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In this paper we have investigated a circular band formation of fluid–rigid-particle mixtures in a fully filled
cylinder horizontally rotating about its cylinder axis by direct numerical simulation. These phenomena are
modeled by the Navier-Stokes equations coupled to the Euler-Newton equations describing the rigid solid motion
of the non-neutrally particles. The formation of circular bands studied in this paper is mainly caused by the
interaction between particles themselves. Within a circular band, the part of the band formed by the particles
moving from the front to the back through the upper portion of the cylinder becomes more compact due to the
particle interaction strengthened by the speedup of the particle speeds first by the rotation and later by the rotation
and the gravity. The part of a band formed by the particles moving from the back to the front through the lower
portion of the cylinder is always loosening up and spreading out due to the slowdown of the particle motion first
by the rotation and then by the rotation and the counter effect of the gravity. To have a compact circular band,
particles have to interact among themselves continuously through the entire circular band at an angular speed so
that the separation of particles can be balanced by their aggregation.
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I. INTRODUCTION

Nonequilibrium systems often organize into interesting
spatiotemporal structures or patterns. Examples include the
patterns in pure fluid flow systems, such as the Taylor-
Couette flow between two concentric rotating cylinders and
well-defined periodic bands of particles in a partially or
fully filled horizontally rotating cylinder. Particulate flows
exhibiting circular bands in a partially filled horizontal rotating
cylinder are in part attributed to the presence of the free
surface caused by the partial filling of the cylinder (e.g.,
see [1–3]). In a fully filled horizontally rotating cylinder,
band and other pattern formations were also found in the
suspensions of non-Brownian settling particles in [4–10].
For probably the most complete overview of the literature
on the pattern formation and segregation in rotating-drum
flows, please see the recent extensive review article by
Seiden and Thomas [11]. Lee and Ladd [12,13] addressed
the experimental observations made by Matson et al. [4–6] in
creeping flow regime. The ratio of the particle diameter and the
inner cylinder diameter in [4–6,12,13] is about 1%. In [12,13],
numerical simulations within the Stokes-flow approximation
have been used to investigate the mechanism underlying
circular cluster formation. The numerical results show that
the formation of the circular cluster is correlated with an
inhomogeneous particle distribution in the radial plane, which
is itself driven by the competition between the gravity and the
viscous drag. The circular cluster structure develops during
the transition between a low-frequency segregated phase and a
high-frequency dispersed phase. In this paper, we have focused
on the understanding of the band formation which looks like
those observed in [9,10], but the values of the Reynolds
number, Re = 2aU/ν, and Ekman number, E = ν/�R2, for
the cases considered here are in a different regime, where a is
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the ball radius, the characteristic velocity U is given by �R

with the cylinder angular speed � and the cylinder radius R,
and ν is the kinematic viscosity. Thus the numerical simulation
is, strictly speaking, not comparable with the experiments
[9,10]. The fluid-particle mixtures considered here are not
in the creeping flow regime as considered computationally
by Lee and Ladd in [12,13]. In [8], Lipson used a horizontal
rotating cylinder filled with oversaturated solution to grow
crystal without any interaction with a substrate and found that
crystals accumulate in well-defined periodic bands, normal to
the axis of rotation. Lipson and Seiden [9] just suggested, with
no further discussion, that it could be the interaction between
particles and fluid in the tube. In [10], Seiden et al. did an
experimental investigation of the dependence of the formation
of bands on particle characteristics, tube diameter and length,
and fluid viscosity. They suggested that the segregation of
particles occurs as a result of mutual interaction between the
particles and inertial waves excited in the bounded fluid. In [14]
Seiden et al. believed that the axial pressure gradient associated
with an inertial-mode excitation within bounded fluid is re-
sponsible for the formation of bands according to their general
dimensionless analysis. A single ball motion was discussed by
solving the equation of motion for the ball with a one-way
coupling in a filled and horizontally rotating cylinder; a
stability analysis and a phase diagram based on one ball motion
are addressed, but they did not consider the effect of the ball
to the fluid and the interaction between particles themselves.

Via direct numerical simulations, we have observed that,
for the cases considered in this paper, the formation of circular
bands is mainly caused by the interaction between particles
themselves. In our simulations, the particles form a layer inside
a horizontally rotating cylinder similar to the one in Fig. 7 in
[10]. These particles are partially coated on the inner wall of
the rotating cylinder under the influence of a strong centrifugal
force. Within a circular band, the part of the band formed by
the particles moving from the front to the back through the
upper portion of the cylinder becomes more compact due to the
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FIG. 1. (Color online) The flow region with a ball B in a
truncated cylinder C.

particle interaction strengthened by the speedup of the particle
speeds first by the rotation and then later by the rotation and the
gravity. The part of a band formed by the particles moving from
the back to the front through the lower portion of the cylinder is
always loosening up and spreading out due to the slowdown of
the particle motion first by the rotation and then by the rotation
and the counter effect of the gravity. To have a compact circular
band, particles have to interact among themselves continuously
through the entire circular band at a angular speed so that the
separation of particles can be balanced by their aggregation.
Hence the balance of the gravity, the angular speed, and the
fluid flow inertia and the number of particles is important to
the formation of circular bands in a fully filled cylinder.

The scheme of this paper is as follows: We discuss the
models and numerical methods briefly in Sec. II. In Sec. III,
we study the effect of the particle number, the angular speed,
and the initial gap size on the formation of circular bands and
then present the flow field development under the influence
of the particle interaction. The conclusions are summarized in
Sec. IV.

II. MODEL AND NUMERICAL METHOD

To perform the direct numerical simulation of the inter-
action between rigid bodies and fluid, we have developed a
methodology which combines a distributed Lagrange multi-
plier based fictitious domain method with operator splitting
and finite element methods (e.g., see [15–20]). For a ball
B moving in a Newtonian viscous incompressible fluid of
the viscosity μ and the density ρ contained in a truncated
cylinder C under the effect of the gravity depicted in Fig. 1,
the flow is modeled by the Navier-Stokes equations, namely,

ρ

[
∂u
∂t

+ (u · ∇)u
]

− μ�u + ∇p

= g in {(x,t)|x ∈ C \ B(t), t ∈ (0,T )}, (1)

∇ · u(t) = 0 in {(x,t)|x ∈ C \ B(t), t ∈ (0,T )}, (2)

u(0) = u0(x) (with ∇ · u0 = 0), (3)

u = g0 on �0 × (0,T )

(
with

∫
�0

g0 · n d� = 0

)
, (4)

where �0 is the entire surface of a truncated cylinder C, g
denotes gravity, g0 is the given velocity field, u0(x) is the initial
condition of flow field, and n is the unit normal vector pointing
outward to the flow region. We assume a no-slip condition
on γ (= ∂B). The motion of the rigid body B satisfies the
Euler-Newton’s equations, namely

v(x,t) = V(t) + ω(t) × G(t)x, ∀x ∈ B(t), ∀t ∈ (0,T ),
(5)

dG
dt

= V, (6)

Mp

dV
dt

= Mp g + FH , (7)

Ip

dω

dt
= TH , (8)

with the resultant and torque of the hydrodynamical forces
given by, respectively,

FH = −
∫

γ

σn dγ, TH = −
∫

γ

Gx × σn dγ (9)

with σ = μ(∇u + ∇ut ) − pI. Equations (1)–(9) are com-
pleted by the following initial conditions:

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0. (10)

Above, Mp, Ip, G, V, and ω are the mass, inertia, center of
mass, velocity of the center of mass, and angular velocity of the
rigid body B, respectively. The gravity is pointed downward
in the direction of z.

To solve numerically the coupled problem (1)–(10), we
have first applied a distributed Lagrange multiplier-based
fictitious domain method (see [15] and [16] for details). Its
basic idea is to imagine that the fluid fills the space inside
as well as outside the particle boundaries. The fluid flow
problem is then posed on a larger domain D, the “fictitious
domain.” The fictitious domain has a simple shape, allowing
a simple regular mesh to be used. This domain is also time
independent, so the same mesh can be used for the entire
simulation. This is a great advantage, since for simulating
three-dimensional (3D) interaction of fluid and particles, the
automatic generation of unstructured boundary-fitted meshes
for a large number of closely spaced particles considered in
this paper is a difficult problem. The fluid inside the particle
boundary must exhibit a rigid body motion of the particle. This
constraint is enforced using a distributed Lagrange multiplier,
which represents the additional body force per unit volume
needed to maintain the rigid body motion inside the particle
boundary, much like the pressure in incompressible fluid
flow, whose gradient is the force required to maintain the
constraint of incompressibility. The numerical scheme for
solving the distributed Lagrange multiplier-based fictitious
domain formulation of problem (1)–(10) has been fully
discussed in [20]. For space discretization, we have used
P1-iso-P2 and P1 finite elements for the velocity field and
pressure, respectively (e.g., see [17,20]). In time advancing, via
the Lie’s scheme [21] with the finite element approximation,
the fictitious domain formulation of problem (1)–(10) is
decoupled into a sequence of simpler subproblems at each
time step and solved numerically.
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FIG. 2. Experimental photos from Ref. [10] with authors’
permission.

III. NUMERICAL EXPERIMENTS AND DISCUSSION

A. Combined effect of the angular speed and
the number of particles

To investigate the circular band formation for the suspen-
sions of particles in a fully filled horizontally rotating cylinder,
we have studied first the formation of a single circular band via
the cases of 16, 24, 32, and 64 balls of radius a = 0.075 cm and
density ρp = 1.25 g/cm3 in a truncated cylinder of diameter
2R = 1 cm and length 4 cm filled with a fluid of the density
1 g/cm3 and kinematic viscosity ν = 0.15 cm2/sec. The solid
fractions are 0.9%, 1.35%, 1.8%, and 2.7%, respectively, for
the cases of 16, 24, 32, and 64 balls. The initial positions
of the ball mass centers are on the circles of radius 0.35 cm
centered at the cylinder central axis with eight balls in each
circle (see Figs. 3–6). We have perturbed each mass center
randomly in the direction of the cylinder axis to break the
symmetry of the initial pattern. The distance between two
neighboring circles is about 2.25a hence the initial gap size dg

between balls in the cylinder axis direction is about a/4. In the
simulations, the cylinder rotates about the cylinder axis parallel

to the y axis in a clockwise direction with angular speed �

of either 8 or 12 rad/sec (see Fig. 1). The Reynolds numbers,
Re = 2aU/ν, with the characteristic velocity U = �R are 4
and 6, respectively, for � = 8 and 12 rad/sec. The Reynolds
numbers of the cases considered here are about two orders
less than those considered in [10]. The Ekman numbers,
E = ν/�R2, are 0.075 and 0.05, respectively, for � = 8 and
12 rad/sec and both are an order larger than those considered
in [10]. Both numbers for the cases considered here are in
a different regime, thus the numerical simulation is, strictly
speaking, not comparable with the experiments [9,10] even
though the circular band formation is similar to those observed
in [9,10] (e.g., see Fig. 2). Since the thickness of the Ekman
boundary layer is the order of E1/2, our meshes can resolve
the Ekman boundary layer for the cases studied in this paper.

The histories of the y coordinate of the particle mass centers
and the positions of 16 balls at t = 40 sec obtained with the
angular speed � = 8 and 12 rad/sec in Figs. 3 and 7 clearly
show that the 16 balls spread out in the cylinder axis direction
and do not form a circular band at all. For the cases of 24 balls,
the formation of the circular band is still not clear yet. In Figs. 4
and 7, the 24 balls spread out in the cylinder axis direction at
the angular speed � = 8 rad/sec. When the angular speed is
12 rad/sec, the 24 balls do form a loose circular band. For the
cases of 32 balls, the formation of the circular band is clearly
shown in Figs. 5 and 7. The one obtained at the angular speed
� =12 rad/sec is very compact. For the cases of 64 balls, they
split into two loose circular bands at � = 8 rad/sec since it is
not fast enough to produce strong particle interaction to sustain
the whole group of particles as shown in Figs. 6 and 7. But at
the angular speed � = 12 rad/sec, there is just one compact
circular band in which the particles are well organized in the
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FIG. 3. (Color online) The side view (left) and the front view (right) of the initial position of 16 balls (top) and the position obtained at the
angular speed � = 8 (middle) and 12 (bottom) rad/sec at t = 40 sec.
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FIG. 4. (Color online) The side view (left) and the front view (right) of the initial position of 24 balls (top) and the position obtained at the
angular speed � = 8 (middle) and 12 (bottom) rad/sec at t = 60 sec.

middle due to the pushing from the outer balls. The particles
form a layer inside the cylinder which is different from those
observed in [4–6], but close to those in [9,10] (e.g, see Fig. 2).
These results give us a simple observation which is that there is

a need of enough particles so that the particles within a circular
band can continuously interact among themselves. For the case
of 64 balls shown in Fig. 6 (respectively, Fig. 14), there are 33
and 31 balls (respectively, 29 and 35 in Fig. 14) in two bands,
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FIG. 5. (Color online) The side view (left) and the front view (right) of the initial position of 32 balls (top) and the position obtained at the
angular speed � = 8 (middle) and 12 (bottom) rad/sec at t = 60 sec.
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FIG. 6. (Color online) The side view (left) and the front view (right) of the initial position of 64 balls (top) and the position obtained at the
angular speed � = 8 (middle) and 12 (bottom) rad/sec at t = 60 sec.

respectively. The threshold for forming a circular band is about
30 balls for the conditions considered in this paper. The particle
Reynolds numbers Rep = 2aUp/ν based on the average speed
Up of particles are about 2.28 and 4.28, respectively, for the
angular speed � equal to 8 and 12 rad/sec.

Observing the trajectories of 32 balls in Fig. 8, we have
found that the balls aggregate when the balls move from the
front (x = 1) to the back (x = 0) through the upper portion
of the cylinder and then they separate (spreading out in the
direction of the cylinder axis) when the balls move from the
back to the front through the lower portion of the cylinder.
To analyze the aggregation and separation of the particles, we
define the speed as Vr =

√
V 2

1 + V 2
3 in the xz plane from the

particle translation velocity V = (V1,V2,V3). The speed Vr tell
us how fast each particle moves in the plane perpendicular to
the cylinder axis directions, especially how it moves within a
cluster when it is part of such a cluster. When each particle
moves up from the front of the cylinder to the top of the
cylinder, the speed in the x direction, |V1|, is increasing by
the rotation and the one in the z direction, |V3|, is suppressed
by the rotation and the gravity. Once it passes the top position
and moves into the back portion of the cylinder, the speed in
the z direction is increasing dramatically since the rotation and
the gravity work together; even the one in the x direction is
decreasing to zero. This explains when the balls of a cluster
move through the upper portion of the cylinder, their speeds
Vr are increasing as shown in Fig. 9 (the left ones). When
one ball enters the wake of another ball which is speeding up,
it experiences reduced drag and drafts closer to the leading
ball (e.g., see [22,23] for the drafting, kissing, and tumbling
between two balls). Thus the group of balls with increasing
speeds can aggregate due to the hydrodynamical interaction

between balls. For the part of a circular band formed by the
balls moving from the back to the front through the lower
portion of the cylinder, the balls separate and spread out due to
the slowdown of the speed Vr (see Fig. 9). The slowdown
is caused by the rotation when each ball moves from the
back to the bottom of the cluster since the gravity cannot
compete with the rotation. Once the ball starts moving up from
the bottom to the front, the speed is suppressed further by the
rotation and the counter effect of the gravity as in Fig. 9. Due
to these effects of the speedup and slowdown, the particle
speed V2 in the cylinder central axis direction does have a
different sign as shown in Fig. 10. For those particles whose
average mass centers are located to the right of the average
mass center of all particles in the cylinder central axis direction,
when they move from the front to the back through the upper
(respectively, lower) portion of the cylinder, the speed V2 is
negative (respectively, positive). For those located to the left
of the average mass center of all particles, the speeds V2 are
opposite to those located to the right. Hence the balls aggregate
during the speedup of the speed Vr when the balls move from
the front to the back through the upper portion of the cylinder
and they separate because of the slowdown of the speed Vr

when the balls move from the back to the front through the
lower portion of the cylinder. Therefore the histories of the y

coordinate of the particle mass centers in Figs. 7, 11, and 15
show oscillations in the y direction. To have a stabilized and
compact circular band, a large enough number of balls and a
fast angular speed are needed in order to balance both effects;
e.g., the results of the 32 ball cases in Figs. 5 and 8 show that
at the angular speed � = 8 rad/sec, the particle speeds are
just fast enough to have the aggregation which can overcome
the separation. But at the angular speed � = 12 rad/sec, the
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FIG. 7. (Color online) The histories of the y coordinate of the mass centers of 16, 24, 32, and 64 balls (from top to bottom) at � = 8 (left)
and 12 (right) rad/sec.
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two) rad/sec for 59 � t � 60 sec. The unit is cm.

023013-6



CIRCULAR BAND FORMATION FOR INCOMPRESSIBLE . . . PHYSICAL REVIEW E 89, 023013 (2014)

0

0.5

1

0

0.5

1

0

1

2

3

4

x
z

V
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−8

−6

−4

−2

0

2

4

6

x

V 3

0

0.5

1

0

0.5

1

0

2

4

6

8

xz

V
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x

V 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

x
V 3

FIG. 9. (Color online) The speed Vr =
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and V3 (right) for the cases of � = 8 (top), and 12 (bottom) rad/sec for 59 � t � 60 sec. The blue solid (respectively, red dashed) lines are
associated with the particles whose average mass centers are located to the right (respectively, left) of the average mass center of all particles
in the cylinder axis direction. The black dotted lines (in the left figure) are the projected particle trajectories in the xz plane and the black line
in the xz plane is the boundary of the cylinder.
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FIG. 11. (Color online) The histories of the y coordinate of the mass centers of 64 balls with initial gap sizes a/4, a, and 2a (from top to
bottom): � = 8 (left) and 12 (right) rad/sec.

particle interaction is stronger so that a compact circular band
is formed. Similarly for the 64 ball case at lower angular speed
� = 8 rad/sec in Figs. 6 and 7, the balls spread out a little
bit and segregate into two loose circular bands; but at � =
12 rad/sec the particle interaction can pull all 64 balls together

in one compact circular band. Thus the particle segregation
also depends on the relative motion between the particles and
rotating flow field. Actually the distance between particles
does matter concerning the formation of the circular bands. In
Fig. 11, the histories of the y coordinate of the particle mass
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FIG. 12. (Color online) The projection of the velocity field on the vertical plane passing through the central axis of the cylinder for the case
of 32 balls (left) and the front view of the position of 32 balls (right) at t = 0.2, 5, and 30 sec (from top to bottom) with � = 12 rad/sec.
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FIG. 13. The projection of the velocity field on the vertical plane at the middle of the circular band (left) and the vertical plane passing
through the central axis of the cylinder (right) for the case of 32 balls at t = 60 sec: � = 8 (top) and 12 (bottom) rad/sec.

centers are shown for different values of the initial gap size dg .
The particle interaction at � = 8 rad/sec cannot pull all 64
balls into one circular band. The balls split into two groups for
all three initial gap sizes and form circular bands except for one
group of the balls for the case of dg = 2a. At the angular speed

� =12 rad/sec, the threshold of the initial gap size for forming
a circular band is dg = a. There are two circular bands formed
for the 64 balls with dg = 2a, but the 64 balls with the initial
gap size dg = a interact and finally come together to form a
circular band at t = 60 sec as in Fig. 11. The formation of a
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FIG. 14. (Color online) The projection of the velocity field on the vertical plane passing through the central axis of the cylinder for the case
of 64 balls (left) and the front view of the position of 64 balls (right) at t = 1, 16, 19, and 100 sec (from top to bottom) with � = 12 rad/sec
and the initial gap size dg = 2a.
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FIG. 15. (Color online) The histories of the y coordinate of the mass centers of 64 balls with the initial gap size dg = 2a (left) and 128 balls
with the initial gap size dg = a/4 (right).

circular band of the 64 balls with the initial gap size dg = a is
much slower than the one with dg = a/4 at � = 12 rad/sec.
These results show that the particle interaction has a short
range effect on the formation of circular bands.

B. Effect of the band formation on the fluid flow field

Even the Reynolds numbers and Ekman numbers are in a
different regime for the cases considered in this paper; we have
obtained the circular bands like those in [10]. In experiments,
it is not easy to set up the initial positions of the particles

like those chosen in direct numerical simulations, but those
initial positions help us to understand the formation of circular
bands and the development of the flow field inside the cylinder.
For the case of 32 balls at � = 12 rad/sec studied in the
previous subsection, the projections of the velocity field on the
vertical plane passing through the central axis of the cylinder
at different time are shown in Fig. 12. The circulation of the
velocity field is created by the particle motion and concentrated
in the middle portion of the cylinder. To show why the velocity
field at the middle of the cluster is slightly different from those
observed in [10], we have shown the cross sections of the

X
Z

0 1 2 3 4 5 6 7 8
0

0.5

1
t=40

FIG. 16. (Color online) The projection of the velocity field on the vertical plane passing through the central axis of the cylinder for the case
of 128 balls at t = 0.4 (top) and 40 sec (middle), those on the plane at the middle of the cluster at y = 3.218 75 and the one on the vertical line
through the cylinder center axis (left two in the middle) and y = 5 and the one on the vertical line through the cylinder center axis (right two
in the middle) at t = 40 sec, and the front view of the position of 128 balls (bottom) at t = 40 sec.
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FIG. 17. (Color online) The projection of the velocity field on the vertical plane passing through the central axis of the cylinder for the
case of 128 balls (left) and the front view of the position of 128 balls (right) at t = 2, 5, 20, 44, and 150 sec (from top to bottom) with � =
12 rad/sec.

flow field at the middle of circular band of 32 balls and the
projection of the velocity field on the vertical plane passing
through the cylinder central axis of the cylinder in Fig. 13. For
the case of � = 8 rad/sec, due to the rotating center of flow
field (the left top figure in Fig. 13) located to the right of the
cylinder central axis, the velocity projected on the vertical plan
through the cylinder central axis points downward at the center
of the cluster, which is same as the one in [10]. But for the
other case of � = 12 rad/sec, the rotating center of flow field
(the left bottom panel in Fig. 13) is almost under the cylinder
central axis so that the velocity on the vertical plan through the
cylinder central axis does not point downward at the center of
the cluster as in [10]. The distances of the rotating center to the
cylinder central axis are �R = 0.073 and 0.058 cm for � = 8
and 12 rad/sec, respectively. Then the Rossby numbers Ro =
U/�R, where U = ��R is the relative velocity of the sec-
ondary flow associated with the bands as considered in [6], are
0.146 and 0.116. For both angular speeds, the Rossby numbers
are not small and the inertial effect cannot be ignored as in [10].

For the evolution of the flow field related to two circular
bands, the results of the case of 64 balls with the initial gap
size dg = 2a and the angular speed � = 12 rad/sec are shown
in Figs. 14 and 15. We have observed no specific pattern

concerning the flow field from the beginning as in Fig. 14.
The particles break into two circular bands between t = 16
and 19 sec and then two bands move away from each other as
in Fig. 15. The projected velocity fields at t = 19 and 100 sec
in Fig. 14 show that the two circulations move apart since the
two circular bands move away from each other. The projected
velocity field at t = 100 sec. in Fig. 14 is similar to the one
obtained experimentally in [10], but the development of the
flow field shows that the circulation of the flow field is caused
by the motion of the particles in the two circular particle bands
and there are no secondary flows occurring and helping the
formation of the circular bands. For the case of 128 balls in
a truncated cylinder of length L = 8 cm at the angular speed
� = 12 rad/sec with the initial gap size dg = a/4, the particles
are initially placed on 16 circles in the middle of the cylinder as
in the previous subsection. Later they break into two compact
circular bands as shown in Figs. 15 and 16. There are 63 and
65 particles in these two circular bands, respectively, which
are consistent with the results of the 64 particles at the angular
speed � = 12 rad/sec discussed in the previous subsection.
The figure of the circulation of the flow field at t = 0.4 sec in
Fig. 16 clearly shows that there is only one large circulation.
Two small circulations next to the large one at t = 0.4 sec
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X
Z

FIG. 18. The projection of the velocity field on the vertical plane at the middle of each circular bands for the case of 128 balls at
t =150 seconds: y =0.875, 2.5, and 3.75 cm (from left to right).

are created by the strong advection due to the particle motion
and stay there all the time even when the balls split into two
clusters as the one at t = 40 sec. These secondary flows are
very weak for both cases. For both clusters in Fig. 16, the
cross sections of the flow field at the middle of the circular
band show that the rotating centers are located to the left of
the cylinder central axis. Thus the velocity projected on the
vertical plan through the cylinder central axis points upward
at the center of the cluster as shown in the middle of Fig. 16.

To have the circular bands like the one in Fig. 2, we have
considered the case of 128 balls in a truncated cylinder of
length L = 4 cm. We have first placed 128 balls on 16 circles
in the middle of the cylinder with the initial gap size dg = a/4
as in the previous subsection and then let them settle at the
zero angular speed. The balls settle down at the bottom of
the cylinder after 2 sec as shown in Fig. 17. Then the cylinder
rotates at the angular speed � = 12 rad/sec. The 128 balls first
move up and down inside the rotating cylinder and interact
with the fluid. At t = 5 sec, there is no specific flow field
pattern in the cylinder. About t = 20 sec, two outer bands
next to the two ends of the cylinder start forming. Gradually
three circular bands, which are similar to the one obtained
experimentally in Fig. 2, are formed as shown in Fig. 17. The
wavelength between two left bands at t = 150 sec is 3.25R

and the distance from the leftmost band to the left end of the
cylinder is also about half of the above wavelength. The right
circular band has been pushed to the right end of the cylinder
with no room to move. The wavelength is in good agreement
with the wavelengths obtained in [10], which are between 3.2R

and 3.3R, for the case of L/R = 8. The cross sections of the
flow field at the middle of each circular bands (y = 0.875,
2.5, and 3.75 cm) are shown in Fig. 18. We observe that the
rotating centers of flow field of each cross section are located
either to the left of the cylinder central axis or right under the
cylinder central axis. Thus the velocity projected on the vertical
plan through the cylinder central axis points either upward or
other directions at the center of the cluster as shown in the
lower left one in Fig. 17. The distances of the rotating center
to the cylinder central axis are �R = 0.0572, 0.0473, and
0.0481 cm, respectively, for y = 0.875, 2.5, and 3.75 cm. The

Rossby numbers Ro = U/�R are 0.1144, 0.0946, and 0.0962,
respectively, for y = 0.875, 2.5, and 3.75 cm. The Ekman
number for this case is 0.05 as discussed at the beginning
of Sec. III A. Since both the Ekman number and the Rossby
number are not too small, the inertial effect and diffusion
cannot be ignored for the perturbation analysis.

IV. CONCLUSION

In this paper we have applied a distributed Lagrange
multiplier fictitious domain method with a finite element
method and operator splitting to simulate rotating suspension
of particles and to study the interaction between balls and
fluid in a fully filled and horizontally rotating cylinder. The
formation of circular bands studied in this paper is mainly
caused by the interaction between particles themselves. Within
a circular band, the part of the band formed by the particles
moving from the front to the back through the upper portion
of the cylinder becomes more compact due to the particle
interaction strengthened by the speedup of the particle speeds
first by the rotation and later by the rotation and the gravity.
The part of a band formed by the particles moving from the
back to the front through the lower portion of the cylinder is
always loosening up and spreading out due to the slowdown of
the particle motion first by the rotation and later by the rotation
and the counter effect of the gravity. To have a compact circular
band, particles have to interact among themselves continuously
through the entire circular band at an angular speed so that the
separation of particles can be balanced by their aggregation.
Hence the balance of the gravity, the angular speed, and the
fluid flow inertia and the number of particles are important to
the formation of circular bands.
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