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Quantum molecular dynamics study of warm dense iron
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The equation of state, the self-diffusion coefficient and viscosity of fluid iron in the warm dense regime
at densities from 12.5 to 25.0 g/cm3, and temperatures from 0.5 to 15.0 eV have been calculated via quantum
molecular dynamics simulations. The principal Hugoniot is in good agreement with nuclear explosive experiments
up to ∼50 Mbar but predicts lower pressures compared with high intensity laser results. The self-diffusion
coefficient and viscosity have been simulated and have been compared with the one-component plasma model.
The Stokes-Einstein relationship, defined by connections between the viscosity and the self-diffusion coefficient,
has been determined and has been found to be fairly well described by classical predictions.
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I. INTRODUCTION

Due to technological, geological, and sociological impor-
tance, iron is one of the most studied materials. The demands
for models of materials in the warm dense regime is of great
interest in the context of astrophysics [1] and other fields
of applications, such as the inertial confinement fusion, the
realization of x-ray sources, and the interpretation of XUV
spectroscopy experiments [2–4]. Accurate knowledge of the
thermophysical properties of iron at the warm dense matter
(WDM) regime, such as the equation of state (EOS), transport
properties, and opacity [5], is essential in constructing a
realistic model of Earth and in the description of the transition
between the liquid outer core and the solid inner core [6,7]
where pressure between 1.3 and 3.7 Mbar is reached. The
behavior of iron at pressures higher than that reached inside
the Earth is of concern to many fields. For instance, the
nature of the continuous transition from condensed matter
to dense plasma is an outstanding and interesting issue in
high-pressure physics [8], featuring pressures in the 1–50 Mbar
range. Iron has been found in the rocky cores of intermediate
planets with masses bigger than the Earth, such as Uranus and
Neptune [9], where the internal pressure exceeds 3.7 Mbar.
Since the problems of opacity and the EOS were addressed,
the interest in this field has remained constant, and more
experimental detections combined with theoretical approaches
have appeared.

The EOS of iron at pressures above a few megabars can be
detected by dynamical methods, such as two-stage light-gas
guns [10], chemical [11] or nuclear explosions [12–20], and
high intensity laser driven experiments [21]. However, there
only exists a total of 18 EOS points above 10 Mbar as
reported in the scientific literature for iron at the normal
initial density. Possibly, due to the lack of EOS data, some
models indicate rather different high-pressure behaviors. For
instance, the compressibility of iron at 40 Mbar is ∼2.7
as predicted by the well known quotidian equation of state
model [22], and the results are substantially smaller than that
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of the SESAME table [23]. Theoretical papers have been devoted
to the EOS of warm dense iron in a wide range by using
Thomas-Fermi (TF) molecular dynamics (MD) and average-
atom models [24–26]. Recently, the quantum molecular dy-
namics (QMD) method [27], where the quantum-mechanical
treatments combining classical molecular dynamics for ions
and finite-temperature density functional theory (FT-DFT) for
electrons, proved suitable for modeling WDM.

In this paper, we have selected iron as a representative
system and have examined the EOS and transport properties
(viscosity and self-diffusion coefficient) in the warm dense
regime that covers the standard extreme condition as reached
in the interior of Earth and in shock wave experiments. The
thermophysical properties of the species have been derived
from QMD simulations. In the next section, we present
the formalism for QMD and for determining the static and
transport properties. Then, EOS, viscosity, and diffusion
coefficients for iron are presented, and the QMD results
are compared with the results from reduced models. Finally,
concluding remarks are given.

II. FORMALISM

Brief descriptions of the fundamental formalism used to
simulate fluid iron are presented; please find details elsewhere
as indicated in Ref. [28]. The basic quantum-mechanical DFT
forms the basis of our calculations. Numerical schemes for
determining diffusion and viscosity are presented.

A. Quantum molecular dynamics

QMD simulations have been applied to study warm dense
iron by using the Vienna ab initio simulation package [29,30].
In the present paper, electrons are treated fully quantum
mechanically by employing a plane-wave FT-DFT local spin
density approximation where the electronic states follow
from the Fermi-Dirac distribution. The ions move classically
according to the forces from the electron density and the
ion-ion repulsion. The electron wave functions are calculated
with the projector augmented wave potential. Simulations have
been performed in the NV T (canonical) ensemble where the
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number of particles N and the volume are fixed. The system
was assumed to be in local thermodynamic equilibrium with
the electron and ion temperatures being equal (Te = Ti). In
these calculations, the electronic temperature has been kept
constant according to the Fermi-Dirac distribution, and the
ion temperature is controlled by the Nośe thermostat [31].

At each step during the MD simulations, a set of electronic
state functions [�i,k(r,t)] for each k point is determined within
the Kohn-Sham construction by

HKS�i,k(r,t) = εi,k�i,k(r,t), (1)

with

HKS = −1

2
∇2 + Vext +

∫
n(r ′)

|r − r ′|dr ′ + vxc(r), (2)

in which the four terms, respectively, represent the kinetic con-
tribution, the electron-ion interaction, the Hartree contribution,
and the exchange-correlation term. The electronic density is
obtained by

n(r) =
∑
i,k

fi,k|�i,k(r,t)|2. (3)

Then by applying the velocity Verlet algorithm, based on the
force from interactions between ions and electrons, a new set
of positions and velocities is obtained for the ions.

All simulations are performed with 128 atoms for fluid
iron where a cubic supercell of length L (volume V = L3) is
periodically repeated. The simulated densities range from 12.5
to 25.0 g/cm3. The temperature range from 0.5 to 15 eV has
been selected to highlight the conditions as reached in nuclear
explosion and high power laser experiments. The convergence
of the thermodynamic quantities has been checked in the
present paper, and a plane-wave cutoff energy of 600 eV is
employed in all simulations so that the pressure is converged
within 2%. We have also checked out the convergence with
respect to a systematic enlargement of the k-point set in
the representation of the Brillouin zone. The correction of
higher-order k points in the EOS data is slight and negligible.
In the molecular dynamics simulations, only the � point of the
Brillouin zone is included. The dynamic simulation lasts for
20 000 steps with time steps of 1–4 fs according to different
densities and temperatures. For each pressure and temperature,
the system is equilibrated within 0.5–1 ps. The EOS data
are obtained by averaging over the final 1–3 ps molecular
dynamics simulations.

B. Transport properties

The self-diffusion coefficient D can either be calculated
from the trajectory by the mean-square displacement,

D = 1

6t
〈|Ri(t) − Ri(0)|2〉, (4)

or be calculated by the velocity autocorrelation function,

D = 1

3

∫ ∞

0
〈Vi(t)Vi(0)〉dt, (5)

where Ri is the position and Vi is the velocity of the ith
nucleus. Only in the long-time limit are these two formulas
of D formally equivalent. Sufficient lengths of the trajectories

have been generated to secure contributions from the velocity
autocorrelation function so the quadrature vanishes, and
the mean mean-square displacement away from the origin
consistently fits to a straight line. The diffusion coefficients
obtained from these two approaches lie within 1% accuracy of
each other. Here, we report the results for the velocity.

The viscosity,

η = lim
t→∞ η̄(t) (6)

has been computed from the autocorrelation function of the
off-diagonal component of the stress tensor [32],

η̄(t) = V

kBT

∫ t

0
〈P12(0)P12(t ′)〉dt ′. (7)

The results are averaged from the five indepen-
dent off-diagonal components of the stress tensor
Pxy, Pyz, Pzx, (Pxx − Pyy)/2, and (Pyy − Pzz)/2.

Different from the self-diffusion coefficient, which involves
single-particle correlations and reaches significant statistical
improvement upon averaging over the particles, the viscosity
depends on the entire system and, thus, needs very long
trajectories so as to gain statistical accuracy. To shorten the
length of the trajectory, we use empirical fits [33] to the
integrals of the autocorrelation functions. Thus, extrapolation
of the fits to t → ∞ can more effectively determine the basic
dynamical properties. Both D and η̄ have been fit to the
functional in the form of A[1 − exp(−t/τ )], where A and τ

are free parameters. Reasonable approximation to the viscosity
can be produced from the finite time fitting procedure, which
also serves to damp the long-time fluctuations.

The fractional statistical error in calculating a correlation
function C for molecular dynamics trajectories [34] can be
given by

�C

C
=

√
2τ

Ttraj
, (8)

where τ is the correlation time of the function and Ttraj is the
length of the trajectory. In the present paper, we generally fitted
over a time interval of [0, 4τ − 5τ ].

III. RESULTS AND DISCUSSION

In this section, the wealth of information obtained from
current QMD calculations is presented through figures and
tables, and the general trends of the EOS as well as transport
coefficients are detailed in the text. These transport coefficients
are of interest not only to get insight into the interior physical
properties of planets, but also to examine a series of theoretical
models and experiments.

A. The equation of state

High precision EOS data of warm dense iron are essential
for understanding the evolution of Earth and other applications
as mentioned in the Introduction. Experimentally, the EOS of
iron in the fluid regime has been studied through a gas gun,
a chemical explosive, a nuclear explosive, and a high power
laser.
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TABLE I. Expansion coefficients Aij for the internal energy E

(eV/atom).

Ai,j j = 0 j = 1 j = 2

i = 0 0.4131 0.4631 0.2292
i = 1 − 0.9536 0.5606 − 0.0154
i = 2 0.0772 − 0.0188 0.0006

A crucial way to examine the EOS is the Hugoniot, which is
the locus of points in (E,P,V ) space satisfying the condition,

(E0 − E1) + 1
2 (V0 − V1)(P0 + P1) = 0, (9)

where the subscripts 0 and 1 denote the initial and shocked
states, respectively. This relation follows from conservation
of mass, momentum, and energy for an isolated system
compressed by a pusher at a constant velocity. In the canonical
(NV T ) ensemble in which both E and P are temperature
dependent, the locus of states which satisfies Eq. (9) is
the so-called principal Hugoniot, which describes the shock
adiabat between the initial and the final states.

Wide-range EOS (densities from 12.5 to 25.0 g/cm3 and
temperatures of 0.5–15 eV) has been calculated according to
QMD simulations, and the internal energy E (eV/atom) and
pressure P (GPa) are fitted by expansions in terms of density
(g/cm3) and temperature (eV) as follows:

E =
∑

Aijρ
iT j , (10)

P =
∑

Bijρ
iT j . (11)

The fitted coefficients for Ai,j and Bi,j are summarized in
Tables I and II. Here, the internal energy E and the pressure of
the initial state at 7.85 g/cm3 and T = 300 K have been taken
as zero.

The principal Hugoniot of iron has been shown in Fig. 1,
and we compare the present results with previous theoretical
and experimental data, such as a two-stage light gas gun [19],
nuclear explosives [12–20], and a high intensity laser [21].
Theoretical results were obtained from VAAQP, INFERNO, the
TF model, quantum Langevin molecular dynamics (QLMD),
and the SESAME EOS tables [23–26,35]. Piron and Blenski [26]
have used the VAAQP code and its options, such as the INFERNO

option, and the TF option, so as to calculate electron contri-
butions to the thermodynamic quantities. After adding an ion
contribution to the pressure and internal energy, they obtain
total quantities and calculate the Hugoniot shock adiabats.
However, the interatomic contribution is not considered in
these average atom (AA) models. The SESAME table [23] is
composed of three terms: an electron contribution, an ion
contribution, and a cold-curve contribution. It is worth noting

TABLE II. Expansion coefficients Bij for pressure P (GPa).

Bi,j j = 0 j = 1 j = 2

i = 0 − 16.0334 8.2077 − 5.3060
i = 1 − 48.3815 11.9455 0.3493
i = 2 5.4347 − 0.22734 0.0015

FIG. 1. (Color online) Equation of state for fluid iron. (a) Prin-
cipal Hugoniot curve: results of the present paper (solid line) are
compared with the SESAME-EOS table (dashed line) [23], INFERNO

(dotted line) [26], the TF model (dashed-dot-dotted line) [26], VAAQP

(dashed-dotted line) [26], and QLMD simulations (crosses) [35].
Experimental data by Brown and McQueen (open diamonds) [19],
Krupnikov et al. (open circles) [15], Trunin and co-workers (solid
squares) [16–18], Al’tshuler and co-workers (open squares) [12–14],
and Batani et al. (solid circles) [21] are also plotted; (b) temperature
along the Hugoniot: The present results (solid line) are shown with
the results from previous QMD (open squares) [24,25], the TF model
(open circles) [24,25], the SESAME table (dashed line) [24,25], and
QLMD simulations (crosses) [35].

that the theoretical framework of constructing the SESAME-
EOS table is not clearly defined. Moreover, the process of
shifting the total pressure to fit the cold curve may lead to
severe consequences in the EOS.

The present QMD simulation results are accordant with
data from the gas gun [19] and nuclear experiments [12–20]
but predict lower pressures compared with high intensity laser
experiments [21] at ρ/ρ0 from 1.75 to 2.5. This may be due
to the preheating of samples in experiments and results in
an unexpected higher pressure. The TF [26] model generally
predicts highest pressures compared with other theoretical
models at a certain density and temperature. Due to the
presence of many-body interactions as well as collective
quantum electronic distributions, QMD simulations provide
more reliable predictions compared with the AA models
(VAAQP and INFERNO) [26]. The SESAME table [23] only
agrees with experiments at pressures below 5 Mbar. QLMD
results [35] show accordance with our data at pressures below
10 Mbar, however, QLMD predicts a higher pressure compared
with our simulations at ρ/ρ0 > 2. Along the Hugoniot, we
also examine the shock temperature, which is difficult to be
determined experimentally, although theoretical simulations
have been proved to be powerful tools for providing predic-
tions. The present QMD simulation results agree well with
previous QMD (see Refs. [24,25] and references therein) and
QLMD [35] simulations [Fig. 1(b) ]. The shock temperature
obtained from the SESAME table and TF model [24,25] is lower
compared with QMD results.

B. Diffusion and viscosity

QMD simulations have been used to study the dynamic
properties of iron in the warm dense regime. A sample of
the QMD results, together with their fits for the self-diffusion
coefficient and viscosity at 20.0 g/cm3 with temperatures of
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FIG. 2. (Color online) (a) Self-diffusion coefficient and (b) vis-
cosity as functions of time at a density of 20.0 g/cm3 and different
temperatures of 5.0 (squares), 10.0 (circles), and 15.0 eV (diamonds).
Their fits (dashed-dotted lines) are performed for a sample window
of [0,4τ to 5τ ].

5.0, 10.0, and 15.0 eV, are displayed in Fig. 2. The current
simulations have a trajectory of 20–80 ps and correlation
times between 200 and 400 fs. The computed error lies within
10% for the viscosity. The fitting procedure and extrapolation
to infinite time will introduce a total uncertainty of ∼20%.
Because the particle average gives an additional 1√

N
advantage,

the error in the self-diffusion coefficient is less than 1%.
In this paper, we intend to compare our results with an

idealized model, namely, the one component plasma (OCP)
model where ions move classically within a neutralizing
background of electrons under the Coulomb potential. It has
been demonstrated by Hansen et al. [36] and Bastea [37] that
the transport coefficients, such as diffusion and viscosity, can
be characterized by the ionic coupling parameter,

� = Z2e2

akBT
, (12)

where Ze is the ion charge and a = (3/4πni)1/3 is the
ion-sphere radius with number density ni = ρ/M . In fact,
the OCP model is limited within a fully ionized plasma,
and the determination of the ionization degree restricts the
applications of the OCP formulas in the warm dense regime.
Here, we choose Z = 2 (corresponding to a full ionization
of 4s electrons in iron) in Eq. (12) to get OCP transport
coefficients.

The results for self-diffusion coefficients at a sample density
of 20.0 g/cm3 have been shown in Fig. 3(a). Compared with
QMD simulations, the OCP model [36] predicts a larger
self-diffusion coefficient as well as the slope with respect to
temperatures above 3 eV. The combined contribution from the
interatomic potential and kinetic motion of particles will lead
to a local minimum for the viscosity as shown in Fig. 3(b). The
OCP model [37] indicates the local minimum around 2.5 eV,
whereas, it is 5.0 eV, predicted by QMD simulations.

After obtaining the self-diffusion coefficient and viscosity
in a self consistent way, we now turn to examine the Stokes-
Einstein (SE) relation, which connects the diffusion and shear
viscosity by

FSE[D,η] = Dη

kBT n
1/3
i

= CSE, (13)

where FSE is a shorthand notation for the relationship between
the transport coefficients and CSE is a constant. CSE was first

FIG. 3. (a) Self-diffusion coefficient and (b) viscosity as functions
of temperature at a density of 20.0 g/cm3. The present QMD results
are denoted by open squares, whereas, OCP data [36,37] are presented
as dashed lines. Only the statistical error has been considered
here.

derived based on the motion of a test particle through a solvent
and was assumed to lie between 1/6π [38] and 1/4π [39]
depending on the limits of the slip coefficient from infinity
(stick) to zero (slip). Then, in 2006, Chisolm and Wallace [40]
provided an empirical value of 0.18 ± 0.02 from a theory
of liquids near melting. In this paper, we reexamine the SE
relation with respect to QMD simulations as has been shown
in Fig. 4 where QMD calculated CSE is plotted with respect to
1/akBT . Due to the fact that the diffusion coefficient increases
almost linearly with respect to temperature and cancels the
temperature dependence of the denominator in Eq. (13), as a
consequence, CSE is dominated by the high-pressure behavior
of the viscosity. CSE’s from QMD simulations are generally
bounded by the classical values of CSE from below (slip limit)
and the Chisolm-Wallace liquid metal value as in Fig. 4. In
the dynamic region explored, we do not observe any signs for

Slip

Stick

FIG. 4. (Color online) Examination of the Stokes-Einstein rela-
tion with respect to 1/akBT in the warm dense region. The present
results at 12.5 (open squares), 15.0 (open circles), 17.5 (up-open
triangles), 20.0 (down-open triangles), 22.5 (open diamonds), and
25.0 g/cm3 (solid squares) are shown. Predictions by Chisolm and
Wallace [40] are shown as the dotted blue region and are denoted
as “CW” in the figure. The flat dashed cyan lines show the constant
values of CSE for stick and slip boundary conditions [38,39].
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the change from potential to kinetics dominated regimes as in
Be [41].

IV. CONCLUSION

To summarize, systematic QMD simulations have been
performed to study iron in the warm dense regime for densities
ranging from 12.5 to 25.0 g/cm3 and for temperatures from
0.5 to 15 eV. The present paper concentrated on the properties,
such as the EOS, the diffusion coefficient, and the viscosity,
which are of crucial interest in astrophysics and other appli-
cations. A wide-range EOS has been built by fitting the QMD
data into a smooth function. The principal Hugoniot curve
obtained from QMD simulations agrees well with nuclear

explosive experiments up to ∼50 Mbar but is soft compared
with the results from high power laser experiments, which can
be attributed to the preheating of the samples. Comparison
between the QMD transport coefficients and the OCP model
is presented and is discussed. Classical models are examined
by QMD simulations and have been found to hold the general
features of the Stokes-Einstein relation in the warm dense
region that we explored.
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