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Surface gravity-wave lensing

Ryan B. Elandt, Mostafa Shakeri, and Mohammad-Reza Alam*

Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
(Received 14 September 2013; published 19 February 2014)

Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features
(the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface
gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore
are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired
focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a
multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required
for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create
localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as
to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities).
In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent
appearance of very high amplitude waves in certain bodies of water.
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I. INTRODUCTION

Seafloor irregularities affect overpassing surface gravity
waves via a number of linear and nonlinear mechanisms
[1]. For instance, weakly nonlinear waves traveling over a
randomly rough seabed are damped as a result of seafloor’s
irregularities dispersing the energy of overpassing waves to
all spatial directions and at nearly all wave frequencies [2–4].
(This spatial attenuation is called localization [5] because of its
common root with Anderson localization in solid-state physics
[6].) If seabed corrugations follow specific patterns (i.e., they
are not random) then they can excite a number of resonance
phenomena between surface waves (depending on the condi-
tions satisfied [7–12]). Resonance of surface waves via bottom
undulations is called Bragg resonance named after its close
cousin phenomenon in solid-state physics of crystals [13].

Physically speaking, if a proper Bragg resonance condition
is satisfied then a surface wave can excite a new (resonant)
surface wave in a new direction different from its own original
direction (so-called class I, II), or, two surface waves can
excite a new wave with a frequency equal to the sub- or
superharmonic of primitive waves (so-called class III). In other
words, bottom ripples, under Bragg resonance, act as an energy
transfer bridge enabling the energy of the incident wave(s) to
flow to a new (i.e., resonant) wave. If the interaction distance
is long enough, then the resonant exchange continues until
the entire energy of initial wave(s) is conveyed to the resonant
wave. In perturbation expansion of the governing equations in
terms of a small parameter (usually wave steepness ka, k being
the wavenumber and a the amplitude of the wave), Bragg
resonance occurs at the second order (class I), third order
(class II and III), and higher orders of nonlinearities [7,14].

Here we report a seabed corrugation architecture, designed
based on properties of Bragg resonance, that can change the
direction of propagation of overpassing surface waves toward
(or away from) a specific focal point. The apparent first and
most important application of this idea is to converge or
diverge initially parallel wave rays. Bottom corrugations can
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therefore be used to create (surface-noninvasive) curved lenses
and mirrors for surface gravity waves similar to how curved
lenses and mirrors focus or defocus light beams. We further
propose a multichromatic bottom that can focus an incident
broadband wave spectrum with a high efficiency.

II. THEORY

Consider an incident surface gravity wave of wavenumber
vector ki and frequency ω propagating in a homogeneous
water of mean depth h. Assume that a finite patch of the
seabed contains small amplitude periodic ripples with the
wavenumber kb (similar to seabed sandbars seen in nearshore
areas). Over this patch of bottom undulations, if certain
conditions between ripples’ geometric properties and the
overpassing surface waves are satisfied (the so-called Bragg
resonance condition), then a new wave with the wavenumber
kr and the same frequency as the frequency of the incident
wave (ω) will be resonated (i.e., generated).

Without loss of generality, we consider that the incident
wave ki moves along positive x axis. If we draw a circle
centered at the origin and with a radius ki = |ki|, then any
vector drawn from the origin to a point on this circle (say
kr) represents the direction of propagation of a resonant
wave if bottom ripples wavenumber vector kb satisfies the
class I Bragg resonance condition, i.e., kb = kr − ki [7,14].
Under this circumstance, the amplitude of the incident wave
decreases (exponentially over the patch) and the amplitude
of the resonant wave increases in such a way that the energy
of the entire system of waves is conserved. Outside of the
patch, both incident and resonant waves continue to travel
with no further change (Fig. 1). Note that class I Bragg
resonance is a triad resonance (between two equifrequency
surface waves ki,kr and one bottom component kb), which
is obtained at the second order of nonlinearity in terms of
wave steepness. If third-order nonlinearities are taken into
account, then quartet resonances are obtained between two
equifrequency free waves and two bottom components, or,
between three free waves and one bottom component [7].
These higher-order resonances are significantly weaker (than
the leading order) and are not considered here.
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FIG. 1. (Color online) (a) Geometric construction of the class I
(triad) Bragg resonant waves. (b) Physical implication of class I Bragg
resonance: an incident wave with the wavenumber vector ki (assumed
to move along the positive x axis) resonates the resonant wave kr upon
the interaction with the topography with the wavenumber kb.

Our objective is to design a patch in such a way that
the resonant waves formed at each location of the patch are
directed toward a desired focal point. If this is achieved,
high-amplitude motion is expected at the focal point due to
the superposition of the arriving resonant waves from all over
the patch. Consider a coordinate system in the physical domain
with x,y axes on the mean seafloor and z axis positive upward.
Assume that a finite two-dimensional patch (in x-y plane) is
given across which small ripples can be placed or crafted.
The focal point can be at any location on the free surface
above or far from the given seabed patch. We specifically
consider two cases: the focal point on the upstream and on
the downstream side of the patch. In an analogy to optics, we
call these configurations, respectively, a concave mirror and a
convex lens of gravity waves [cf. Figs. 2(a)–2(c)].

The design recipe of gravity lenses, based on the theory
of Bragg resonance, can be simplified as follows. Consider
any arbitrary point in the x-y plane as the focal point. For
the ease of notation, assume that the coordinate system (in
physical domain) is centered at this focal point. Also, assume
that the incident wave is a monochromatic long-crested wave
propagating in the positive x direction. To achieve focusing
at the focal point, at any point (x,y), the resonant wave
wavenumber vector kr must be toward the origin (x,y) = (0,0).
Therefore, kr has to make an angle θ = tan−1(y/x) with the
negative x axis. Therefore,

kbx = ki(1 + cos θ ), kby = ki sin θ. (1)

Note that, since bottom topography is stationary, if the
direction of the bottom wavenumber changes by ±π radians,
the same result is obtained.

Physically speaking, Eq. (1) says that the bottom wavenum-
ber vector (i.e., both the wavelength and the direction of
ripples) at any location (x,y) of the patch must be different
from neighboring points. In order to design a patch, that
focuses wave rays toward a focal point, an approximate
but handy approach is to divide the patch into a finite
number of smaller subpatches. Then each subpatch is covered
with uniform ripples with the wavenumber equal to the
mean wavenumber of the subpatch required for focusing,
say the wavenumber at the center of that specific subpatch
[cf. Fig. 1(b)]. This approach proves to work if subpatches are
relatively large compared to wavenumber of the incident wave.
However, the focal point is not very sharp and discontinuities
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FIG. 2. (Color) (a) Schematic representation of the gravity wave
lensing: Incident waves enter from left and upon resonance interaction
with the (properly designed) seabed ripples get focused at a desirable
focal point. The focal point can be designed to be on the upstream
as well as the downstream side of the patch. In analogy to optics, we
call these configurations, respectively, a concave mirror and a convex
lens. (b) Direct simulation of a concave mirror for gravity waves. In
this case, a monochromatic surface wave of εi = kiai = 0.080 and
kih = 0.84 enters from left and upon interaction with the rippled
patch (maximum of εb = kbab = 0.640) its energy gets focused at
the designated focal point at x/λi = 0 (λi is the wavelength of the
incident wave). In the snapshot shown (t/Ti = 14.7, Ti is the period
of the incident wave), at the focal point ηf /ai=6.3, i.e., surface
elevation at the focal point is 6.3 times the amplitude of the incident
wave. Simulation parameters are Nx = Ny = 256, δt/Ti = 30, and
M = 3 for which the simulation is converged. (c) Direct simulation
of a convex lens for gravity waves. Parameters are the same as in
panel (b) except εb,max = 0.450. For the snapshot shown (t/Ti = 9.6),
ηf /ai = 2.7. In both cases, the amplification factor increases by the
increase in the amplitude and number of ripples.

at the edges of adjacent subpatches cause unwanted scattering
and instabilities in overpassing waves.

Here we present a methodology that obtains the continuous
geometry of ripples for the entire patch in order to achieve
an exact focusing. First, note that the bottom wavenumber
kb = kb(x,y) at each point is perpendicular to the crests and
troughs of the bottom undulations, but both the direction and
magnitude of kb is variable over the patch. The objective is
to find a continuous topography whose local wavenumber at
each location on the patch satisfies Eq. (1). To achieve this, we
define the vector nb perpendicular to kb (and hence along the
wave crests) with the magnitude equal to the magnitude of the
kb at that location, that is,

nbx = −ki sin θ, nby = ki(1 + cos θ ). (2)

It then can be shown readily that

∂nbx

∂x
+ ∂nby

∂y
= 0, (3)
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that is, nb = (nbx,nby) form a pseudovelocity field that satisfies
continuity. Therefore, a continuous stream-function can be
defined for the vector field nb. Since kb is perpendicular to the
streamlines of the vector field nb, these streamlines give the
same-height contours of the topography (including, e.g., crests
and troughs). As a result, once the ripple’s height is specified,
the three-dimensional topography can be uniquely obtained.
These streamlines are shown by dashed-lines (one wavelength
apart) in Figs. 2(b) and 2(c) and the actual topography is shown
in Fig. 2(a).

It is to be noted that if the steepness of seabed corrugations
are small and of the same order of magnitude as of surface
waves (which is the case in the present paper), then the effect
of bottom corrugations first appears at the second order of
nonlinearity (cf. Refs. [7,14]) and therefore the interaction is
nonlinear. Also, since the spatial variation of the bottom is fast
(same order as the overpassing surface waves), then the ray
theory in its original form does not apply. But a modified ray
theory with bottom as quasilinear terms may be used to find
the location and the approximate strength of the focusing.

III. DIRECT SIMULATION

To show the performance of the gravity wave lensing, we
use a high-order pseudospectral direct simulation technique to
numerically solve the governing equation (Laplace’s equation)
along with the associated (nonlinear) boundary conditions
[7,14,15]. This scheme is a phase-resolved direct simulation
tool that takes into account the evolution and simultane-
ous interaction of many [typically N = O(104)] number
of waves with an arbitrary order of nonlinearity [typically
M = O(10) in terms of perturbation expansion]. It has been
extensively investigated for convergence and cross-validation
against analytical and experimental results in different setups
[7,14,16–19]. Direct simulation is used here to, besides
validating our theoretical predictions, study in detail the
nonlinear problem of monochromatic and broadband surface
waves impinging upon gravity wave lenses and mirrors.

We first study the problem of a monochromatic wave
train incidence on a concave mirror [Figs. 2(a) and 2(b)].
Consider an incident wave of steepness εi = kiai = 0.080,
where ki,ai are, respectively, the wavenumber and amplitude
of the incident wave, arriving from −∞ and moving along the
positive x axis in an open ocean of normalized water depth
kih = 0.84. We set the focal point to be at (xf ,yf ) = (0,0)
and choose to have five ripples extending across the seabed.
Location of ripples are chosen downstream of the focal point
and we decide they start within the area 2λi < x < 4.5λi along
the centerline and extend in ±y directions (λi = |ki|/2π is the
wavelength of the incident wave). If more ripples are used,
stronger focusing is obtained until the strength is so large that
higher-order nonlinearities start to intervene. The area that
each single ripple occupies on the seafloor is shown by dashed
lines in Fig. 2(b). As shown in the figure, wavenumber of
ripples change and they bend as we move away from the y = 0
axis (the ripples shape just like a desktop concave mirror).
Maximum bottom steepness is along the centerline and is equal
to εb = kbab = 0.64.

We perform a high-order nonlinear direct simulation of
the above case in the computational domain. Simulation

parameters are Nx = Ny = 256, δt/Ti = 30, and M = 3,
for which the simulation is converged. Note that class I
Bragg resonance is a second-order phenomenon and therefore
technically a second-order analysis (i.e., M = 2) is enough
to capture this effect. Since our spectral method is based on
Fourier expansion, the horizontal boundaries are periodic in
both x,y directions. We choose a simulation domain larger
than the domain of interest and also implement a numerical
absorbing beach on the outgoing side of the domain.

Figure 2(b) shows a snapshot of the water surface after a
steady-state condition is reached. The specified focal point area
is shown by a dashed-line circle where the amplitude grows
to more than six times the amplitude of incident wave. A
similar case with the focal point on the downstream side of the
topography (a convex lens) is shown in Fig. 2(c). In this case,
we choose εb = kbab = 0.45 and arrive at the amplification
factor of 2.7 at the focal point. The amplification factor
increases by the increase in the amplitude of the topography
as well as the increase in the area of the seabed patch.

Analytical expression for the amplification factor at the
focal point is not readily at hand; however, an approximation
of the focal amplitude height may be obtained. The two-
dimensional problem of Bragg resonance of monochromatic
waves over a rippled bottom can be solved via perturbation
techniques. The reflection coefficient, R, defined as the
amplitude of reflected wave divided by the amplitude of
incident wave is given by

R(x,k,kr) = gd(k · kr)x

4Cgrω cosh kh cosh krh
, (4)

where d is the amplitude of the bottom topography, h is the
water depth, Cgr is the group velocity of the resonant wave, x

is the distance of interaction, and g is the gravity acceleration
[14]. The reflection coefficient R defined in Eq. (4) is for the
two-dimensional ripples, i.e., when ripples are infinitely long
in the transverse direction extending to ±∞. For a finite-width
patch (i.e., finite in the transverse direction) no closed-form
solution exists [12]. A rough leading-order approximation,
hinted by results of Ref. [12], is that the reflection coefficient
can be approximated by R∗ = R δy/(2λi) where δy is the
width of the patch and is assumed to be much smaller than
λi . Now the amplitude at the focal point can be found as a
summation over the wave reflections from every piece of the
patch. In the limit the expression is

Smax = 1 +
∫ yf

y0

∫ xf (y)

x0(y)

1

2λix
R(x,k,kr) dx dy, (5)

where Smax is the ratio of the maximum amplitude at the
focal point to the amplitude of the incident wave, y0,yf

coordinates of transverse lines limiting the topography, and
x0(y),xf (y) are initial and end x coordinates of bottom ripples
corresponding to each y. The first term on the right-hand side
of Eq. (5) accounts for the incident wave and the second term
(integral term) accounts for all the reflections from the gravity
wave lens. For the case of Fig. 2(b) (Concave mirror), we
obtain Smax = 5.6, which has ∼10% error compared to the
numerically obtained value of 6.3.

A more thorough analysis of multiple scales reveals that
the reflection coefficient Eq. (4) does not increase indefinitely
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with the increase with x (which is clearly a violation of
energy conservation), but over longer patches behaves like R ∝
tanh(x). Therefore, the reflection coefficient asymptotically
reaches unity when the longitudinal extend of the patch
approaches infinity. In other words, the strength of the focusing
increases with the increase in the number of ripples, but the
rate of growth of strength becomes exponentially slow as the
number of ripples becomes very large.

Bragg resonance and the resulting focusing phenomenon
are also achieved if there is a small detuning between the
wavenumber of the incident waves and those of the bottom
required to achieve a perfect resonance. The strength of the
focusing, however, decreases as the detuning increases until
detuning is large enough and focusing disappears (cf., e.g.,
Fig. 5 in Ref. [17], which is an example of how detuning
affects the strength of Bragg resonance).

IV. EXPERIMENT

We also present an experimental proof of the gravity wave
lensing. We consider a case of kiai = 0.157, kih = 1.57
and a maximum of kbab = 1.26. In a physical wave tank
of the size of 60 m × 2.4 m (width) × 1.8 m (depth),
these correspond to the mean water depth of 15 cm, incident
wave amplitude and wavelength of, respectively, 1.5 mm and
60 cm, topography wavelength along the centerline 30 cm,
and topography amplitude of 6 cm. A rigid 2.4 m × 2.4 m
three-dimensional topography was constructed by first placing
12 CNC-machined wooden guides along the longitudinal
direction. The guides were covered with plastic chicken
wire, a fiberglass mat, and fiberglass resin. The hardened
fiberglass was sanded to achieve the required smoothness.
A view of the middle section of the wave tank is shown in
Fig. 3(a) with crests of the topography visible through the water
[also cf. Fig. 3(b)].

Laser-induced fluorescence (LIF) was used to record the
wave surface profile histories at 20 sections parallel to the
wave tank wall. Specifically, two 1-Watt continuous wave
lasers were used to create vertically oriented laser sheets in
order to illuminate the surface of the wave. The lasers were
mounted 60 cm apart on aluminum profiles and connected
to a track with increments marked every 6 cm. The lasers
excited the fluorescent dye Fluorescein. Fluorescein has a
peak absorption at 494 nm and a peak emission at 521 nm.
Videos of the water surface were recorded with a digital
camera at 15 fps. The camera was positioned inside the
wave tank and above the free surface. Videos were taken
of the surface starting in the middle plane and going to the
plane 114 cm away from the centerplane. The videos were
converted into individual images and the images were analyzed
in MATLAB. Canny edge detection was used to determine the
intersection of the laser sheet and the water free-surface in
each image.

A side-by-side comparison of the experiment and the
numerical simulation is shown in Fig. 3(c), where good
agreement is observed (for a full video see Supplemental
Material [20]). The maximum amplitude at the focal point
[marked with white dashed-lines in Fig. 3(c)] is about three
times the amplitude of the incident wave.
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FIG. 3. (Color) Experimental investigation of the gravity wave
lensing. (a) Experimental setup. The photograph shows the middle
section of a 60 m × 2.4 m (width) × 1.8 m tank at the U.C. Berkeley’s
Richmond Field Station. To measure the time evolution of the water
surface profile, a laser-induced fluorescence (LIF) technique was used
(greenish color is due to fluorescent dye). Ripple crests [cf. panel (c)]
can be seen through the water and are marked by dashed lines on the
left side of the figure. (b) The 2.4 m × 2.4 m rippled patch before it is
colored in black and placed inside the wave tank. (c) A side-by-side
comparison of the experimental (left) and direct simulation (right)
results. The experiment is designed for a monochromatic incident
wave of εi = 0.016, kih = 1.57, and εb,max = 1.26. In terms of
physical variables, these parameters correspond to a water depth of
15 cm, incident wave amplitude of 1.5 mm, and wavelength of 60 cm,
topography wavelength along the centerline of 30 cm, and topography
amplitude of 6 cm (see Supplemental Material movies 1 and 2 in
Ref. [20]).

V. BROADBAND LENSING

With the theoretical, computational, and experimental proof
of the gravity wave lensing for a monochromatic incident wave
in hand, the next immediate question is whether the lensing can
be achieved in real ocean scenarios where an incident wave
group contains a spectrum of frequencies and is composed
of a multitude of (linearly or nonlinearly) superposed wave
components. Here, we show that broadband lensing is possible
through a similar mechanism. For a polychromatic incident
wave train, leading-order lensing is achieved by the superpo-
sition of proper bottom undulations, each corresponding to
one subgroup of incident wave components that have close
wavelengths. This, usually, does not require more space than
before, but just a polychromatic bottom undulation, hence can
be readily achieved. The efficiency of broadband lensing by
this method is shown here through a case study via direct
simulation.

Consider a Gaussian spectrum with a normalized spectral
density function S∗(ωr ) = 0.65 exp[−21(ωr − 1)2], where∫

S∗dωr = ∑
j 1/2(aj/as)2, in which ωr = ω/ωp, ωp is the
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FIG. 4. (Color) Gravity wave lensing for a broadband incident
spectrum. To achieve focusing in this case, the topography needs to be
polychromatic. (a) A water-surface snapshot from direct simulation of
focusing of a broadband (Gaussian) incident spectrum. Colors show
the surface elevation normalized by the significant wave amplitude
(as = Hs/2, where Hs is the significant wave height). In the snapshot
shown, the waveheight of the wave seen at the focal point exceeds
4as = 2Hs and therefore is a rogue wave by definition. (b) Steady-
state spectra at the upstream (blue dashed line) and downstream (black
dash-dotted line) of the lensing area compared with that at the focal
point (red solid line). Clearly, the spectrum at the focal point (F) has
a much higher energy (about four times the energy of the incident
spectrum). The downstream (shadow zone) spectrum, as expected, has
a lower level of energy. In this figure, ωp is the peak frequency of the
spectrum, and normalized spectral density function S∗(ω) is defined as∫

S∗dω = ∑
j 1/2(aj /as)2. Simulation parameters are Nx = Ny =

512, δt/Tp = 30, and M = 4, for which the simulation is converged.

peak frequency, and as is the significant wave amplitude (i.e.,
as = Hs/2, where Hs is the significant wave height). For a
direct phase-resolved simulation, we assume that the surface
is composed of seven waves at frequencies ωr = 0.67, 0.80,
0.93, 1.05, 1.15, 1.24, and 1.33. We design three separate
topographies corresponding to every other wave of this list,
i.e., for surface wave frequencies ωr = 0.80, 1.05, and 1.24.
We further assume that a specific area is provided for ripples
and therefore for the three topographies, respectively, 7, 10,
and 13 ripples can be placed on this area. We then superimpose
these three structures. Contours of the topography in darker
and brighter bands are superimposed to Fig. 4(a).

Results of the direct simulation of the broadband spectrum
incident to this patch is shown in Figs. 4(a) and 4(b).
Figure 4(a) shows a surface snapshot at t/Tp = 95 (Tp =
2π/ωp), where a strong wave focusing is observed at the
focal point. At this moment, the wave height at the focal point
(Hf ) is greater than four times the significant wave amplitude
and therefore by definition is a rogue wave at this sea state
(Hf = 2.19 Hs). Long-term spectrum of the incident wave,
the spectrum at the focal point, and downstream of the lens
are compared in Fig. 4(b). Spectrum at the focal point is much
more energetic than the incident wave and reaches an ampli-
tude more than four times higher. As expected, the downstream
spectrum has less energy than the incident spectrum.

Theoretical analysis, tracing of waves, and interpretation
of the details of the results in broadband lensing is more
complicated than those of monochromatic lensing. Usually
when more than just a few wave components simultaneously

present on the water, a complex network of interwoven
nonlinear interactions forms. Inclusion of a polychromatic
bottom topography further complicates the scenario. These in-
teractions include, for instance, sub- and superharmonic gener-
ations [21–23], quartet resonance between waves [24,25], and
higher-order Bragg resonances [7,14]. The direct simulation
scheme of higher-order spectral method used to simulate the
above cases efficiently takes all these interactions into account
[17,19].

Gravity wave lensing can, theoretically, be achieved at any
water depth and for any amplitude of ripples. The efficiency of
lensing increases linearly with both the number and amplitude
of ripples and decreases exponentially with the increase in the
water depth. This means that, to achieve the same efficiency
in a deeper water, a much higher number of ripples are needed
and/or ripples must have much higher amplitude. Monochro-
matic convex focusing can also be achieved using refraction
properties of water waves [26–28]. Refraction-based focusing,
however, only works for monochromatic waves, requires a
relatively large flat plate submerged but kept stationary close
to the water surface, and has a low-efficiency due to unwanted
yet unavoidable reflection of the incident wave [29].

Gravity wave lensing provides a powerful tool for manip-
ulating ocean waves. The efficiency of the idea is particularly
significant over the shallower areas of the ocean such as
continental shelves. Wave lensing may substantially contribute
to the efficiency of ocean wave energy devices by providing
localized high-energy wave zones. Therefore, instead of a
large number of (small and low-efficiency) wave energy
devices dispersed over a wide area, one (relatively large
and high-efficiency) device can be placed at the focal point,
receiving the majority of the energy of the initial area. This
should be of interest to the environment and also the sea
transportation as the covered surface of the sea is significantly
reduced. Through the dispersion of wave rays, wave lensing
may also have applications in creating localized safe havens
for fishermen and sailors in open seas, or if implemented in
large scales to protect shores and harbors against strong storm
waves. Artificial surf zones, quiet beaches, and open-sea water
parks are other potential applications of gravity wave lensing.
The lensing of ocean waves may also happen by natural seabed
features, and therefore further care must be taken into account
for the proper placement of (nearshore) facilities, particularly
in the areas with substantial bottom variations.

Bragg scattering, although different in details, is a common
concept in solid-state physics [30–32], optics [33], acoustics
[34,35], and hydrodynamics [7,11,14]. The idea demonstrated
here may have similar implications in any system admitting
Bragg resonance and if its medium can be freely architected.
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