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Evolution of a spherical hydrate-free inclusion in a porous matrix filled with methane hydrate
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The behavior of a small isolated hydrate-free inclusion (a gas bubble) within a porous matrix filled with
methane hydrate and either water or methane gas is analyzed. Simplifying assumptions of spherical symmetry,
an infinite uniform porous medium, and negligible effects of background temperature and pressure variations
focus the investigation on the features of the dynamics of a single bubble determined by a phase transition. Two
solutions are presented: an exact solution of the Stefan problem obtained when the effects of gas and water flow
are neglected, and a numerical solution of the full problem. The solutions are in good agreement with each other
and with known asymptotic dependencies, confirming that the effects of inertia and convection transport can be
neglected in the case of small inclusions. It is found that, after an initial adjustment, the radius of any small bubble
decreases with time following a self-similar solution of the Stefan problem. The lifetime of a bubble is evaluated
as a function of initial radius and the system’s physical parameters. Possible effects of such inclusions on the
filtration of methane to the surface and other aspects of the dynamics of hydrate-bearing deposits are discussed.
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I. INTRODUCTION

Methane hydrate is an icelike compound in which
molecules of methane are contained in a lattice formed by
water molecules [1,2]. The compound is thermodynamically
stable at low temperature and high pressure. The hydrates
occur as natural deposits as confirmed by drilling and indirect
(primarily sonic reflection) evidence. The observational data,
while far from forming a complete picture, indicate that the
deposits are vast, with the total carbon content certainly ex-
ceeding the cumulative content of the other fossil hydrocarbons
combined [3].

The thermodynamic stability requirements limit the exis-
tence of methane hydrate to a relatively deep and narrow layer
[1,2]. Underneath the layer, where temperature increases fol-
lowing the geothermal gradient, there often exists a sediment
layer saturated with free methane gas.

Apart from their potential as a new source of fossil fuel, the
current interest in natural hydrates is due to their possible role
as an agent of climate change [4]. It has been hypothesized that
an increase of surface temperature may lead to the dissociation
of hydrates and the release of methane into the atmosphere, and
with the large greenhouse capacity of methane, it may create
a positive feedback loop accelerating temperature growth
[5]. Estimates based on the typical times of diffusion of
heat and gas through sediments (see, e.g., [4,6]), while not
entirely conclusive, indicate that such a scenario is unlikely
to be realized as a major component of global warming in
a historically short time. The reason is that the typical time
of propagation of surface temperature perturbation to major
hydrate deposits and the time of filtration of methane to the
surface are long: thousands of years. Still, we cannot exclude
the possibility of a significant negative impact of hydrates,
either in the case of shallower Arctic deposits [7] or, as we will
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discuss below in this paper, due to the transport mechanisms
that are more potent than mere diffusion.

To assess the response of natural hydrates to global
warming, as well as to develop methods of methane extraction
for fuel, it is essential to understand all possible modes of
filtration of methane through the hydrate-saturated porous
medium. One such mode is associated with the formation
of small hydrate-free inclusions within deposits saturated by
hydrates, which are thermodynamically stable but close to
instability. Such inclusions may form near boundaries of an
extraction well or within a hydrate layer due to local pressure
or temperature variations. They may also appear as a result of
excursions of warm free gas and water from the underlying
gas-saturated layer (see, e.g., [8]).

In the rest of the paper, the term “bubble” is used
for such an inclusion. One should not confuse it with a
true bubble, which is an interior of a gas-liquid interface.
In our study, the term identifies a small isolated domain
within the hydrate-bearing deposits in which the hydrates are
absent, so the pores are filled with a gas-water mixture. The
pores of the surrounding deposits contain thermodynamically
stable hydrates and either excess gas or excess water. The
excess gas situation is commonly observed in permafrost
deposits, while the excess water case is typical for sea-shelf
systems.

The influence of hydrate-free inclusions (the “bubbles”)
on the evolution of hydrate-bearing sediments is poorly
understood. The following significant mechanisms can be
predicted on the basis of general physical reasoning. First and
probably foremost, if the bubbles survive for a sufficiently long
time, their upward motion driven by the buoyancy force may
significantly increase, perhaps manyfold, the rate of filtration
of methane to the surface. Should this be true, the estimates
based on the assumption of purely diffusive transport [4,6]
would gravely underestimate the time of reaction of hydrate
deposits to an increase of surface temperature. The models
used to evaluate methane extraction techniques would also be
significantly affected.
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Apart from the direct contribution into the upward transport,
the presence of a large number of bubbles is likely to affect
the dynamics of hydrate-bearing sediments in other ways. An
important aspect is the increase of the average permeability
leading to stronger gas and water flows and, thus, to stronger
convection heat and mass transfer. Also important and very
interesting for future studies is the possibility that a large num-
ber of bubbles may cause a global morphological instability of
surrounding deposits, in which accelerating local dissociation
of hydrates leads to the formation of large hydrate-free
pockets, which, in turn, may deform into vertical chimney-like
hydrate-free channels serving as effective conduits of methane
to the surface. This scenario, while yet unexplored, does not
seem unrealistic, especially if we assume the situation of
hydrates close to thermodynamic instability, which is routinely
observed in natural deposits.

At present, all the above-mentioned effects and mechanisms
are purely hypothetical. Neither observations nor theoretical
studies provide sufficient material to confirm or disprove their
existence. A critical missing element, upon which much of
the future work will depend, is an accurate estimate of the
lifetime of a single hydrate-free inclusion. This paper presents
an attempt to obtain such an estimate.

We analyze the bubble’s dynamics and lifetime using a
simplifying model focused on the effect of phase transition and
heat transfer. The model is applicable in the case of a small (few
cm) bubble. The problem is solved following two approaches.
In one, a numerical solution is found for the full model, in
which flows of methane gas and liquid water are included.
In the other, we follow the estimates of flow velocities in
a poorly permeable medium, which indicate that convection
heat transfer can be neglected in comparison with conduction
heat transfer. The problem is reduced to a spherically sym-
metric Stefan problem, for which we find a full analytical
solution.

The paper is organized as follows. After presenting the
model and numerical method in Sec. II, we state the Stefan
problem and describe its analytical solution in Sec. III. Results
of numerical solution of the full problem are presented and
compared with the analytical results in Sec. IV. Assessment of
the possibility of a bubble floating-up through the hydrate
deposit is provided in Sec. V, while Sec. VI contains
concluding remarks.

II. PHYSICAL MODEL, GOVERNING EQUATIONS, AND
NUMERICAL METHOD

We consider a boundless porous matrix of uniform proper-
ties with pores filled by methane hydrates and either water
(excessive water situation) or methane gas (excessive gas
situation). The effects of geothermal temperature gradient
and background pressure variation are neglected because we
consider phenomena within a small area (a few m), and
temperature and pressure do not change significantly at this
scale. The porous medium is assumed to be at tempera-
ture T and pressure P corresponding to hydrates, which
are thermodynamically stable, but close to the equilibrium
curve (the curve separating stability and instability regions of
the phase diagram). We use the common approximation of the

FIG. 1. Structure of a hydrate-free bubble within a hydrate-
bearing porous medium in the cases of excess water (a) and excess
gas (b).

curve from [9]

Peq(Teq) = � exp

(
A′ + B ′

Teq

)
, � = 103 Pa,

(1)
A′ = 38.98, B ′ = −8533.8 K.

The approximation can be applied for temperatures from 0 to
25 ◦C [9], which is close to the typical values of temperature
in hydrate-bearing sediments [1].

A small spherical hydrate-free inclusion (a bubble) of radius
R0 exists at the initial moment within the matrix, as shown in
Fig. 1. Temperature and pressure within the bubble are close
to those in the surrounding matrix, but shifted via an increase
of temperature or a decrease of pressure so that they are either
on the equilibrium curve given by (1) or correspond to weak
thermodynamic instability of hydrates.

We note that the assumed spherical shape is a simplification
of the real situation, where the capillary effects and other
mechanisms acting during the bubble’s nucleation and growth
are expected to lead to complex three-dimensional shapes. Our
assumption is justified as the one giving a starting point suitable
for the first study of the problem. It renders the problem easily
treatable and allows us to focus on the critically important
mechanism of phase transition. More realistic complex shapes
of the bubble are left for exploration in future studies.

No continuing heat supply or depressurization is assumed
within the bubble, so we have to expect the formation of hy-
drates on its boundary, and, since the thermodynamically stable
surrounding matrix is assumed infinite, the gradual decrease
of the bubble’s radius and, eventually, its disappearance. Since
the reaction of hydrate formation is exothermic, the process is
controlled by transport of heat into the surrounding matrix.

We analyze the bubble’s dynamics in the framework of
the model that takes into account the phase transition and
accompanying heat and mass transfer processes. As will be
discussed in detail later, the phase transition is limited to
a narrow layer between the hydrate-free and hydrate-filled
domains, which we will model as an interface.

Several other simplifying assumptions are made in the
model. The resistance of a porous matrix to flows of gas and
water is described by the Darcy law [10]. Capillary pressure
between water and gas, the solubility of gas in water, and
evaporation of water into gas are not taken into account.
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The solid porous matrix is assumed to be nondeformable
and having constant and uniform properties, such as porosity,
permeability, specific heat, and thermal conductivity. Due to
the dominant contribution of the matrix, its volume-averaged
specific heat and conductivity are used as cumulative specific
heat and conductivity in the entire domain of analysis [11].

Bubbles of small size (few cm) are considered. In addition to
rendering the background temperature and pressure gradients
unimportant, this allows us to neglect the natural convection
effect. This is easy to see using the evaluation of the Rayleigh
number based on the bubble size [10]:

Ra = ρgβk0L�T

ηχ
, (2)

where ρ,η,β are the fluid density, dynamic viscosity, and
thermal volume expansion coefficient, k0 is the matrix perme-
ability, χ is the thermal conductivity, L is the characteristic
linear scale of the system (about the bubble’s size), and
�T is the characteristic temperature difference. The resulting
Ra ∼ 10−6 is much lower than the critical number for the onset
of natural convection. The effect of gravity is, thus, completely
disregarded in our formulation.

Due to its much higher viscosity, the velocity of water is
much lower than the velocity of gas in our system. Neverthe-
less, the water flow should be taken into account because of
the higher heat capacity of water and the resulting possibility
of a significant convective contribution into heat transfer. At
the same time, changes of water saturation due to the flow are
small. We can assume, as an approximation, that the saturation
Sw remains constant outside the hydrate dissociation layer.

The ideal gas equation is applied to gaseous methane. This
is justified since the typical temperature of the system is much
higher than the methane critical point temperature. As an
approximation, we apply the ideal gas equation to describe the
relation between pressure, temperature, and gas density in the
entire solution domain, both in hydrate-free and hydrate-filled
zones. The applicability of the model is evident in systems
with excess gas. In the case of systems with excess water, we
use the model under the assumption that some small amount
of free gases remains within the hydrate zone.

Finally, the model assumes the existence of separate
hydrate-saturated and hydrate-free zones. As we will describe
shortly, the interface between the zones is described by special
boundary conditions, and we assume that there is no phase
transition outside the interface.

With the approximations just described, the governing
transport equations are

ms

∂(1 − Sw − Sh)ρg

∂t
+ ∇ · ρgvg = 0, (3)

〈ρC〉s ∂T

∂t
+ (ρgCgvg + ρwCwvw) · ∇T = 〈κ〉s∇2T , (4)

vg = −k0Fg(Sw,Sh)

ηg

∇P, (5)

vw = −k0Fw(Sw,Sh)

ηw

∇P, (6)

P = ρgRmT , (7)

TABLE I. Physical parameters used in the numerical model.

ms 0.25 k0 1.00 × 10−14 m2

〈ρC〉s 2.50 × 106 J/m3 K 〈κ〉s 1.50 W/m K
Rm 5.20 × 102 J/kg K Lh 5.00 × 105 J/kg
Cg 1.56 × 103 J/kg K Cw 4.20 × 103 J/kg K
ηg 1.80 × 10−5 Pa s ηw 1.80 × 10−3 Pa s
ρw 1.00 × 103 kg/m3 ρh 9.00 × 102 kg/m3

ρg0 1.16 × 102 kg/m3 ρw0 7.84 × 102 kg/m3

where ms is matrix porosity, 〈ρC〉s and 〈κ〉s are averaged
specific heat and thermal conductivity, which we define and
approximate as in Ref. [11],

〈ρC〉s = ms[(1 − Sw − Sh)ρgCg + SwρwCw

+ ShρhCh] + (1 − ms)ρsCs ≈ ρsCs,

〈κ〉s = ms[(1 − Sw − Sh)κg + Swκw + Shκh]

+ (1 − ms)κs ≈ κs,

S and F are phase saturation and relative permeability, ρ, η,
and v are density, dynamic viscosity, and velocity, and T and P

are absolute temperature and pore pressure. Indices s, h, w, and
g denote the characteristics of specific phases: solid matrix,
hydrate, water, and gas. Rm is the methane gas constant.

Equations (3)–(7) form the system for the gas density
ρg , temperature T , pressure P , and velocities vg and vw as
unknown variables. The physical properties are constant and
have the values listed in Table I. The hydrate saturation Sh is
equal to a prescribed constant in the hydrate-filled area and
to zero within the hydrate-free bubble. The water saturation
is also given by two constants, one for each area. Outside the
bubble, Sw = 0 in the system with excess gas or given by a
nonzero constant in the system with excess water. Within the
bubble, Sw is equal to a constant computed so as to maintain
water balance at hydrate dissociation at the interface:

ρwSw|in = ρwSw|out + ρ0wSh|out , (8)

where the indices “in” and “out” refer to fields inside and
outside of the bubble, and ρw0 is the mass fraction of water in
hydrate composition calculated in terms of density.

The relative permeability functions F are approximated by
linear relations

Fg(Sw,Sh) = 1 − Sw − Sh, Fw(Sw,Sh) = Sw, (9)

which represent the main terms in the power series expansions
of the classical nonlinear formulas [10,12] describing realistic
permeabilities. Our test computations have shown that the
approximation produces virtually the same results as the more
complex relations.

The kinetic rate of the hydrate-formation or dissociation
reaction is much higher than the rates of diffusion and
convection heat and mass transfer that control the variable
fields around the reaction zone. This allows us to assume, as
an accurate approximation, that the reaction occurs instan-
taneously and is limited to an interface of zero thickness
between the hydrate-free and hydrate-filled zones without
kinetic limitations. The interface is defined as a surface at
which pressure and temperature follow the threshold curve
P = Peq(T ) of thermodynamic stability of hydrates [see (1)].
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In our model, the reaction interface is a surface of solution
discontinuity, at which Sh and Sw change from in to out values,
and the balances of internal energy and gas mass, taking into
account reaction sources, are imposed:

msLhShρh0

〈κ〉s Vn = [∇nT ]io (10)

ms

[
Sw − Sh

(
1 − ρg0

ρg

)]
Vn = k0

ηg

[Fg(Sw,Sh)∇nP ]io,

(11)

where Lh is the latent heat of hydrate dissociation, Vn is the
component of interface velocity normal to the interface, ∇n is
the component of gradient in the same direction, and ρg0 is the
mass fraction of methane within hydrate in terms of volume
density. Water saturation Sw on the left-hand side of (11) is
taken on the bubble’s side of the interface, while the right-hand
side uses the notation

[f ]io = f |in − f |out

for the jump of field f from the hydrate-filled to the hydrate-
free side of the interface.

Pressure and temperature are continuous at the interface
and satisfy the equilibrium threshold (1):

Tin = Tout, Pin = Pout = Peq(Tin). (12)

The solution is assumed to be spherically symmetric with all
the variables being functions of r and t .

In the numerical analysis of Sec. IV, the governing
equations are transformed into a system for gas density ρg ,
temperature T , and pressure P as variables. The system is
presented in Appendix A. A finite-difference discretization of
second order in space and first order in time on a uniform grid
is applied. The time integration is based on an implicit scheme
with sequential linearization (see, e.g., [13], [14], or [15]).

The interface balance conditions (10) and (11) are im-
plemented using the isotherm migration method [13,14,16]
adapted to a multivariable problem. In this method, additional
source terms localized to the interface are added to the
governing equations to reproduce the effects of heat and
mass generation caused by phase transition. The method
implies numerical diffusion of the interface, with the interface
thickness as an adjustable parameter. In our solution, the
parameter was chosen in the course of test calculations so that
it provided the best agreement with the analytical solution of
the Stefan problem for a plane solidification front at the same
physical parameters. The resulting diffused interface thickness
was between two and three grid steps.

We note that the numerical model has been developed
so that it can be applied to a simulation of the arbitrary
three-dimensional evolution of the system with a deformable
interface. In this study, the analysis is limited to the one-
dimensional (1D) spherically symmetric case. The problem
is solved in the domain of radius Rd = 4.0 m with zero
r-derivative of pressure at r = 0 and r = Rd as boundary
conditions (see Fig. 2). The initial bubble radius equals
R0 = 4.0 cm. The derivative of temperature equals zero at
r = 0 and the external boundary.

FIG. 2. Geometry of the computational model.

Grid sensitivity studies have shown that grids with �r �
0.1 cm and �t � 100 s produce accurate solutions.

The background temperature and pressure values (small
variations of which are used for the initial state of the bubble
and surrounding matrix) are Teq = 280 K and P0 = Peq(Teq) ≈
4.93 × 106 Pa. The other physical properties are listed in
Table I. The phase saturations used in our computational study
(see Sec. IV) for the systems with excess water and excess gas
in the hydrate-bearing surrounding matrix are listed in Table II.
The values outside and inside the bubble are connected by
the relation (8) expressing mass conservation of water and a
similar relation expressing mass conservation of methane.

III. ANALYTICAL SOLUTION OF THE STEFAN PROBLEM

We start by looking more closely into the nature of heat
transfer in the interface area. The ratio between the rates of
convection and conduction heat transfer is estimated by the
Peclet number,

Pe = UL

χ
, χ = 〈κ〉s

〈ρC〉s , (13)

where L is the typical length scale, which is taken as the
initial radius of the bubble R0 ∼ 10−2 m, χ is the temperature
diffusivity outside the bubble, and the typical filtration velocity
U is outside the bubble. We assume the pressure equals
Peq(Teq) + �P outside and Peq(Teq) − �P inside the bubble
at the initial moment. The velocity U is evaluated on the basis
of the Darcy resistance law [10] with the initial pressure change
across the interface taken as the typical pressure variation:

U ∼ k0

η
f (S)

2�P

R0
. (14)

Substituting parameters from Tables I and II and assuming
�P of the order of 10−4Peq(Teq), we find that Pe ∼ 10−2 in
the case of excess water and ∼10−1 in the case of excess gas.

TABLE II. Phase saturations outside and inside the bubble used
in the numerical model.

System type Sh,out Sw,out Sg,out Sh,in Sw,in Sg,in

Excess water 0.10 0.90 0.00 0.00 0.96 0.04
Excess gas 0.50 0.00 0.50 0.00 0.39 0.61
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We conclude that the convection heat transfer must be much
weaker than the conduction heat transfer. This is confirmed
by direct evaluation of heat transfer rates in our numerical
solution of the full problem.

We see that, as an approximation that is reasonably accurate
for small bubble sizes and the physical parameters considered
here, we can neglect convection heat transfer and reduce the
problem to that of interfacial phase change controlled by
purely conduction heat transfer, i.e., the Stefan problem. In
the spherically symmetric case, the governing equations and
boundary conditions at the interface can be rewritten in terms
of temperature deviation from the equilibrium value at the
interface θ = T − Teq:

∂θ

∂t
= χ

1

r2

∂

∂r

(
r2 ∂θ

∂r

)
, (15)

r → 0, ∞ :
∂θ

∂r
= 0, (16)

r = R(t) : θ = 0, α
dR(t)

dt
=

[
∂θ

∂r

]
oi

, (17)

where

χ = 〈κ〉s
〈ρC〉s and α = msρhShLh

〈κ〉s (18)

and R(t) is the instantaneous location of the interface.
In the approximation, pressure variations and physical

properties related to gas and water filtration become irrelevant.
The difference between the excess gas and excess water cases
lies solely in the values of α due to different values of
hydrate saturation Sh. In the rest of this section, the analysis
is conducted in terms of α and χ varying within physically
possible ranges.

Our literature search has not produced a ready analytical
solution of (15)–(17). It appears that the classical Stefan prob-
lem of spherically symmetric solidification or melting, while
simple at first glance, is yet to obtain a complete analytical
solution [17]. Solutions based on approximations or addressing
special cases are, however, available. Many such solutions use
expansions into power series of a small parameter, usually the
reciprocal Stefan number [18–20]. Only the first several terms
of such series can be evaluated analytically. The rest requires
numerical solution. Another possibility is to assume an infinite
solution domain and use a self-similar solution [13], possibly
with two self-similar variables and in combination with a
series expansion describing the initial stages of the system’s
evolution [21]. A review of these and other approaches can be
found in [17].

We have derived a self-similar solution of the problem
(15)–(17) that is valid in the case of an infinitely large domain
and equilibrium initial state within the bubble. The classical
self-similarity ansatz

θ = f (ζ ), ζ = rt−1/2 (19)

is not helpful in the case of a contracting bubble, since the
resulting expression for the bubble radius R(t) = t1/2, where
 is the value of ζ such that f () = 0 [see (17)], can only
be used for an expanding bubble. We introduce a different
ansatz based on the shifted negative time τ = t − tm that varies
from −tm to 0, where tm is the lifetime of the bubble. The

self-similarity variable becomes

ζ = r|τ |−1/2. (20)

Substitution of θ = f (ζ ) into (15) results in the ordinary
differential equation

− 1

2χ
ζf ′ = f ′′ + 2

ζ
f ′. (21)

The interface is defined by the condition

θ = f (ζint) = 0. (22)

In accordance with (20) and following the indications
produced by the numerical solution of the full problem
(see Sec. IV), we take

ζint = ,  > 0, (23)

so the bubble radius follows:

R(t) = |τ |1/2. (24)

The energy balance condition at the interface becomes

− 1
2α = f ′

out − f ′
inatζ = ζint. (25)

The boundary conditions at r → 0 and r → ∞ transform to

ζ → 0 : f ′ = 0, (26)

ζ → +∞ : f ′ = 0. (27)

The general solution of (21) is

f (ζ ) = C2 + C1

(
exp(−ζ 2/4χ )

ζ
+

√
π

4χ
erf

ζ√
4χ

)
, (28)

f ′(ζ ) = −C1

ζ 2
exp(−ζ 2/4χ ), (29)

where C1 and C2 are the integration constants to be determined
from the boundary conditions.

Inside the bubble, (26) and (22) give C1 = C2 = 0, making
(28) identically zero: fin ≡ 0. We see that the self-similar
solution is only possible for the special case when the
temperature inside the bubble is identically equal to the
equilibrium interface temperature Teq. This limitation is not
as severe as it may seem at first glance. The results of
the numerical analysis discussed in the next section show
that a solution starting with arbitrary slightly nonequilibrium
initial conditions adjusts itself quickly so that thermodynamic
equilibrium corresponding to fin ≡ 0 is established within the
bubble.

Outside the bubble, the problem is underdefined, since
the condition (27) is satisfied by the solution (28) and (29)
automatically at any C1 and C2. To regularize the problem,
we introduce an additional boundary condition, according
to which the difference between the ambient and interface
temperature tends to a constant at r → ∞:

fout → � = Tout − Teq < 0 at ζ → +∞. (30)

The value of � determines the closeness of the hydrates in
the surrounding matrix to instability.

023008-5



TSIBERKIN, LYUBIMOV, LYUBIMOVA, AND ZIKANOV PHYSICAL REVIEW E 89, 023008 (2014)

The integration constants can now be expressed as

C1,out = 1

2
α3 exp(2/4χ ), (31)

C2,out = � − 1

2

√
π

4χ
α3 exp(2/4χ ). (32)

The boundary condition (27) leads to the transcendental
equation for :

� + 1

2

√
π

4χ
α3 exp(2/4χ )

(
erf

√
4χ

− 1

)
+ 1

2
α2 = 0.

(33)

Introducing y = /
√

4χ , we can rewrite the equation in a
compact form:

�

2χα
= y2[

√
πy exp(y2)(1 − erf y) − 1]. (34)

The equation can be solved numerically. Typically, it has two
solutions, one with negative and one with positive . Only the
second solution is, evidently, physically relevant.

The evolution of the bubble radius (24) can be rewritten in
physical variables as

R(t) = R0

(
1 − t

tm

)1/2

, (35)

dR(t)

dt
= −1

2

R0

t
1/2
m

(
1 − t

tm

)−1/2

, (36)

where the initial radius R0, lifetime tm, and constant  are
related as

 ∼ R0

t
1/2
m

. (37)

We have computed roots of (34) in a broad range of
parameters. The results are presented in Fig. 3. In the frame-
work of our model neglecting the convection heat transfer,
the sole difference between the two cases is, evidently, in

the value of the hydrate saturation Sh,out, which affects the
value of the interface coefficient α. All other parameters
being equal, higher saturation in the excess gas case means
lower  and longer lifetime (see Fig. 3). As an example,
for a bubble of initial radius 4 cm at � = −10−2 K, our
results show tm ≈ 5.8 × 105 s in the case of excess water and
tm ≈ 3.0 × 106 s in the case of excess gas.

The solution shown in Fig. 3 demonstrates that  and,
thus, the lifetime of a bubble of a given radius are strongly
affected by α and the temperature difference �, but not by the
thermal diffusivity χ . The solution can be compared with the
qualitative estimate of freezing time obtained for the classical
spherical Stefan problem [21]. In the limit of large inverse
Stefan number determined as

Ste−1 = −msShLh

〈ρC〉s� (38)

(Ste−1 ∼ 103–104 in our system), the estimate corrected to
take into account the volume content of hydrate is

t∗m ∼ −R2
∗msShρhLh

〈κ〉s� τe = −R2
∗

�
τeα, (39)

where R∗ = 2/3R0 is the time-averaged radius of the bubble
and τe is a constant approximately equal to 1 [21]. Our results
are in good agreement with (39). For example, the lifetimes of
a bubble of initial radius 4 cm reported above are close to the
estimates by (39): 5.3 × 105 s in the case of excess water and
2.7 × 106 s in the case of excess gas.

IV. NUMERICAL SOLUTION OF THE FULL PROBLEM

The numerical simulation is provided for system parameters
shown in Table I with phase saturations in the excess gas and
excess water cases listed in Table II.

Two kinds of initial conditions are used. The first is em-
ployed to reproduce the self-similar solution (28) numerically
using the full system (3)–(7) including the fluid flows and
convective heat transfer. The initial pressure is constant Peq

throughout the computational domain, while the temperature

FIG. 3. Results of the analytical solution. Constant  [see (37)] is shown as a function of thermal diffusivity χ and interface parameter α

[see (18)] for the difference between the far-field ambient and interface temperature � equal to −10−1 K (a) and −10−2 K (b). Points marked
by indices g and w indicate the systems with excess gas and excess water considered in the numerical analysis of Sec. IV.
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distribution initially follows the self-similar solution (28) with
constants C1 and C2 determined from (31) and (32):

θ (r) = 0 at r � R0, (40)

θ (r) = � + 1

2
α3

√
tm

r
exp

[(
2 − r2

tm

) /
4χ

]

+ 1

2

π

4χ
α3 exp(2/4χ )[erf(r/

√
4χtm) − 1]

at r > R0, (41)

where  and tm are obtained from (34). The initial value of
temperature at the outer boundary of computational domain
r = Rd corresponds to Tout = Teq + � [see (30)].

To verify the numerical method and the analytical solution
of Sec. III, computations are first conducted with the gas
and water velocities set to zero. The computed and analytical
results are found to be in nearly perfect agreement with each
other. A small (within a few percent) difference between the
temperature profiles is observed far from the bubble, which
can be attributed to the numerical discretization error of
the scheme. The computed radius of the bubble follows the
analytical solution very closely.

The numerical solution of the full system of equations is
compared with the analytical solution in Figs. 4(a) and 4(b).
We see that the bubble radius (marked as a point where θ first
deviates from zero) evolves in good quantitative agreement
with the analytical solution. Comparing the temperature pro-
files, we see very good agreement in the case of excess gas [see
Fig. 4(b)]. On the contrary, the temperature profiles computed
in the case of excess water show significant deviation from
the analytical solution. This can be attributed to the effect of
convection heat transfer by water just outside the interface.
We conclude that this effect is important and should be
taken into account if realistic distributions of temperature are
desired.

In the second set of simulations, we investigated the
effect of various types of nonequilibrium initial conditions.
In particular, pressure was initially set to P = Peq(Teq) + �P

outside the bubble and P = Peq(Teq) − �P inside it. Here,
�P = 10−4Peq was a small excess pressure, which set the sys-
tem’s closeness to thermodynamic instability. The temperature
was initially constant, Teq − �, outside the bubble. Inside, the
temperature was either Teq or increased according to

T − Teq = A{exp[−a(r/R0)2] − exp(−a)}, (42)

where the constants were A = 3 K and a = −0.016 selected
so that the maximum temperature increase within the bubble
was about 0.05 K.

The main result was that the nonequilibrium initial states
only affected the early stages of the bubble evolution. The
pressure adjusted to a uniform constant value in the entire
domain. This was accompanied by a jumplike reduction of the
bubble radius. Temperature became uniform inside the bubble
and corresponded approximately to the analytical solution
outside it. The time scale of temperature adjustment was larger
than that of pressure adjustment but still much smaller than the
total lifetime of the bubble, tm.

After the initial adjustment, the computed solution followed
the analytical solution with small deviation due to the
convection effects and numerical discretization error. Most
importantly, the bubble radius evolved in accordance with the
square-root law given by (35). The computed lifetime tm as
a function of the system’s physical parameters was in good
agreement with the values of  [see (37)] predicted by the
analytical solution, with the difference being first not large
and second fully accounted for by the initial adjustment. We
can conclude that the analytical solution of Sec. III gives an
accurate prediction of the bubble lifetime in the conditions
considered in this paper.

V. IMPLICATIONS FOR THE DYNAMICS OF
HYDRATE-BEARING SEDIMENTS

We can now return to the main motivation of our study
stated in the introductory section of this paper, namely to
the role of the typical lifetime of bubbles in the dynamics of
hydrate-saturated deposits. We start with the possibility of the

FIG. 4. Comparison between the analytical self-similar solution and the numerical solutions of the full problem with initial conditions
taken from the self-similar solution (40) and (41). Temperature distributions for three moments of time are shown at � = −0.01 K for the
cases of excess water (a) and gas (b).
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transport of methane to the surface by floating-up bubbles.
Here, a direct assessment can be made assuming that the
hydrate layer has excess water and that the filtration is driven
by the buoyancy force. The velocity of a bubble’s upward
motion can be estimated as in [22]:

V = 2k0g(ρi − ρo)

ms(2ηi + ηo)
, (43)

where ρ,η are the effective density and viscosity of fluid inside
and outside the bubble. Using the system properties listed in
Tables I and II, we find that a bubble has velocity of the order
of 10−8 m/s. The results of the analytical solution summarized
in Fig. 3 show that under physically possible conditions, the
value of  is never smaller than 10−6, a more likely value
being about 10−5. Taking  = 10−6 and considering bubbles
of initial radii less than 10 cm, we obtain the upper limit
estimate of the bubble lifetime as tm ∼ 108 s. This means that
the bubble passes a distance less than 1 m over its lifetime,
which is, of course, much smaller than the typical thickness of
the hydrate stability zone. We conclude that no such bubbles,
unless they are generated very close to the upper surface of
the hydrate layer, can survive long enough to deliver methane
directly to the atmosphere.

At the same time, at a high concentration of bubbles, the
contribution of their motion into cumulative gas transport can
be significant in comparison to transport by diffusion. This
means that the commonly used diffusion-based assessments
of the gas filtration rate have to be reconsidered in situations
in which the existence of hydrate-free bubbles is suspected.
The list of such situations may include, for example, the
surroundings of an extraction well or the surroundings of the
often observed excursions of free methane gas into the hydrate-
bearing zone arising due to variations of local properties of the
deposits (see, e.g., [8]).

The existence of hydrate-free bubbles increases the average
permeability of a porous medium. Even if the effect is
limited in time, it may have significant implications for the
dynamics of the hydrate-bearing deposits. In particular, it
leads to stronger flows of water and gas, and it may facilitate
instabilities of the system. One example of such instability
occurring at the lower boundary of the hydrate layer separating
it from the underlying layer saturated with free methane gas
has been presented in [23]. Other instabilities, including those
occurring inside the hydrate-bearing layer and leading to
the development of large areas with dissociated hydrates or
chimney-like hydrate-free channels, are theoretically possible,
but they require both observational and modeling studies.
Whether a bubble with an expected lifetime of the order
tm ∼ 108 plays a role in such instabilities remains to be
seen.

VI. CONCLUDING REMARKS

We have studied the evolution of a small (a few cm)
hydrate-free inclusion within the hydrate bearing sediments.
The problem has been solved numerically in the framework of
a full model describing the phase transition and heat and mass
transport and analytically using the model, in which flows of
gas and water are neglected. In the case of the simplified model,
the problem can be set as a Stefan problem, for which we have

found a self-similar solution. According to the solution, the
radius of the bubble follows the square root law by (35) and
its lifetime is determined by (37) with the parameter  being
primarily a function of the interface parameter α [see (18)].
The role of the second parameter χ expressing the thermal
diffusivity is significantly smaller.

From the comparison between the numerical and analytical
solutions, we have found that the evolution of the bubble’s
radius and its lifetime are accurately represented by the
simplified model. At the same time, the difference between the
temperature profiles found in the two solutions indicates that
the convection heat transfer, especially that produced by water
flow, should be taken into account if an accurate representation
of heat transfer properties is desired. This is particularly true
in problems with multiple bubbles, where their concentration
is high enough to affect the state of the surrounding deposits.

An important result of our study is an estimate of the typical
lifetime of a bubble. It has been found that the lifetime is
usually too short for the bubble to reach the upper surface of the
hydrate layer. At the same time, the lifetime is not negligibly
small, which means that the presence of bubbles in the
hydrate-saturated layer can make a significant contribution to
the heat and mass transport through the layer. The presence of
the bubbles increases volume-averaged relative permeability
and may significantly affect the dynamics of hydrate-bearing
sediments in response to an extraction well or the increase of
surface temperature.

The results obtained in this paper do not apply to the case
of large bubbles, when the assumptions of negligible inertia
and convection transport become invalid. In that case, one has
to consider instabilities and deformation of the bubble surface,
and the predictions of lifetime and filtration speed have to be
reconsidered. The self-similar solution obtained in this paper
can be used as an initial point for such studies, where the
presence of convection heat and mass transfer, the geothermal
gradient, can be taken into account.

ACKNOWLEDGMENTS

Work was financially supported by the Civilian Research
and Development Foundation (Grant No. RUP1-2945-PE-09)
and the Russian Foundation for Basic Research (Grant No.
09-01-92505).

APPENDIX: TRANSFORMED EQUATIONS

For the numerical solution, the governing equations (3)–(7)
are transformed by direct substitution of the velocities into the
heat and mass conservation equations. In this way, we obtain
the system of three equations for the pressure P , temperature
T , and gas density ρg . The phase saturations are assumed
constant inside and outside the bubble.

The transformed system of equations is as follows:

ms (1 − Sh − Sw)
∂ρg

∂t

= k0

ηg

Fg(Sg,Sw)(ρg∇2P + ∇ρg · ∇P ), (A1)
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〈ρC〉s ∂T

∂t
= 〈κ〉s∇2T + k0

(
ρgCgFg(Sg,Sw)

ηg

+ ρwCwFw(Sg,Sw)

ηw

)
∇P · ∇T , (A2)

P = ρgRT , (A3)

where the notation is as in Sec. II.
Analyzing the computed solutions, we have found that

there are always two stages of the time evolution of the
system. The first is the rapid adjustment from the initial
conditions to the state resembling the analytical solution of

Sec. III with equilibrium inside the bubble. The second stage
is the slow evolution with the bubble’s radius following the
self-similar formula (35). During this stage, the gas density ρg

is nearly constant in the entire solution domain. According to
(A1), this implies ∇2P = 0, i.e., the water velocity satisfying
the incompressibility condition ∇ · vw = 0. This confirms, a
posteriori, the validity of our assumption of constant water
saturation Sw. We note that the situation that was just described
is only realized in the case of small bubbles considered in
this paper. Our preliminary simulations of large (about 0.5 m)
deformable inclusions show that the variations of Sw are not
negligible, and the equation-of-mass conservation of water has
to be added to (3)–(7).
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