with Debye screening (D = 44a0) and compared
to the m-independent dynamically screened Born approximation with full integration and cutoff at qmax, respectively. The considered hydrogen
plasma has ne = 1025 m−3 at T = 11 604 K.

T matrix Born approximation

m = ±1 m = 0 m average m = 0, ± 1

Unscreened D = 44a0 Unscreened D = 44a0 Unscreened D = 44a0 Without cutoff With cutoff

Re[�e
2p] − 4.38 − 1.03 − 1.51 0.083 − 3.42 − 0.66 − 9.61 − 3.36

Im[�e
2p] − 21.8 − 9.07 − 6.76 − 4.22 − 16.8 − 7.46 − 11.0 − 6.46

Re[	2p;1s] 0.09 0.11 − 0.05 − 0.05 0.04 0.06 0.0 0.0
Im[	2p;1s] 0.13 0.13 0.48 0.43 0.25 0.23 0.63 0.24
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(a) (b) (c)

FIG. 2. (Color online) Full H Lα profile calculated in different approximations for T = 11 604 K and ne = 1025 m−3. (a) Only electronic
contributions in ( ) the dynamically screened Born approximation, (�) the T-matrix results without screening, and ( ) the T-matrix approach
with screening (D = 44a0). (b) Electronic contributions and static ions and (c) electronic contributions and ion dynamics in the FFM. Inset:
Different line shapes for pure singlet (S = 0) and triplet (S = 1) electron-emitter scattering channels (red broken lines). Doppler broadening
is included and all profiles are area normalized.

is between the two m-dependent T-matrix results, only 14%
below their average.

The resulting Lα line profile of hydrogen is shown in Fig. 2.
As long as only electrons are considered [Fig. 2(a)], the widths
from the T-matrix approach and in the Born approximation
with cutoff are similar, i.e., the cutoff procedure gives a
reasonable correction. Nevertheless, the line with ionic Stark
splitting [Fig. 2(b)] is broader for the m-dependent T-matrix
calculation compared to the m-independent Born approach.
This is because the central components (m = ±1) are broader
in the T-matrix approach than the shifted components (m = 0,
i.e., 2p with 2s superposed). The approach which can resolve
the dependence on the magnetic quantum number m represents
the physics of the line emission process better.

In Fig. 2(c), the full treatment including FFM ion dynamics
is shown. The ion dynamics lead to further broadening of the
line. There, singlet (S = 0) and triplet (S = 1) electron-emitter
scattering channels are considered separately, too. In the inset,
this is shown in more detail. Although the line is narrower
for S = 0 and broader for S = 1, their average coincides with
the one calculated with spin-averaged electronic self-energies.
Hence, it is justified to average over the spin-scattering
channels when Eqs. (12) and (13) are evaluated.

B. Grützmacher-Wende experiment reconsidered

In the experiment of Grützmacher and Wende [19], a
wall-stabilized argon arc source was used to create dense
equilibrium plasmas with ne ∼ 1023 m−3 at T ∼ 104 K.
Under these conditions, pressure broadening by electrons
and Ar+ ions dominates over the Doppler broadening of
the Lα line of H. With a hydrogen density of nH < 1019

m−3, the plasma was optically thin and reabsorption could
be avoided. The spectrometer bandwidth was stated to be
better than λ/�λ = 30 390. The measured line profiles were
already compared to the results of the unified theory in
[19], and the remaining discrepancy was resolved by Lee

[37] with a perturbative method taking ion dynamics into
account. Here, the importance of ion dynamics for Lα was
emphasized.

We use the data of Grützmacher and Wende for a compari-
son, as we are not aware of a better measurement of H Lα under
dense plasma conditions. Our theoretical results use singly
charged argon ions as perturbers with FFM ion dynamics. To
emphasize the importance of ion dynamics, results with MMM
ion dynamics are discussed as well. The electronic medium
effects are calculated with Eqs. (12) and (13) using scattering
amplitudes from unscreened and Debye-screened interactions.
We average over the spin-scattering channels and apply a
Gaussian instrumental broadening (λ/�λ = 30 390). The use
of the effective T-matrix approach leads to a better agreement
with the experimental data than the use of the Born approxi-
mation from Eqs. (8) and (9); see Table II. For ne = (2,3) ×
1023 m−3, both the unscreened and screened T-matrix ap-
proaches with the MMM agree with the experiment. For the
lowest density, only the FWHM without screening lies within
the confidence interval of the experiment, in contrast to the
highest density, where the screening has to be taken into
account to reproduce the experimental FWHM. As has been
shown in an earlier paper [30], the FFM leads to narrower
lines than the MMM in the considered density and temperature
region. Thus, it does not reproduce the experimental linewidth
within the framework of our theory. Furthermore, we give
the results of Halenka and Olchawa [38] in Table II, who
used computer simulations to calculate the Lα lines in full
agreement with the experiment.

For ne = 2 × 1023 m−3 and T = 13 200 K, the full Lyman-
α line profile is considered,; see Fig. 3. The main contribution
to the linewidth is caused by ion dynamics. It is crucial for this
experiment, as was already shown in [37]. Nevertheless, the
effective T-matrix approach gives a better agreement with the
measurement than the Born approach with cutoff procedure.
As has been discussed above, the additional broadening is
mainly caused by the m dependence of the electronic self-
energy in the effective T-matrix approach.
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TABLE II. FWHM of H Lα in Å for the experimental conditions of Grützmacher and Wende [19]: Comparison of the m-dependent
T-matrix approach (averaged over spin-scattering channels) without and with Debye screening to the m-independent dynamically screened
Born approximation with cutoff using two different ion-dynamics models. The theoretical values include Gaussian instrumental broadening of
λ/�λ = 30 390.

FWHM (Å)

ne T D Born T matrixa T matrixb

(1023 m−3) (104 K) (a0) Expt. [19] FFM/MMM FFM/MMM FFM/MMM Simulation [38]

1 1.27 456 0.23 ± 0.02 0.16/0.19 0.17/0.21 0.17/0.20 0.22
2 1.32 335 0.30 ± 0.02 0.19/0.25 0.23/0.29 0.22/0.28 0.29
3 1.32 273 0.36 ± 0.02 0.23/0.29 0.30/0.37 0.28/0.35 0.36
4 1.40 243 0.42 ± 0.02 0.26/0.34 0.37/0.45 0.34/0.42 0.43

aWithout Debye screening.
bWith Debye screening for mean D = 314a0.

IV. HYDROGENLIKE LITHIUM

For Li2+, the Lyman series is studied for T = 3 × 105 K
and free-electron density ne = 4 × 1025 m−3, following the
experimental conditions obtained in a laser-induced plasma
experiment by Schriever et al. [39] and its analysis via
synthetic spectral lines [40]. The corresponding Debye length
is D = 113a0. As the effect of strong collisions is more
prominent for high densities, we consider the line profiles
for a higher density ne = 4 × 1026 m−3 as well.

The T-matrix approach is used without implementing the
screening into the CCC code for the charged emitter Li2+.
Instead, we use scattering amplitudes from electron scattering
on an isolated Li2+ ion. Since the long-range Coulomb
potential gives rise to a divergent forward scattering amplitude,
we skip the Coulomb part of the scattering amplitude. This
does not affect the line profile operator because divergent
terms in the self-energies are canceled by divergent terms in the
coupling term; see Appendix A. An estimation of the necessary
correction due to screening in the scattering process is given

FIG. 3. (Color online) Comparison of measured and theoretical
full H Lα profiles. Experimental data and unified theory are from
Ref. [19] for plasma conditions ne = 2 × 1023 m−3 and T =
13 200 K. In the quantum-statistical theory, electrons are treated either
in Born approximation with cutoff or within our T-matrix approach
for D = 314a0.

in Appendix B. The scattering amplitudes were calculated for
l = 60 partial waves with an extrapolation to lmax = 125.

In Fig. 4, the Lyman lines are shown in Born approximation
using Eqs. (8) and (9) with cutoff according to Eq. (10), and
in the effective T-matrix approach Eqs. (12) and (13). We
show the results averaged over the spin-scattering channels,
as the differences in the resulting lines for the singlet and
triplet channels are small. To focus on the effect of the
different treatment of electrons, we neglect self-absorption
and instrumental broadening in our comparison.

At the lower density (upper panel of Fig. 4), the screening
correction for the T-matrix approach does not affect the line
shape. In contrast to the comparison for H Lα , Fig. 2, the Li2+
Lα line is slightly redshifted when the T-matrix approach is
used. For Lβ and Lγ , the line shape is changed more drastically
compared to the Born approximation result, leading to different
asymmetric line features. The difference in the asymmetry
is partly due to the different values for the self-energies in
the two approximations. However, the main effect is again
caused by the dependence on the magnetic quantum number
m which is present only in the T-matrix approach. When
Gaussian instrumental broadening with λ/�λ = 300 [39] is
applied, the prominent differences between the two approaches
disappear. Thus, the analysis of the experiment would give
the same results as previously presented in [40] and is not
repeated here. It would be useful to have measurements with a
better resolution for Li2+ to distinguish between the different
theories.

At the higher density (lower panel of Fig. 4), the T-matrix
approach gives a larger width compared to the Born approach.
For Lα , the difference in the shift is equally pronounced and
cannot be corrected by our simple screening correction. For
Lβ and even more for Lγ , the difference between the two
approaches can be corrected to a large extent by the screening
correction.

After these examples of full line profiles, we further study
the influence of the screening correction in the T-matrix
approach. For this reason, we give a comparison of the
density dependence of the FWHM of Lα and Lβ in Figs. 5
and 6 for a density range ne = 1025–2 × 1027 m−3 at T =
3 × 105 K. For Li2+ Lα , the width is dominated by Doppler
broadening up to ne = 1026 m−3. For higher densities, the
T-matrix approach gives a larger width even after applying
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FIG. 4. (Color online) Area-normalized Lyman lines of Li2+ for T = 3 × 105 K and ne = 4 × 1025 m−3 (upper panel) and ne = 4 ×
1026 m−3 (lower panel), respectively. Electronic effects are treated in the dynamically screened Born approximation with cutoff ( ) and with the
T-matrix approach without screening (�) and with an estimated screening correction ( ), according to Appendix B. Ion dynamics is considered
within the FFM. Doppler broadening is included.

the screening correction. This might be due to the dependence
on the magnetic quantum number m as discussed for H Lα in
Sec. III A. For Lβ , the screening correction leads to agreement
of the FWHM from the T-matrix approach and that from the
Born approach with cutoff.

For both considered one-electron emitters (H and Li2+), the
results of the perturbative Born approximation with adjusted
cutoff are confirmed by our T-matrix approach for lower
densities; see Figs. 3 and 4 (upper panel). There, the effect of

FIG. 5. (Color online) FWHM of Li2+ Lα line at T = 3 × 105 K
without ion dynamics. Electronic effects are treated in the dynami-
cally screened Born approximation with cutoff ( ) and in the T-matrix
approach without screening (�) and with an estimated screening
correction ( ), according to Appendix B.

strong collisions is expected to be small. For higher densities,
and hence more strong collisions, differences between boththe
two approaches are more pronounced; see Figs. 2 and 4
(lower panel). For the charged emitter Li2+, plasma screening
has not been implemented so far; however, our estimated
correction leads to similar line shapes for both approaches.
Remaining differences are caused by the different treatment
of the dependence on the magnetic quantum number m. The
screening of the charged emitter should be taken into account
in the calculation of scattering amplitudes in the future.

FIG. 6. (Color online) FWHM of Li2+ Lβ line at T = 3 × 105 K
without ion dynamics. Legends are the same as in Fig. 5. Doppler
broadening is included.
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V. HELIUM 2 3S–3 3P

The quantum-statistical theory, originally developed for
one-electron emitters, has also been extended to treat two-
electron emitters; see Refs. [25,41,42]. There, an extensive
comparison of the theory with measured data and results of
other approaches has been given for several visible He lines.
In this paper, we focus on the particular transition 2 3S–3 3P ,
i.e., the He 3889 Å line. So far [41], the electronic self-energy
had been considered only in the Born approximation within the
cutoff procedure. In our calculations, we apply the effective
two-particle T-matrix approach, Eq. (12), and consider strong
collisions consistently. Furthermore, we take ion dynamics
into account and apply the FFM from Eq. (5).

In Fig. 7, the theoretical FWHM and peak shifts of the He
3889 Å line are given as functions of the free-electron density.
The results from our approach calculated in various approxi-
mations are compared to other theoretical data. In the T-matrix
approach, ions are treated either quasistatically or dynamically
within the FFM. Within the Born approach from Eq. (8),
the inverse dielectric function consistently takes dynamical
screening into account. The binary approximation (Im ε−1 ≈
−Im ε) is also considered. Furthermore, nonquenching results
are given, i.e., the sum in Eq. (8) includes only states of
the same principal quantum number (nα = nν). The different
approximations were discussed in an earlier paper [41]. Our
results are compared with molecular dynamics simulations
[43,44] and Griem’s standard theory [3]. The values for the
latter are taken from Ref. [45].

The MD simulations of Gigosos et al. [43,44] were per-
formed in density and temperature ranges of ne = (0.25–50) ×
1022 m−3 and T = (2–6) × 104 K, respectively, in the non-
quenching approximation for independent and interacting

particles, respectively. Considering independent particles, they
move along straight line trajectories at a constant speed.
The correlation between the particles is considered only
through the Debye-screened Coulomb interaction with the
emitter. For interacting particles, all charge-charge coupling
is considered. An ion-electron regularized Coulomb potential
is chosen to account for quantum diffraction mechanisms
in close collisions via the electron de Broglie wavelength.
The correlation between perturbers tends to decrease the line
broadening parameters at high electron densities [44]; see
Fig. 7.

The width calculated in the T-matrix approach shows good
agreement with the other theories, especially with the MD
simulation data of Gigosos et al. [43] at high densities. The
ion dynamics changes the linewidth only a little.

Compared to the MD simulation [43], the shift from the
effective T-matrix approach is drastically reduced at lower
densities. At ne = 9.8 × 1022 m−3, the shift agrees with
Ref. [43]; see Fig. 7. At the highest densities, the line with the
T-matrix approach is more shifted than the simulated one and
reaches the nonquenching results of the Born approximation.
The shift is generally overestimated in the Born approximation
compared to our present results and the MD simulations. In
contrast to the width, the shift is affected by the ion dynamics.
Within the FFM, the shift is increased at lower densities
compared to the quasistatic treatment.

In Fig. 8, we present the density dependence of the FWHM
and peak shifts of the He 3889 Å line in comparison with
measurements [45–52]. The Stark broadening parameters of
this line are obtained by using the T-matrix approach with
quasistatic ions and ion dynamics in the FFM, respectively.
Furthermore, Doppler broadening is taken into account as well
in Fig. 8.

FIG. 7. (Color online) Shift and width of neutral He line 3889 Å vs electron density. The T-matrix approach with quasistatic ions and with
ion dynamics in the FFM is compared to the Born approach in different approximations and to results from MD simulations [43,44] and from
Griem’s standard theory [3,45]. The electron temperature is given for the T-matrix data points (left).
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FIG. 8. (Color online) Shift and FWHM of neutral He line at 3889 Å vs electron density. The T-matrix approach with quasistatic ions and
with ion dynamics in the FFM including Doppler broadening is compared to measured data [45–52].

The following experiments are included in Fig. 8: The
measurement by Pérez et al. [46] was made in a plasma
of a low-pressure pulsed arc, within the plasma density
range of ne = (1–6) × 1022 m−3 and temperature interval
of T = (0.8–3) × 104 K with a mean value of 2 × 104 K.
The error bar of ne was ±10%, and the uncertainty in the
temperature evaluation was about 20%. The experimental
result of Kelleher [47] was obtained in a helium plasma
generated in a wall-stabilized arc, with ne = 1.03 × 1022 m−3

and Te = 2.09 × 104 K. Recently, the FWHM of the same
transition line was measured by Gao et al. [51] from a
helium arc for the density range ne = (0.5–4) × 1022 m−3 at
T = 2.3 × 104 K. Values reported by Kobilarov et al. [48]
from a pulsed low-pressure arc at ne = (2–10) × 1022 m−3

and T = (3.1–4.2) × 104 K are included. Note that the shift
at the half-width is given in this case. Furthermore, values
for the shift measured by Morris and Cooper [52] within
the density range ne = (0.6–2.3) × 1022 m−3 and temperature
T = (1–1.6) × 104 K are shown. The Stark parameters of
this line were also measured by Berg et al. [45] at ne =
1.5 × 1022 m−3 and T = 2.6 × 104 K. The measured values by
Milosavljević and Djeniže [50] at ne = (4.4–8.2) × 1022 m−3

and at T = (1.8–3.3) × 104 K by using a linear low-pressure
pulsed arc are given as well.

In Table III, a numerical comparison of the FWHM from
the T-matrix approach to the corresponding experimental data
[45–48] is given. Ion dynamics (FFM) and Doppler broadening
are included in the T-matrix results. Furthermore, the FWHM
results from the Born approximation with dynamical screening
are included as well as the result of MD simulations for
interacting particles [43]. Since the ion dynamics affect the
width only slightly (see Fig. 7), we can directly compare
the width in the Born approximation within quasistatic ion
motion with the one from our T-matrix approach. As shown in

Fig. 7, the T-matrix approach always gives a smaller FWHM
than the Born approximation. This trend leads to a better
agreement with the experiment at the lowest density, i.e., for
the FWHM of Kelleher [47]. For the data of Pérez et al. [46],
the calculated width in the T-matrix approach with and without
Doppler broadening agrees very well with the result of the
Born approximation. However, the measured FWHM is higher
than the calculated one; this may be due to self-absorption, as
mentioned in Ref. [46]. At ne = 9.8 × 1022 m−3, our results in
the Born approximation show a very good agreement with both
measurement and MD simulation data. However, the T-matrix

TABLE III. Theoretical calculations of the FWHM of the He
3889 Å line from the T-matrix approach and the Born approximation
are compared with measurements and MD simulations [43]. The
FWHM is given in Å.

ne Te
FWHM (Å)

(1022 m−3) (104 K) Expt. [43]a T matrixb Bornc

1.03 ± 0.12 2.1 ± 0.2 0.24d 0.25 0.30/0.19 0.34/0.25
1.29 ± 0.10 2.0 ± 0.2 0.6e 0.40/0.30 0.41/0.31
2.00 ± 0.10 2.0 ± 0.2 0.68e 0.53/0.45 0.55/0.47
9.8 ± 0.5 4.2 2.5 ± 0.15f 2.34 2.06/2.02 2.48/2.45

15.0 ± 0.8 2.6 ± 0.2 4.5 ± 0.5g 3.39/3.37 3.76/3.75

aMolecular dynamics simulations with interacting particles, without
Doppler broadening.
bT-matrix approach (FFM ion dynamics, with/without Doppler
broadening).
cDynamical screening, with/without Doppler broadening.
dKelleher [47].
ePérez et al. [46].
fKobilarov et al. [48].
gBerg et al. [45].
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approach gives a lower value outside the validity range given in
the experiment. At the highest measured density, the FWHM
of both theories is below that of Berg et al. [45]. Note that the
contribution of Doppler broadening to the linewidth is reduced
with increasing density, i.e., with increasing Stark broadening.

VI. CONCLUSION

We use a quantum-statistical approach to calculate full line
profiles of neutral emitters (H, He) and a charged H-like
emitter (Li2+). To go beyond the Born approximation, we
apply a T-matrix approach based on scattering amplitudes
for plasma pressure broadening caused by electrons. Thus,
strong electron-emitter collisions are included implicitly.
Scattering amplitudes are calculated within a sophisticated
close-coupling scheme, taking static plasma screening into
account for neutral emitters.

For H Lα , we analyze the effect of screening on the
scattering amplitudes. They are reduced by screening, thus
leading to narrower and less shifted lines. For the linewidth,
we could verify the validity of the cutoff procedure, which
is implemented in the Born approximation to compensate the
overestimation of strong collisions. However, the shift is still
overestimated when using the cutoff procedure adjusted to
an advanced T-matrix calculation [33]. Furthermore, the line
shape differs due to the dependence on the magnetic quantum
number m in the effective two-particle T-matrix approach.
Finally, we reconsidered the experiment of Grützmacher
and Wende [19]. There, the T-matrix approach leads to
a satisfying agreement with the experiment. However, the
resulting linewidth depends strongly on the ion-dynamics
theory considered.

For Li2+, the Lyman lines were calculated for the experi-
mental conditions of Schriever et al. [39]. Small differences
in the details of the line shape can be found between the
Born and the T-matrix approaches. However, they disappear as
soon as Gaussian instrumental broadening is applied. Thus, our
calculation confirms the previous analysis of Ref. [40], which
was based only on the Born approach. The density dependence
of the width was here studied in more detail, taking into
account an estimated screening correction. The unscreened
T-matrix approach generally leads to broader linewidths than
the Born approach with a cutoff. The screening correction
reduces the difference in the width drastically.

For the He I line at 3889 Å, the FWHM and shift are com-
pared with results of other theories and several experiments
for a broad range of densities. The shift is overestimated
in the Born approximation even after adopting the cutoff
procedure to account for strong electron-emitter collisions. On
the other hand, underestimation can be seen for the T-matrix
approach compared to the MD simulation data. However,
the FWHM values from both theoretical approaches are in
good agreement with each other and with the MD simulation
data. Further, the effect of ion dynamics is pronounced at
lower electron densities, especially for the shift of the line.
The discrepancy between the measured and calculated line
broadening is partially related to self-absorption [51].

Thus, we showed that the effective two-particle T-matrix
approach gives the possibility to treat strong electron-emitter
collisions in a consistent way. Plasma screening was treated

with static Debye theory in the case of neutral emitters,
and approximated in the case of charged emitters. It would
be important to extend the approach to include dynamic
screening. Thus, the proper treatment of the plasma screening
has to be investigated in the future.

Ion dynamics has not been discussed in detail in this
work. Since we have not implemented the model microfield
method for He and Li2+ yet, we were restricted to the use
of the frequency-fluctuation model. However, we note that
our calculations for H in comparison to the Grützmacher-
Wende profiles suggest the MMM as the better choice for
ion-dynamics calculations. Hence, further investigations of
ion dynamics are necessary. Furthermore, for the analysis of
laser-produced plasmas, like the one presented in [39], an
extension to nonequilibrium physics is crucial.
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APPENDIX A: SPLITTING OF INTERNAL AND
EXTERNAL PARTS OF THE SCATTERING AMPLITUDE

To handle the divergent Coulomb part of the scattering
amplitude, we split the total scattering phases

δC+in
l = δC

l + δin
l , (A1)

into an inner part δin
l which depends on the excitation state and

the atomic structure of the emitter and an outer part δC
l which

is independent of the emitter state. For the Li2+ example, δC
l

is due to the long-ranging Coulomb potential with Z = 2.
The scattering amplitudes for electron scattering at the

initial and final emitter states are given by

fi(θ,k) = 1

2ık

∞∑
l=0

(2l + 1)
(
e2ı(δC

l +δin
l,i ) − 1

)
Pl[cos(θ )], (A2)

ff (θ,k) = 1

2ık

∞∑
l=0

(2l + 1)
(
e2ı(δC

l +δin
l,f ) − 1

)
Pl[cos(θ )], (A3)

with the Legendre polonomials Pl[x].
For the forward scattering, the scattering amplitude can be

constructed from its parts. Here, we neglect the k dependence
for the sake of clarity. We start with the following expression:

∫ π

0
dθ sin(θ )f C(θ )f in(θ )

=
∑
ll′

(2l + 1)(2l′ + 1)

(
1

2ık

)2{(
e2ıδC

l − 1
)(

e2ıδin
l′ − 1

)}

×
∫ π

0
dθ sin(θ )Pl[cos(θ )]Pl′[cos(θ )]. (A4)

023106-10



PLASMA PRESSURE BROADENING FOR FEW-ELECTRON . . . PHYSICAL REVIEW E 89, 023106 (2014)

With two simplifications∫ π

0
dθ sin(θ )Pl[cos(θ )]Pl′[cos(θ )] = 2

2l + 1
δll′ , (A5)

{· · · } = e2ı(δC
l +δin

l ) − e2ıδC
l − e2ıδin

l + 1 + (1 − 1)

= (
e2ı(δC

l +δin
l ) − 1

) − (
e2ıδC

l − 1
) − (

e2ıδin
l − 1

)
, (A6)

we obtain

∫ π

0
dθ sin(θ )f C(θ )f in(θ )

= 1

ık
{f C+in(0) − f C(0) − f in(0)}. (A7)

And thus,

f C+in(0) = f C(0) + f in(0) + ık

∫ π

0
dθ sin(θ )f C(θ )f in(θ ),

(A8)

and analogously, for the complex conjugate

f C+in∗(0) = f C∗(0) + f in∗(0)

− ık

∫ π

0
dθ sin(θ )f C∗

(θ )f in∗(θ ). (A9)

However, for the coupling term, we need the full θ dependence
of fi(θ,k) and ff (θ,k). In the vertex term, we have (again
dropping the k dependence)

ı

∫ π

0
dθ sin(θ )f ∗

i (θ )ff (θ ) = ı

∫ π

0
dθ sin(θ )

⎧⎨
⎩

−1

2ık

∞∑
l=0

(2l + 1)
(
e−2ı(δC

l +δin
l,i ) − 1

)
Pl[cos(θ )]

× 1

2ık

∞∑
l′=0

(2l′ + 1)
(
e

2ı(δC
l′ +δin

l′ ,f ) − 1
)
Pl′[cos(θ )]

⎫⎬
⎭. (A10)

Using again the orthogonality of Legendre polynomials, we obtain

ı

∫ π

0
dθ sin(θ )f ∗

i (θ )ff (θ ) = ı

2k2

∞∑
l=0

(2l + 1)
{(

e−2ı(δC
l +δin

l,i ) − 1
)(

e2ı(δC
l +δin

l,f ) − 1
)}

. (A11)

The coupling term of the inner structure alone is given by

ı

∫ π

0
dθ sin(θ )f in∗

i (θ )f in
f (θ ) = ı

∫ π

0
dθ sin(θ )

⎧⎨
⎩

−1

2ık

∞∑
l=0

(2l + 1)
(
e−2ı(δin

l,i ) − 1
)
Pl[cos(θ )]

× 1

2ık

∞∑
l′=0

(2l′ + 1)
(
e

2ı(δin
l′ ,f ) − 1

)
Pl′[cos(θ )]

⎫⎬
⎭ (A12)

= ı

2k2

∞∑
l=0

(2l + 1)
{
e2ı(δin

l.f −δin
l,i ) − e2ıδin

l,f − e−2ıδin
l,i + 1

}
. (A13)

Expanding the term in the braces in Eq. (A11) and adding missing terms to obtain the inner coupling term, we obtain for the full
coupling term

ı

∫ π

0
dθ sin(θ )f ∗

i (θ )ff (θ ) = ı

∫ π

0
dθ sin(θ )f in∗

i (θ )f in
f (θ ) + ı

2k2

∞∑
l=0

(2l + 1)
{ − e2ı(−δC

l −δin
l,i ) − e2ı(δC

l +δin
l,f ) + e2ıδin

l,f + e−2ıδin
l,f

}
.

(A14)

The first term is the vertex term for the inner structure alone, the second term can be rearranged as

ı

2k2

∞∑
l=0

(2l + 1)
{ − e2ı(−δC

l −δin
l,i ) − e2ı(δC

l +δin
l,f ) − e2ıδin

l,f − e−2ıδin
l,f

}
(A15)

= − ı

2k2

∞∑
l=0

(2l + 1)
{(

e2ıδin
l,f − 1 + 1

)(
e2ı(δC

l ) − 1
) + (

e−2ıδin
l,f − 1 + 1

)(
e−2ı(δC

l ) − 1
)}

(A16)

= ı

4ı2k2

∑
ll′

(2l + 1)(2l′ + 1)
{(

e
2ıδin

l′ ,f − 1
)(

e2ı(δC
l ) − 1

) + (
e
−2ıδin

l′ ,f − 1
)(

e−2ı(δC
l ) − 1

)}

×
∫ π

0
dθ sin(θ )Pl[cos(θ )]Pl′[cos(θ )] + 1

k
f C(0) − 1

k
f C∗(0) (A17)

= ı

∫ π

0
dθ sin(θ )

{
f in

f (θ )f C(θ ) + f in∗
i (θ )f C∗(θ )

} + 1

k
f C(0) − 1

k
f C∗(0). (A18)
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With this expression, we can consider the full line profile
operator as in Eq. (3). With the electronic contributions to the
self-energy Eq. (12) and the coupling term Eq. (13) we have

L(�ω,E) = �ω − Re[�i − �f ] + ı Im[�i + �f ] + 	ii ′ff ′

(A19)

= �ω + �f − �∗
i + 	ii ′ff ′ (A20)

= �ω + A

(
f C+in

f (0,k) − f C+in∗
i (0,k)

− ık

∫ π

0
dθ sin(θ )f C+in∗

i (θ )f C+in
f (θ )

)
. (A21)

Here, the function A(x(k)) was introduced consisting of the
prefactor and the k integration,

A(x(k)) = − 2

π
ne�

3
th

∫ ∞

0
dk k2e−k2/kBT x(k). (A22)

The argument of this function is

x(k) = f C+in
f (0,k) − f C+in∗

i (0,k)

− ık

∫ π

0
dθ sin(θ )f C+in∗

i (θ )f C+in
f (θ ). (A23)

Using Eqs. (A8), (A9), and (A18), we obtain

x(k) = f in
f (0) − f in∗

i (0) − ık

∫ π

0
dθ sin(θ )f in

f (θ )f in∗
i (θ ).

(A24)

This is exactly the result one would obtain by neglecting δC .
Thus, the divergent Coulomb terms in the self-energies are
canceled by the ones in the coupling term and it is legitimate
to neglect them in the calculation.

APPENDIX B: ESTIMATION OF ERROR MADE BY
NEGLECTING SCREENING IN e-Li2+ SCATTERING

Following the reasoning in Appendix A, the fact that
the long-range (Z = 2) potential is screened does not change
the line shape when considering binary collisions. However,
the screening within the atom and the resulting change of the
inner structure do affect the scattering process and, thus, the
line shape. To obtain a measure for the change of the inner
structure, we consider first the Debye shift [53] relative to the
energy of a level with quantum number n,

X(D,n,Z) = �E

En

= 2Z
D

Z2

n2

= 2n2

ZD
. (B1)

TABLE IV. Relative change in % of electronic width and shift
from the unscreened to the screened calculation of H(2p, m = ±1)
with coupling to H(1s) for different temperatures.

D = 314a0, X = 2.55% D = 44a0, X = 18.2%

kBT (eV) 1 2 10 20 26 1 2 10 20 26

Width −11 −9.3 −5.5 −3.7 −3.0 −58 −52 −35 −28 −25
Shift −22 −16 −5.8 −3.9 −3.5 −63 −62 −47 −41 −40

TABLE V. Relative Debye shift X and relative error estimates in
% for the electronic contribution to the shift and width of the Lyman
lines of Li2+ at T = 3 × 105 K, as shown in Fig. 4.

D = 113a0 D = 35a0

Lα Lβ Lγ Lα Lβ Lγ

X (%) 2.4 5.3 9.4 7.6 17.1 30.5
Width −3 −7 −13 −10 −24 −42
Shift −4 −10 −20 −15 −37 −67

This gives us a connection between our hydrogen calculations
(Z = 1) and any H-like emitter. We calculated the H Lα line
with unscreened and screened scattering amplitudes (D = ∞,
D = 314a0, D = 44a0). In Table IV, we compare the relative
change of width and shift of the central component of the Lα

line for several temperatures. It can be seen that the effect
decreases with temperature. This can be understood from
Fig. 1, which shows that screening changes the scattering
amplitudes especially for small k values. Higher temperatures
shift the Boltzmann distribution in Eqs. (12) and (13) to
higher k values and thus to regions which are less affected
by the screening. We include the values for T = 3 × 105 K,
i.e., for 26 eV as this is the temperature in our Li2+
example.

For D = 314a0 and D = 44a0, the relative Debye shifts
of the n = 2 level are X(314,2,1) = 2.55% and X(44,2,1) =
18.2%, respectively. The X values for the Li2+ Lyman lines
from Fig. 4 are given in Table V together with an estimate of the
relative correction due to screening in the scattering process.
The estimate is based on the assumption that the effect on the
electronic part of the line shape is similar for the same value
of X for different emitters at a certain temperature, using an
interpolation linear in X.

In Fig. 9, the screening correction is shown for Li2+ Lα , Lβ ,
and Lγ lines for a broad density range.

FIG. 9. (Color online) Relative correction to the electronic width
and shift of Lyman lines of Li2+ due to screening. Calculated for
T = 3 × 105 K.
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[46] C. Pérez, R. Santamarta, M. I. de la Rosa, and S. Mar, Eur. Phys.
J. D 27, 73 (2003).

[47] D. E. Kelleher, J. Quant. Spectrosc. Radiat. Transfer 25, 191
(1981).
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