
PHYSICAL REVIEW E 89, 023010 (2014)

Channeling and stress during fluid and suspension flow in self-affine fractures
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The flow of fluids and particulate suspensions in realistic models of geological fractures is investigated by
lattice Boltzmann numerical simulations. The walls are synthetic self-affine fractal surfaces combined to produce
a tight fracture, the fluid is a viscous Newtonian liquid, and the particles are rigid noncolloidal solid spheres. One
focus is channeling phenomena, where we compare the fracture aperture, the preferred paths for fluid flow, and
the preferred paths for suspended particles. The preferred paths are found to be somewhat similar for pure fluid
and particulates and not immediately related to the fracture aperture map. We further investigate the (tensor) stress
exerted on the fracture walls. Wall roughness tends to decrease stress by reducing the flow velocities adjacent to
it, an effect enhanced by the presence of particulates. Last, we examine the stress probability distributions and
their spatial correlation functions.
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I. INTRODUCTION

Flow through rock fractures is a key ingredient in fluid
recovery from aquifers and hydrocarbon reservoirs [1–3]
and many other applications and displays some unusual
characteristics originating in the special features of fracture
geometry. Very often the flowing fluids are not clean. They
are mixed with solid particles that either exist naturally or are
added artificially by intention. For example, in the process
of hydraulic fracturing (or fracking) for oil and natural gas
recovery, a fluid is pumped under high pressure into a rock
formation to create or restore small fractures in order to
stimulate production from new and existing oil and gas wells.
The fracking fluid is mainly a mixture of water and sand or
other ceramic materials (with some other chemicals). Fracking
enables the recovery of oil and natural gas from formations that
geologists once believed to be impossible to produce, such as
tight shale formations, and extends the production lifetime of
oil and gas fields. In geothermic applications, water is injected
into the fracture networks of a geothermal system to extract
the heat underground. The heat exchange rate clearly depends
on the flow field in the fractures and usually the underground
water is not clear. The transport of fluids and dissolved or
suspended contaminants in fractured rocks is also of great
interest for practical applications such as soil or water pollution
and waste storage.

At first glance a fracture may be approximated as a slablike
pore space, and modeling based on this approximation pro-
vides a simple description of fluid flow. In this approximation,
the simple “cubic law” [4] would account for Newtonian
fluid flow and sediment transport would be treated with no
additional complications in the same manner as well-studied
suspension flow in a flat channel. In fact, fracture walls are
rough and this roughness complicates the description of fluid
transport and introduces trapping phenomena into sediment
transport. The roughness in many cases is not random but that
of a self-affine fractal surface [5,6], which induces corrections
to the cubic law and long-ranged correlations in dispersion
processes, among other effects. For wide fractures, the cubic
law may be preserved in a usable manner by introducing
a roughness correction factor [7], but in the case of tight
fractures, the geometry is qualitatively altered. In this case,

a further consequence of roughness is flow channeling [8],
leading to reduced transport efficiency and anisotropy in
permeability. Fluid flow tends to concentrate along the widest
flow paths spanning the fracture, which are only a subset of
the void space and need not align locally along the pressure
gradient or average flow directions. Particle motion requires
a channel aperture larger than the particle diameter, which
renders some regions of a tight fracture interior inaccessible
[9], and, furthermore, particles are carried along with the
channeled flowing fluid at least in part, so “particle channeling”
is an inevitable result. Furthermore, a tight channel acts in
some respects as a size-selective filter and the accumulation
of particles further reduces permeability while fostering
anisotropy [10,11]. The result is that a particle-laden fluid
moving through a fracture has an extremely inhomogeneous
and time-dependent character, involving slow and fast regions
of fluid flow and empty, pinned, slow and fast regions
of particle flow. Furthermore, as we shall see below, the
fast regions for fluid and particles coincide only partially.
These variations in velocity are accompanied by variations
in stress, which in addition to hydrodynamic effects leads to
inhomogeneity in the stress exerted on the fracture walls.

In this paper we present unified numerical simulations of
fluid and particulate suspension flow in narrow self-affine
fractures in order to study the effects of this particular
tortuous geometry on transport. The calculations employ
the lattice Boltzmann (LB) method [12], which is ideally
suited for the irregular geometry of a fracture. As a by-
product of the flow calculations, the local tensor stress field
within the fracture is available and we report on the stress
that flowing fluid and particulate suspensions exert on the
fracture walls. In previous work we have applied the same
methodology to the study of permeability [13], dispersion [14],
anisotropy [15], and non-Newtonian effects [16] in simple
fluid flow and in particular on flow and sedimentation [17,18].
The latter paper considers the situation complementary to
this paper—transport of concentrated and homogeneously
distributed noncolloidal suspensions in model fractures with
self-affine surfaces but whose minimum aperture exceeds
several particle diameters and which are everywhere open to
particle transport.
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II. NUMERICAL METHOD

Our computations are based on the single-relaxation time
formulation of the lattice Boltzmann method [12] in which
artificial fluid particles move according to a discretized
Boltzmann equation on a highly connected three-dimensional
lattice. The solid particles are represented by a set of adjacent
nodes within a certain radius of a center for a spherical particle,
which translate and rotate according to the Newton and Euler
equations in response to the net force and torque exerted
by the neighboring fluid nodes [19,20]. Though we have
spherical particles in mind, the particles represented in this way
essentially have rough boundaries and are not perfect spheres
under this numerical approximation. The solid boundaries
are modeled by nodes containing neither solid nor fluid, and
the no-slip condition is enforced there by the “bounce-back”
rule. An explicit short-distance repulsive lubrication force
between particles is added to prevent accidental overlap
due to numerical inadequacy [21,22]. Further details on the
implementation and numerical tests of the method are given
in Ref. [23].

We consider pressure-driven flow and gravitational sed-
imentation of a noncolloidal particulate suspension flowing
through a 3D fracture channel bounded by two complimentary
surfaces. The two bounding surfaces are separated by some
distance in the direction normal to the mean plane and the top
(upper) surface is shifted relative to the bottom (lower) one by
a shear displacement R in the lateral direction. Experimental
investigations show that natural fracture surfaces are self-affine
and the surface height z(x,y) exhibits a power-law correlation,

C(r) = 〈[z(r + r0)−z(r0)]2〉 ∼ r2H . (1)

Here r = |r| (r is a vector on the base plane) and H is
known as the Hurst exponent. The Hurst exponent is a material
constant which depends on the type of rock considered [6]. We
adopt the value H = 0.8, which is appropriate for granite,
for consistency with our previous work on fracture flow
[13–15,18], and the surface is generated statistically by a
Fourier synthesis method [24]. The roughness of the surface
is controlled by the variance σ 2 of the surface height, and the
generated surface is rescaled so the standard deviation σ = 10
lattice spacings which is the size of the particles. The gap
between the top and the bottom surfaces is the aperture of
the channel and the aperture field h(x,y) varies from place to
place if R �= 0. We take x as the mean flow direction along
which a pressure gradient G is applied, y is the neutral or
vorticity direction, and a gravitational acceleration of strength
g is applied in the downward z direction. The flow domain
is a simulation box of dimensions Lx × Ly × Lz and periodic
boundary conditions are applied both in the x and y directions.
We consider the general case in which the shear displacement
R does not align with the x nor the y directions. The geometry
of the channel used in the simulations is sketched in Fig. 1(a).
In Fig. 1(b), the surface height profile of the bottom surface
used to construct our fracture channel is shown.

We assume that the suspending fluid is Newtonian and the
suspended particles have a density ρs greater than or equal to
the density of the fluid ρ, which is typical in natural geological
processes that involve minerals suspended in water. We assume
that the suspension is monodisperse and the particles are

FIG. 1. (a) Schematic drawing of the fracture channel used in
the simulations. The two bounding surfaces are complimentary and
self-affine. The upper (top) surface is displaced vertically upward and
shifted laterally by a displacement R relative to the lower (bottom)
surface, generating an aperture h(x,y) in between. (b) Height profile
of the bottom surface used to generate the fracture channel used in
the simulations.

spheres with diameter d = 10 lattice spacings. The size of
the simulation box is Lx = Ly = 25.6d. The height profile
h2(r) of the upper surface is related to the profile h1(r) of the
lower one by h2(r) = h1(r−R) + s (see Fig. 1), where s the
shift in the vertical (z) direction. We use R = 10i + 10j and
s = 27 lattice spacings. The precise values of these two choices
are somehow arbitrary, except that |R| is large compared the
lattice spacing and small compared to the lateral dimensions
of the channel, both |R| and s are comparable to the size of
the particles, and the resulting aperture field looks realistic. As
a result, the channel width Lz is 9.3d and the mean aperture
of the channel, as obtained by dividing the total free space
volume in the gap by the base plane area, is 2.7d. Contour
maps of the aperture fields of the fracture channels used in the
simulations are shown in Fig. 2.

The global particle concentration in the channel is con-
trolled by the number of particles, Np, placed in the domain.
Simulations are performed at Np = 81, 163, 244, 325, and
407, giving a range in the bulk solid volume fraction φ from
0.025 to 0.125 based on the free volume in the gap. These
nominal particle concentrations seem to be dilute. However,
consider the fact that much of the space is inaccesible to the
particles but still allows fluid to flow, due to the geometry of
the rough surfaces: The suspension is actually quite dense in
the high end of Np. Clearly, a more reasonable measure of
the particle concentration that takes the “dead” space of the
channel into account must essentially be geometry dependent.
In the absence of a better way to define the concentration due
to the complicated geometry, we shall stick to this nominal
concentration. In addition, we also simulate a pressure-driven
flow of pure fluid through the same channel with no particle,
i.e., φ = 0, and the results provide a basis for comparison.
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FIG. 2. (Color online) (a) The aperture field (left) of the fracture channel used in the simulations and the steady-state gap-averaged 2D
fluid speed (right) for a pressure-driven flow of pure fluid without particle through the channel. The vectors on top of the aperture field indicate
the gap-averaged 2D fluid velocity field. (b) The same plots as in (a) except that the channel is rotated 90◦ counterclockwise.

At the start of the simulations, the particles are uniformly
distributed inside the channel without overlapping with the
walls and all particles and the fluid are set at rest. We focus on
steady-state results in this paper. The numerical computations
are performed in dimensionless “lattice Boltzmann units,”
where the lattice spacing a and the time step τ are both unity,
there is unit mass at each node, the pressure gradient G is
imposed as a (dimensionless) body force, and the relaxation
time in the Boltzmann equation is 0.8 corresponding to a
kinematic viscosity ν = 0.1. In this work, we use G = 2 ×
10−5 and g = 0.001. To have a feeling for the scales involved in
a physical realization, consider d = 100 μm diameter particles
which when resolved with 10 lattice units corresponds to lattice
spacing a = 10 μm. If we interpret the kinematic viscosity as
a vorticity diffusion time, ν = a2/(6τ ), and choose water as
the pore fluid, then the time step is τ ≈17 μs. Since typical
dimensionless average fluid velocities turn out to be O(10−3),
the physical fluid velocities are 0.01–0.1 cm/s.

III. RESULTS

A. Simulations of pure fluid flows

First we present the geometry and characterizations of
the fracture channel used in the simulations and the steady-
state results of a pressure-driven flow of a pure fluid through
the channel. In Fig. 2, the contour map of the aperture field
of the channel is shown on the left side of the figure. Two

simulations were performed, the one in Fig. 2(a) (top row) and
one with the channel rotated 90◦ counterclockwise relative to
the first one, as shown in Fig. 2(b) (bottom). In both cases,
the pressure drops are applied in the positive x direction in
the figure. As can be seen from the figure, the local aperture
has a broad distribution about the mean 2.7d. However, due
to the fact that the particles have a finite diameter d = 10
lattice spacings, actually a lot of the space in the channel
is inaccessible to the particles. The distribution of the local
aperture field is shown quantitatively in Fig. 3.

In Fig. 4, the surface height correlation functions of the two
bounding surfaces used to create the channel is shown. We also
computed the correlation function of the aperture field accord-
ing to the same definition as in Eq. (1) and plotted it in the same
figure. Since the two bounding surfaces are complementary,
the correlations in the heights of the top and the bottom are
identical. Even though we generated a self-affine surface with
Hurst exponent H = 0.8, the correlation in surface height
in this case scales as r1.45 instead of r1.6. Presumably, the
discrepancy is due to truncation of the generated surface to
integer height in order to fit in the lattice of the lattice Boltz-
mann scheme. In this case, the aperture field has roughly the
same power-law correlation as the bounding surfaces, but the
correlation extends only to a range of about 10 lattice spacings
(size of the particle), which is consistent with the fact that
spatial correlations in the aperture field decay over a charac-
teristic length of the order of the shear displacement R [25].
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FIG. 3. (Color online) Distribution of the local aperture of the
fracture channel used in the simulations. The arrow marks the average
aperture.

In order to visualize the flow pattern inside the channel,
we consider the gap-averaged fluid velocity field obtained
by averaging the 3D fluid velocities over the gap of the
fracture at each point (x,y) on the base plane. The result
is a representation of the 3D velocity field defined on a 2D
plane. Since the average aperture (2.7d) is small compared
to the lateral size of the channel (25.6d) and for most of
the time we are only interested in the motion in the lateral
directions, this representation is reasonable and convenient.
Later we shall similarly define a gap-averaged particle velocity
field when we analyze the simulations with particles. On

FIG. 4. (Color online) Correlation functions of the self-affine
surface used to construct the channel and the aperture field of
the channel. The inset shows the correlations of the gap-averaged
steady-state fluid velocity field of pressure-driven flows of a pure
fluid through the channel in Fig. 2(a) (solid line) and the rotated
channel in Fig. 2(b) (dashed line).

the left of Fig. 2, the gap-averaged 2D velocity field (i.e.,
only the x and y components) of a flow without particles is
plotted as a vector field on top of the aperture, showing the
slight deviation of the flow from the mean flow direction. The
steady-state average flow velocity of the channel in Fig. 2(a) in
the mean flow direction is 4.296 × 10−3, while for the rotated
channel in Fig. 2(b), the average flow velocity is slightly
higher and is 4.741 × 10−3 in this case. For references, the
average flow speed for the Poiseuille flow of the same fluid
at the same pressure drop in a flat channel of width equal to
the mean aperture of our fracture channel is 1.127 × 10−2.
The additional resistance due to surface roughness and the
fluctuations in aperture results in roughly 2.5 times reduction
in the mean flow rate in this case. On the right of Fig. 2,
we plot the speed of the gap-averaged 2D velocity field (i.e.,
motion in the z direction is ignored). It shows that the fast flow
regions tend to form elongated channels along the mean flow
direction [8].

It is known that spatial correlations in fracture surfaces can
produce observable effects in, for example, the dispersion front
of a passive tracer [14], presumably via correlations in the fluid
velocity. However, the actual correlations in the flow velocity
field have never been demonstrated before. To understand
more the effects of the fracture geometry on the flow field, we
analyze the spatial correlations in the gap-averaged velocity
field according to Eq. (1) and the results are shown in the
inset of Fig. 4. It is clear that all three components of
the gap-averaged velocity field are spatially correlated. The
correlation functions obey a power law in a range similar to
that in the aperture field. In the neutral (vy) and the vertical (vz)
directions, the correlation functions have the same exponent,
1.79, which is close to 1.6, as expected from H = 0.8. On the
other hand, the power-law exponent is smaller and is equal
to 1.26 for the correlations in the mean flow component (vx).
If the correlations in the speed is considered instead of the
individual components of the gap-averaged velocity field, the
correlation function will be dominated by the one for vx since
this is the one with the largest magnitude.

In additional to the flow field, one is also concerned with
the forces and stresses acting on the bounding rock surfaces
when a fluid or a particle suspension flows through a fracture
since they determine the mechanical responses of the solid.
In general, stresses are difficult to compute for flows through
irregular geometry. But with the lattice Boltzmann method,
the shear stress tensor σij = μ(∂iuj + ∂jui) in the fluid can
be determined easily on the fly during the simulations [26].
We obtain the total stress −Pδij +σij , where P is the local
pressure, at the fluid sites next to the solid surfaces of the
channel and from this, we calculate the local stresses and
forces acting on the two bounding surfaces. We shall focus on
the normal force Fz = −P + σzz in the z direction, the usual
shear stress given by σzx , and the normal force acting in the
x direction given by Fx = −P + σxx . The last component is
the force acting on a wall in the x direction due to the flow in
the same direction. It is interesting because this force vanishes
for a flat channel. But for a channel with rough walls, the
fluctuations in the height profile obstruct the flow and result in
this additional force component. The (2D) distribution of the
normal stress force Fz, the shear stress force, and the normal
stress force Fx acting on the two solid walls for a pure fluid
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FIG. 5. (Color online) (a) The local normal force Fz in the z direction, (b) local shear stress force in the x direction, and (c) local normal
force Fx in the x direction acting on the two bounding surfaces for the pressure-driven flow of a pure fluid through the channel in Fig. 2(a).
The column on the left is for the top surface and the one on the right is for the bottom. The normal force Fz on the bottom is actually acting
downward and is negative, but only the magnitude of Fz is shown here.

flowing through the fracture channel in Fig. 2(a) are shown in
Fig. 5. These are the local stresses on the walls shown as a
2D map, that is, we add all the contributions of the stresses at
different heights on the walls at each base point (x,y) and plot
the sum on the xy plane with a color scale. The stresses acting
on the bounding surfaces of the rotated channel in Fig. 2(b)
are qualitatively similar. For the normal stress force Fz in
Fig. 5(a), the force on the bottom surface (as shown on the
right) is actually acting downward and should be negative,
but only the magnitude of the force is shown here. Figure 5(a)
shows that the normal stress force Fz in the vertical direction is
dominated by the hydrostatic pressure and only varies slightly

around 1/3—the value for Poiseuille flow in a flat channel.
However, the forces on the top and the bottom surfaces are
highly correlated (except that they should have opposite signs).
The distribution of the shear stress forces on the top and bottom
surfaces of the channel are shown on the left and the right of
Fig. 5(b), respectively. Naturally, the distribution of the shear
stress is inhomogeneous as expected due to the nonuniformity
of the fracture surface. The interesting point here is that there
are local regions where the shear stress is negative even though
the fluid flow is always in the mean flow direction. The average
steady-state shear stresses are 4.478 × 10−5 for the top and
4.496 × 10−5 for the bottom. This is approximately 6 times
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smaller than the shear stress at the walls of an equivalent flat
channel of width equal to the mean aperture subject to the
same pressure gradient. The reduction is presumably due to
the reduced flow rate as a result of the addition resistance
from the rough surfaces. But note that the shear stress on
the rough surfaces has a large fluctuation about the mean value
and the maximum is about 4 times higher than the stress of the
equivalent flat channel. Finally, the local normal stress force
Fx in the x direction at the top and bottom of the channel
are shown in Fig. 5(c). This component would be zero for a
flat channel because this is the force acting on the vertical
parts of the channel walls. In this case, the average steady-
state value is 1.453 × 10−4 for the top and 1.342 × 10−4 for
the bottom, with a large fluctuation. A closer look into the
distribution indicates that Fx is actually dominated by the
hydrostatic pressure, but the forward-facing vertical area of
the walls is the same as the backward-facing one, the total
force sums up and averages out to give a small average value.
Nevertheless, the magnitude is consistent with the order of
magnitude of the shear stress and its sign indicates that the
mean flow is in the positive x direction.

We analyzed the distributions of the shear stress force
and the normal stress force Fz in the vertical direction
quantitatively for the two channels in Fig. 2 and plot the
logarithm of the probability distributions versus the stress
forces in Fig. 6. The forces are standardized by subtracting
the mean from the force and then dividing by the standard
deviation. We found that, after the standardization, the two
stress components acting on the two walls for the two different
channels collapse into two different master curves even though
the forces on the two surfaces and for flows in different
orientations have different means and standard deviations.
However, the behaviors for the two normalized curves differ
substanitally. For the shear stress force, the semilog plot of the
probability distribution versus the stress as shown in Fig. 6(a)
fall on two straight lines on both sides about a maximum
point close to the mean, showing that the distribution of the
shear stress is exponential. More interestingly, the decay rates
of the distributions differ for shear stresses above and below
the mean value. We also performed additional simulations of
a pure fluid flowing through two other channels constructed
from shifted complimentary surfaces of completely different
geometry, each one for flows in two different orthogonal
directions, and found that the normalized shear stress data also
collapse to the same two curves in Fig. 6(a). So this behavior in
the shear stress is very robust. While for the normal stress force
Fz, the distribution is closer to a normal distribution, but not
quite. In Fig. 6(b), we show a similar plot for the distribution
of Fz. The semilog plot for the data from the two walls of the
two different channels all fall on a single master curve that
has an approximate parabolic shape but attempts to fit the data
by a quadratic or a cubic function both fail. We found that at
least a fourth degree fit is needed in order to describe the data.
Further investigations reveal that the distribution of Fz actually
follows quite close to the similarly standardized distribution
of the local aperture of the channel, which is also added to
Fig. 6(b) for comparison. For simulations of fluid flows in
channels with different geometry, the probability distributions
of Fz do not collapse but resemble the distributions of the
aperture field of the respective channels.

FIG. 6. (Color online) Probability distributions of (a) the local
shear stress force and (b) the local normal force Fz acting on the
two bounding surfaces for the pressure-driven flow of a pure fluid
through the two channels in Fig. 2. Black dashed lines are fits to the
data, and the green dash-dotted line in (b) is the distribution of the
local aperture of the channel.

We have shown in Fig. 4 that spatial correlations in the
aperture field would lead to nontrivial correlations in the
velocity field for a fluid flowing through a fracture channel.
It is natural to expect that similar correlations would also be
manifested in the stresses. In Fig. 7, the spatial correlation
functions, as defined in Eq. (1), for the shear stress force and
the normal stress forces Fz and Fx are shown. Figure 7 includes
data from the two bounding surfaces for the two different
channels and are all plotted on the log-log scale. The normal
stress force Fz in the z direction as shown in Fig. 7(a) clearly
exhibits a power-law correlation over an extended range. But
the exponent is about 1.03 which is much smaller than 1.6 as
obtained from the Hurst exponent for the underlying surface. In
the same plot, the correlation function for the shear stress force
is also shown. Initially, the shear stress force shows similar
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FIG. 7. (Color online) Spatial correlation functions of (a) the
local shear stress force and local normal force Fz, and (b) the local
normal force Fx in the x direction acting on the two bounding surfaces
for the pressure-driven flow of a pure fluid through the two channels
in Fig. 2. Solid lines are for the bottom surface and dashed lines are
for the top. All axes are in log scale.

spatial correlations with roughly the same exponent, but the
correlation is highly localized and decays very quickly when
one moves away. On the other hand, the normal stress force
Fx exhibits very little (almost no) correlation as indicated by
the small differences on scale of the vertical axis in Fig. 7(b).

B. Simulations of flows with particles

In this section, we present the results for simulations of
particulate flows in the model fracture channel as shown in
Fig. 2. The main features of our work are that the mean
aperture of the channel as well as the height fluctuations
of the bounding surfaces are comparable to the size of
the particles. The first feature defies treatment of effective
medium approaches of any kind and mandates the necessity of
tracking the dynamics of individual particles, while the second

one requires a computation method that can handle random
complex geometry effectively. The number of particles, Np,
in the simulations are 81, 163, 244, 325, and 407, which
correspond to the bulk solid volume fraction φ in a range
from 0.025 to 0.125. Three different realizations with different
initial distributions of particles are used for each value of Np.
All particles and the fluid are set at rest at the start of the
simulations and the calculations are run long enough to reach
steady states.

We show in Fig. 8 the gap-averaged fluid and particle
velocities in the steady states for the representative case of
Np = 244 particles flowing in the fracture channel as shown
in Fig. 2(a). The density ratio for the simulations shown is
ρs/ρ = 1.06 so gravity causes sedimentation effects in these
cases. The corresponding runs for the neutrally buoyant case
ρs/ρ = 1.00 where gravity has no effect are shown in Fig. 9.
The value Np = 244 is in the middle of the range of volume
fractions considered here. The gap-averaged particle velocity
field is defined in the same way as the gap-averaged fluid
velocity before, except that only sites occupied by particles
are included in the averaging in each column. Plots of the
results of the same simulations for particles in the rotated
channel in Fig. 2(b) are qualitatively similar. The first feature
that we noted in these figures is that different initial particle
configurations lead to distinctly different final states under
the same flow conditions. In consequence, in this situation
ensemble averaging is not at all equivalent to time averaging.
In Figs. 8 and 9, the color scales indicate the magnitudes
of the gap-averaged 2D velocities. The z components are
ignored. The black color in the particle velocity maps are
regions in the channels not occupied by any particle. Since
each map is the time-averaged result in the steady state for
a particular run, the continuous traces in the particle velocity
maps indicate the trajectories of the traveling particles for that
run and the localized (jammed) particles would form small
circular patches on the maps. Note that periodic boundary
conditions are applied to the mean flow (x) and the neutral
(y) directions, so anything (particles and fluid) that leaves a
boundary in the figures here would come in from the boundary
on the opposite side. An interesting feature in the particle
velocity maps is the existence of “hot spots,” the few locations
in the channel occupied by localized particles moving at very
high average speed compared to other particles in the same
run. The exact positions and speeds of the spots depend on
the initial configurations that lead to different landscapes
formed by the localized particles in the steady states. At
this volume fraction φ = 7.5%, it seems that particles flow
more readily in the neutrally buoyant case (ρs/ρ = 1.00), as
indicated by the higher fraction of the channel filled up by
the continuous paths in the particle velocity maps. The fluid
velocity maps in Figs. 8 and 9 show that there is a kind
of channeling effect within the fracture. It is obvious that
the high fluid flow speed regions form elongated channels
in the mean flow direction that roughly coincide with the
particle flow paths or the particle-free regions. On the other
hand, the low fluid speed dark regions are the area where
localized particles deposited. So basically, depending on the
random initial particle distributions, particles are moved by
the flowing fluid until, at the steady state, different regions
are jammed by deposited localized particles. These immobile
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FIG. 8. (Color online) Steady-state gap-averaged 2D fluid (top row) and particle (bottom row) velocity fields for Np = 244 (φ = 7.5%)
and ρs/ρ = 1.06 for three different realizations for flows in the channel in Fig. 2(a).

FIG. 9. (Color online) Steady-state gap-averaged 2D fluid (top row) and particle (bottom row) velocity fields for Np = 244 (φ = 7.5%)
and ρs/ρ = 1.00 for three different realizations for flows in the channel in Fig. 2(a).
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FIG. 10. (Color online) An example of steady-state gap-averaged 2D fluid (left) and particle (right) velocity fields for (a) Np = 81
(φ = 2.5%) and (b) Np = 407 (φ = 12.5%) particles flowing in the channel as shown in Fig. 2(a). The density ratio is ρs/ρ = 1.06.

particles together act as a static porous medium and modify
the geometry of the fracture channel, and, depending on the
final geometry, different flow patterns are formed.

In Fig. 10, examples of gap-averaged fluid and particle ve-
locities for Np = 81 (φ = 2.5%) and Np = 407 (φ = 12.5%)
are shown. The behavior of the systems is qualitatively similar
to the case Np = 244. Of course, at low volume fraction, the
particle concentration is low enough that many particles are
free to flow and only a few are trapped by the irregularities of
the fracture. At high volume fraction, particles trapped by the
fracture would block the motion of other particles, resulting
in localization of a large fraction of solid particles. In fact,
most of the particles in this example of Np = 407 are trapped
and the geometry of the fracture is modified so much that the
“channel” for the fluid to flow is distorted. In some cases at
high particle concentration, a complete jam may occur and no
particle can flow.

Having discussed the flow patterns of particle suspension
flows in fractures, we turn to the average behavior of the
systems in more detail. In Fig. 11, the average fluid and particle
velocities in the mean flow direction for all our simulation data
are shown. Each symbol in these plots is the result of averaging
over the whole channel and a time-averaging for frames in
the steady state for each individual run with different initial
particle configuration. The black dashed lines represent the
average over three different realizations in each case. The data
show that the average steady-state particle velocity depends
on the initial conditions. As discussed, different initial particle
configurations result in different steady states and we can see

FIG. 11. (Color online) (a) Steady-state average fluid and particle
velocities in the mean flow direction for flows in the channel shown
in Fig. 2(a) at different particle concentrations for ρs/ρ = 1.00 and
1.06. (b) The same plots for the rotated channel in Fig. 2(b). Different
symbols denote three different realizations and the dashed lines are
the average over the three realizations. The stars represent the average
fluid velocity for the pure fluid flow.
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that the dispersion of the average particle velocities
about the mean is large. On the other hand, the average
steady-state fluid velocity is not sensitive to the initial particle
configuration, as indicated by their small dispersions about
the mean. As the number of particles Np in the channel
increases, both the average fluid and particle velocities tend
to decrease as expected because increasing Np would result
in more particles being trapped, which would reduce the
free space volume of the channel and increase the resistance
to the flow. In a bulk unconfined homogeneous particulate
suspension, one would usually explain the reduction in
the flow rate as the particle concentration increases in terms
of the effective viscosity of the suspension. But here we have
an inhomogeneous confined system with complex boundary
geometry, the usual concept of effective viscosity cannot be
applied. For example, particle trapping by irregular walls is
completely absent in a bulk homogeneous suspension, and
no space in our channel is in the “bulk.” When comparing
the results for ρs/ρ = 1.00 to those for ρs/ρ = 1.06, we find
that the difference in density ratio does not make a significant
difference, as opposed to the case of open fractures [18]. The
average fluid velocities are almost identical for the two density
ratios. The average particle velocities for the two density
ratios are also quantitatively similar. The only small difference
is in the particle velocities at large Np where the average
velocity is lower for the higher density ratio, indicating that
the particles are more immobile. One explanation for the
insensitivity to the density ratio is the small mean aperture
compared to the particle size. Because the width of the
channel is so narrow and the height fluctuations in the walls
are comparable to the particle size, the particles are blocked
by the irregularities of the walls anyway. The high density
ratio causes sedimentation and results in particles settling
down at the bottom of the channel in the steady state. Since
the trapped particles almost always fill up the gap between the
two walls no matter whether they sink to the bottom or not,
there is not much difference in the landscape created by the
trapped particles. So basically the fluid sees a similar effective
geometry in either case; therefore, the average fluid velocity
is almost the same in both cases.

Next we turn our attention to the average shear stress
acting on the two walls of the fracture channel. This is a
quantity of practical interest since the mechanical response
of the solid depends on the forces acting on it. Similarly to
Fig. 11, the steady-state shear stresses averaged over the entire
wall for all our simulations are presented in Fig. 12. As in
Fig. 11, the symbols denote different realizations and the black
dashed line is the average over three different realizations
for each Np. Figure 12 shows that the average shear stress
decreases as Np (or φ) increases, presumably due to the
reduced flow rates. The ranges in the stress in Fig. 12(a) and
Fig. 12(b), which represent flows in two different orientations,
slightly differ. When comparing results for the two different
density ratios, we see that the average shear stresses are also
quantitatively similar. However, the density ratio definitely
makes a difference between the upper and the lower walls. At
ρs/ρ = 1.00 the particles are neutrally buoyant and the top and
bottom walls are the same, and, as a result, the shear stresses
acting on the two walls are almost identical. On the other
hand, sedimentation causes the particles to accumulate near

FIG. 12. (Color online) (a) Steady-state average shear stress act-
ing on the two surfaces of the fracture for flows in the channel shown
in Fig. 2(a) at different particle concentrations for ρs/ρ = 1.00 and
1.06. (b) The same plots for the rotated channel in Fig. 2(b). Different
symbols denote three different realizations and the dashed lines are
the average over the three realizations. The stars represent the average
shear stress for the pure fluid case.

the bottom surface and makes them harder to escape from the
irregularities at a higher density ratio ρs/ρ = 1.06. As particles
are trapped and immobilized, they increase the resistance to
the flow and reduce the fluid speed near the bottom wall. At
the same time, the layer near the top wall should be relatively
free of particles so the thin fluid layer near the upper surface
should flow a little faster. So one would expect the shear stress
at the top wall should be higher than the stress at the bottom,
and that is the case seen in Fig. 12. Though the intuition of
this way of thinking is based on the picture of a wide open
channel and it may not be completely correct in the case of
narrow fracture here, results in Fig. 12 suggest that this picture
should still be roughly correct.

Now we turn to the steady-state average normal force Fx

acting in the mean flow direction in Fig. 13. This component
is the force acting on a vertical section of the wall in the flow
direction due to the fluid flowing in the same direction and
would vanish for a flat channel. At each point, this component
actually contains a hydrostatic pressure part as well as a
viscous contribution σxx , but since the walls have both forward-
and backward-facing parts, the hydrostatic pressure tends to
cancel out when averaging over the whole wall, so at the end,
Fx represents a net “drag” force acting on the wall in the mean
flow direction. Same as before, the symbols denote results
of individual runs and dashed lines represent averaging over
different realizations at each Np in Fig. 13. From the figure, we
see that Fx decreases as the particle concentration increases,
which can be related to the reduced flow rate at high particle
concentration. However, besides the particle concentration,
the flow rate as well as the flow pattern also depend on
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FIG. 13. (Color online) (a) Steady-state average normal force Fx

acting on the two surfaces of the fracture for flows in the channel
shown in Fig. 2(a) at different particle concentrations for ρs/ρ = 1.00
and 1.06. (b) The same plots for the rotated channel in Fig. 2(b).
Different symbols denote three different realizations and the dashed
lines are the average over the three realizations. The stars represent
the average normal force Fx for the pure fluid case.

other variables such as the geometry of the bounding walls,
the orientation of the channel with respect to the flow, and
the final distribution of the jammed particles that essentially
varies from one realization to another, and the dependence
on these complicated factors is not well understood. When
comparing the results for the neutrally buoyant cases to the
corresponding results at ρs/ρ = 1.06 in Fig. 13, we find that
the results are similar. When we examine the final distributions
of the jammed particles for each realization for the two density
ratios at the same Np, we also find that the configurations are
similar, though differences in details exist (for example, see
Figs. 8 and 9). On the other hand, when results for flows in
different orientations are compared [Fig. 13(a) and 13(b)], the
results differ substantially. In particular, even the magnitudes
of the averaged force acting at the top and bottom surfaces are
switched. We do not understand the exact causes that make the
difference at the moment, but it may be due to the differences
in the geometry and the final configurations of the jammed
particles in the two cases because σxx acting on the walls
depends sensitively to the details of the flow field next to the
walls, which in turns depends on the geometry of the surfaces
and the final distributions of the jammed particles.

Finally, we analyzed the distributions of the shear stress
force and the normal force Fz acting on the bounding walls
of the two fracture channels in Fig. 2 for pressure-driven
particulate suspension flows in the steady state. Following
Fig. 6, we show in Fig. 14 the logarithm of the probability
distributions of the shear stress and the normal force Fz for
Np = 0 (pure fluid), 81, 244, and 407. Data for the other two
volume fractions are not shown here for clarity. The shear
stress and the normal force on the x axes of the figures are

FIG. 14. (Color online) Probability distributions of (a) the local
shear stress force and (b) the local normal force Fz acting on the
two bounding surfaces for particulate suspension flows at different
nominal particle concentrations through the two channels in Fig. 2.
Inset of the figure in (a) are smooth fits to the raw data for the
distribution above the maximum. Black dashed and green dash-dotted
lines in (b) are smooth fits to the pure fluid data and all the data sets
shown combined, respectively.

standardized in the same way as in Fig. 6. For each value of
Np, the data set includes results from all realizations and flows
in two orientations at the two density ratios, as well as the
forces acting on both the upper and the lower walls. For each
individual run, the mean and the standard deviation vary and
differ, even for the two walls. But after the standardization,
the distributions are very robust. First, let us focus on the
shear stress distribution in Fig. 14(a). The figure shows that
the distribution of the shear stress collapse into two groups
for stresses above and below a maximum close to the mean.
Each group roughly follows an exponential distribution with
its own decay rate. The decay rates (i.e., slopes of the straight
lines) are similar to those for pure fluid flows in Fig. 6. For
stresses below the maximum, all data sets collapse almost to
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a single straight line with very little dispersion. On the other
hand, data for all values of Np for stresses above the maximum
collapse to a single straight line only for low stresses within
five standard deviations from the mean. At higher shear stress,
the distributions start to differ and the dispersion is large for
larger Np. We believe that the large variations at higher particle
concentrations are due to different final configurations of the
jammed particles in different realizations. Note also that even
though the trapped particles in the final configurations are
localized in the global sense, they are always jiggling around
vigorously locally and this would create more variations in the
local stress. Usually, a Gaussian probability distribution is an
indication of a sum of independent random events. The fact
that the shear stress distributions here are exponential instead
of Gaussian indicates that the local shear stress at different
parts of the walls are correlated somehow.

Now we turn the the normal force distribution in Fig. 14(b).
The black dashed line and the fluid data set are the same
ones as in Fig. 6. Data at various values of Np are denoted
by different symbols and the green dashed line is a smooth
fit of all data sets combined. We can say that the data all
collapse roughly to a single distribution similar to the one for
pure fluid. For small force Fz within roughly two standard
deviations from the mean, the dispersion in the data from the
fit is small. For data below the mean, the averaged distribution
(green dashed line) is actually almost identical with the fluid
data (black dashed line). But for Fz above the mean, there
is some differences between the fluid and the data sets with
particles. The normal force distribution for pure fluid flows is
more symmetric. In any case, the distribution is definitely not
Gaussian. In the case of pure fluid flows, we show in Fig. 6
that the distribution of Fz roughly follows the one for the
aperture field. With particles, the localized trapped particles
in the steady state would modify the channel geometry and
the distributions of the trapped particles differs for different
realizations. This fact at least partly explains the dispersions
for data sets with Np �= 0.

IV. CONCLUSIONS

In this work, we have used numerical simulations to
investigate pressure-driven flows of particulate suspensions
of spherical solid particles in a Newtonian fluid in a narrow
fracture channel formed by two complimentary self-affine
solid walls that are separated by a displacement normal to
the mean plane and shifted relative to each other by a shear
displacement. Transport of the same material flowing in open
fractures and channels with flat walls were studied in previous
papers [17,18]. The case of a pure fluid flowing through such a
channel without particles is also studied for comparison. The
spatial correlation function of the height profile of a self-affine
surface assumes the form of a power law characterized by the
Hurst exponent H [see Eq. (1)]. As a result, the aperture field
of the channel is also spatially correlated and has the same
power-law correlation in a range up to the size of the shear
displacement. The geometry of the channel used in this study
is as close to a realistic geological fracture as possible and our
work here is the most realistic in this sense in studies of this
kind. The size of the particles is comparable to both the mean
aperture of the channel and the fluctuation in the height of the

bounding surfaces. Our emphases here is the interplay between
the confinement effect due to narrow channel width and the
blockage of particle motion due to irregularities in the walls. As
opposed to the case of open fractures in Ref. [18], resuspension
effects do not play a role here because the wall irregularities
have the same length scale as the channel aperture.

In the absence of particles, the flow rate for a fluid flowing
through a fracture channel is highly reduced relative to an
equivalent channel with flat walls of width equal to the mean
aperture of the channel, and obviously the precise rate depends
on the geometry of the specific channel and the orientation
of the flow. Due to perturbations by the irregular walls, the
local flow field is spatially nonuniform. However, fast flow
regions tend to form elongated channels in the direction of the
pressure drop irrespective of the orientation of the channel. The
fluid velocity field for flows in a fracture channel is spatially
correlated in a range similar to the correlation length of the
aperture field and the correlation functions have the form of
a power law. We find that the two velocity components vy

(neutral direction) and vz (vertical direction) have the same
exponent in their correlation functions, but for vx (mean flow
direction) the exponent in the correlation function is smaller.

In connection with the mechanical responses of the walls
of the fracture, we analyzed the forces exerted on the two
bounding surfaces when a fluid flowing through the channel.
The local normal force Fz in the vertical direction is dominated
by the hydrostatic pressure with small fluctuations, and it is
spatially correlated with a power-law correlation in an ex-
tended range similar to that of the bounding surfaces. However,
the exponent is less than H . The probability distribution of
Fz acting on the two walls are the same and follows the
distribution of the aperture field when suitably normalized. The
local shear stress force acting on the two bounding surfaces
is also spatially correlated, but only in a range similar to the
shear displacement, which is much smaller than the correlation
length for Fz. However, the probability distribution of the
shear stress, when normalized, has a universal exponential
form which is very robust. Another interesting feature is that
even though the total shear stress forces acting on the two walls
are positive (i.e., in the mean flow direction), the local shear
stress has large fluctuations and can be negative locally. The
local normal force Fx is the force acting on a wall in the x

direction (the mean flow direction) due to the fluid flowing in
the same direction. This force would vanish for a flat channel
and is a new feature for rough fracture walls. The magnitude of
this component is also dominated by the hydrostatic pressure
with local fluctuations due to heterogeneities in the flow field.
The distribution of the local force Fx has large fluctuations
that depend on the local orientation and area of the vertical
protrusion of the irregular walls and the local force can be
positive or negative. However, its average over the entire wall
is positive, consistent with the flow in the positive x direction.
In contrast with Fz and the shear stress force, the normal force
Fx shows very little spatial correlation.

For particle-laden flows the situation is more complicated
because the particles may become trapped and then act as a
filter or static porous medium and modify the geometry of
the channel. Furthermore, the structure of the final steady
state depends on the initial configuration of the particles,
which dictates which regions of the channel become jammed
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by trapped particles. The opposite behavior is found in the
suspension flows in open fractures, studied in Ref. [18], where
most of the steady-state results are independent of the initial
particle distribution (unless the overall particle concentration
is so high as to suppress relative particle motion). Ensemble
averaging is appropriate to identify mean behavior in the
latter case but not here, where different realizations may have
distinctly different behavior.

One result of particle jamming in the fracture is the
channeling effect observed for pure fluid flows that now occurs
for both fluid and particles, although the detailed flow fields
differ. Regions of the fracture where particles deposit have
an altered geometry where fluid velocities are reduced, which
promotes flow elsewhere. The preferential fluid channels thus
vary with deposition and, in turn, on the concentration and
initial distributions of the particles. Similarly, the preferred
particle channels do not simply coincide with regions of
fastest fluid flow but require a local aperture greater than the
particle diameter, in addition to the fact that their presence
and deposition affect the flow field of the carrying fluid.
These interdependent complications produce distinct spatial
distributions of rapid fluid and particle motion, although we do
observe some overlap of the two. The heterogeneity of particle
deposition, in tandem with the random geometry of the frac-
ture, leads to a local flow which may deviate significantly from
the direction of the pressure drop [for example, see Fig. 10(b)].

As for the global flow rates, both the average fluid and
particle velocities (in the mean flow direction) decrease
as the particle concentration increases since high particle
concentration leads to more particle jamming and produces
more resistance to fluid flow. The fluid flux is insensitive
to the final particle distribution, whereas the average particle
velocity changes from one realization to another. Gravity does
not have a significant effect on the global flow rates in these
tight narrow fractures. The average shear stress acting on the
bounding walls of the fracture also decreases as the particle
concentration increases, due to the reduced fluid velocity. In
contrast with the global flow rates, gravity does play a role in
determining the stresses because sedimentation and trapping
of particles near the bottom wall reduces fluid flow in that
region and creates a thin layer of faster flowing fluid near the
top. For neutrally buoyant particles, the top and the bottom are
statistically the same as is the stress. But for denser particles,
the shear stress on the top wall is larger than the stress on the
bottom (see Fig. 12). Even though the channel geometry is

considerably modified by trapped particles, the distributions
of the local shear stress on the walls are remarkably similar to
the one for pure fluid (Fig. 14), aside from stronger fluctuations
at high stress. The stress distribution is exponential and very
robust over a wide range. As with the local shear stress, the
distributions of the local normal force Fz acting in the vertical
direction are also very similar to the one for pure fluid except
for more fluctuation in the case with particles, probably due to
a variety of final distributions of trapped particles in the steady
state. Finally, for the average “drag” force, i.e., the normal
force Fx in the x direction due to fluid flowing in the same
direction averaged over the whole wall, the general trend is a
decrease as particle concentration increases because average
flow rates decrease.

Ultimately, our goal is to relate the transport of fluid and
particles to the fracture geometry, at least in a statistical
manner, a difficult problem due to the interactions among
the fluid, the particles, and the random wall geometry. The
three relevant length scales are the particle size, the mean
aperture of the channel, and the roughness of the bounding
walls. For a narrow, geologically realistic fracture, the problem
is exacerbated because all three length scales are comparable,
which makes analyses based on continuum or perturbation
approaches unsuitable and requires tracking of the dynamics
at the particle level. Although many of the results and trends
observed in the simulations are qualitatively consistent with
simple physical intuition, new and surprising results arise, such
as the exponential distribution of the shear stress acting on the
bounding walls and the nontrivial distribution of the normal
force. The origin of these distributions is not understood
at present. We further observed power-law correlations in
the velocity field and in the normal force and shear stress
acting on the walls for fluid flowing through a fracture. The
existence of such spatial correlations might be anticipated as
a consequence of the correlations in the bounding surfaces
where the no-slip boundary conditions are applied. However,
the exponents observed in the correlation functions in general
differ from the underlying Hurst exponent, and further analysis
will be required to obtain the connections between them.
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