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Two phenomenological constants explain similarity laws in stably stratified turbulence
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In stably stratified turbulent flows, the mixing efficiency associated with eddy diffusivity for heat, or
equivalently the turbulent Prandtl number (Prt ), is fraught with complex dynamics originating from the scalewise
interplay between shear generation of turbulence and its dissipation by density gradients. A large corpus of data
and numerical simulations agree on a near-universal relation between Prt and the Richardson number (Ri), which
encodes the relative importance of buoyancy dissipation to mechanical production of turbulent kinetic energy.
The Prt–Ri relation is shown to be derivable solely from the cospectral budgets for momentum and heat fluxes if a
Rotta-like return to isotropy closure for the pressure-strain effects and Kolmogorov’s theory for turbulent cascade
are invoked. The ratio of the Kolmogorov to the Kolmogorov-Obukhov-Corrsin phenomenological constants,
and a constant associated with isotropization of the production whose value (= 3/5) has been predicted from
Rapid Distortion Theory, explain all the macroscopic nonlinearities.
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I. INTRODUCTION

Turbulence in a stably stratified fluid characterizes many
geophysical flows such as oceanic flow or air flow over
cold surfaces including lakes, ice sheets, and land surfaces
at night. Its structure is determined by complex interactions
between the static stability of the fluid and processes that
govern shear generation of turbulence. An assertion by climate
and weather forecasting practitioners that “no theory of the
stably stratified atmospheric boundary layer (SBL) is generally
accepted as definitive even for idealized cases” [1] remains
mostly unchallenged despite six decades of experiments and
simulations [2–4]. It is now accepted that the flow properties
within the SBL vary with the flux (Rf ) or gradient (Rg)
Richardson numbers, named after Lewis Fry Richardson
who pioneered numerical weather forecasting in 1920 [5].
In horizontally homogeneous wall-bounded turbulent flows
where the buoyancy is generated by temperature variability,
these dimensionless numbers are given by [6]

Rf = β w
′
T

′

−Pm

; Rg = β�

S2
, (1)

where Pm = −Su
′
w

′ is the shear or mechanical production
rate of turbulent kinetic energy (TKE), βw

′
T

′ is the buoyancy
destruction rate of TKE, β = g/T is the buoyancy parameter,
g is the gravitational acceleration, T is the mean air tem-
perature, S = dU/dz and � = dT /dz are the mean velocity
and air temperature gradients at z, respectively, z is height
from the ground surface assumed to be much larger than
the viscous sublayer thickness, w

′
T

′ and −u2
∗ = τt/ρ ≈ u

′
w

′

are the vertical turbulent sensible heat and momentum fluxes,
respectively, u∗ is the friction velocity, τt is the total ground
stress approximated by its turbulent component at z, ρ is the
mean density of the fluid, u′, w′, and T ′ are the turbulent
fluctuations of the longitudinal velocity, vertical velocity, and
temperature from their mean states, respectively, N = (β�)1/2

is the so-called Brunt-Väisälä frequency [7], and an overline
denotes appropriate averaging over coordinates of statistical

homogeneity. A turbulent flow is buoyantly unstable when
βw

′
T

′
> 0, neutral when βw

′
T

′ = 0, buoyantly stable when
βw

′
T

′
< 0, and weakly stable when 0 < Rf � 1 [8]. Practi-

cal interest in Rf and Rg stems from their correspondence to
the ratio of turbulent diffusivities of heat Kh and momentum
Km or the inverse turbulent Prandtl number Prt [9] following

Rf = β w
′
T

′

S u
′
w

′ = βKh�

S2 Km

= Kh

Km

Rg = Rg

Prt
. (2)

The approximation that Prt ≈ 1 (or Rf ≈ Rg) was initially
supported by a number of experiments [10–12] and persisted
for well over half a century [8]. However, a large corpus of
data and simulations assembled over 50 years, summarized in
Fig. 1, concur that Prt varies nonlinearly with Rg despite the
varying Reynolds numbers of the flows (all are moderate to
high). The most recent theory explaining dependency of Prt
on Rg employed a hierarchy of energy and flux-budget (EFB)
Reynolds-averaged closure models [8,13]. The originality of
the so-called EFB approach is explicit accounting of the TKE
and total potential energy (TPE) budgets and their coupling
above and beyond the conventional mean momentum balance
and temperature budgets. The EFB approach is simpler than
earlier second-order closure schemes that fully accounted for
the temperature variance and the sensible heat flux budgets [14]
and any associated TKE-TPE interaction thereby allowing
some analytical tractability. Consistent with earlier second-
order closure models [14], it was shown that the EFB can
account for the maintenance of turbulence by Pm without
artificial cutoffs at some critical flux Richardson number
(Rf c), which has been a theoretical challenge to some pre-
vious approaches as discussed elsewhere [15]. Moreover, the
EFB approach correctly predicted (i) the Prt -Rg dependence
in Fig. 1 and the Rf –Rg relation even when Rg > 100,
(ii) Rf saturating to a constant value Rf c for large Rg [8]
also consistent with earlier second-order closure models [14],
and (iii) why Kh drops below Km, which was shown to be
governed by the Rg-dependent partitioning of TPE and TKE.
As expected from such class of Reynolds-averaged closure
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FIG. 1. (Color online) The variation of Pr−1
t =Kh/Km with Rg

from wind tunnels [18–20], field measurements of atmospheric turbu-
lence over an Arctic pack ice [21] during the Surface Heat Budget of
the Arctic Ocean experiment (SHEBA), direct numerical simulations
(DNS) [7,22,23], and large eddy simulations (LES) [13,24]. The data
from Ref. [19] are from a salt-stratified water channel. For a neutrally
stratified turbulent flow, Kh/Km = 1 (or a value close to 1) [9], shown
as a reference. The critical gradient Richardson number Rgc = 1/4 for
which a density stratified laminar boundary-layer flow is predicted
to become unstable, when Rg < Rgc [25] and at sufficiently high
Reynolds number, is marked as a vertical dashed line. The Pr−1

t

variation with Rg using the cospectral budget model of Eq. (35)
is shown.

modeling, a number of closure constants must be a priori
specified in the EFB ranging from two to eight depending on
the hierarchy and associated simplifications employed [8]. Ex-
plaining the origin and universal character of the Prt–Rg shown
in Figs. 1 and 2 without resorting to “tunable” parameters
frames the compass of this work. It is shown that the universal
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FIG. 2. Same as Fig. 1 repeated on log-log axes to emphasize the
behavior of Kh/Km at large Rg . Symbols are as in Fig. 1.

character of the Prt–Rg relation is in fact inherited from the
Kolmogorov theory for the inertial subrange [16], and the final
expression is provided in Eq. (35) and shown in Figs. 1 and 2,
where the main constant is the ratio of the Kolmogorov to the
Kolmogorov-Obukhov-Corrsin phenomenological constants.
The proposed approach also recovers the main features of the
EFB closure including the nonlinear Rf –Rg relation across a
wide range of Rg , the main cause as to why Rf saturates to a
constant Rf c for large Rg , and why Kh drops below Km with
increasing Rg . More broadly, the proposed approach presents
analytical links between the spectral description of turbulence
and the mean velocity and temperature profiles in the stable
boundary layer thereby providing a new perspective on the
main causes of self-preservation of turbulence under stably
stratified flow conditions. The approach reveals how buoyancy,
the von Kármán-Prandtl logarithmic law for the mean velocity
and air temperature profiles, and the Kolmogorov hypothesis
(hereafter referred to as K41) for the local structure of turbulent
velocity and air temperature are all inter-connected, thereby
generalizing recent phenomenological theories linking the
mean velocity profile to the spectrum of turbulence [17].

II. THEORY

The Rf definition can be explicitly linked to eddy structure
via

Rf = β

S

∫ ∞
0 FwT (K)dK∫ ∞
0 Fuw(K)dK

, (3)

where the wave number K corresponds to an inverse eddy
size, and FwT (K) and Fuw(K) are the cospectra between w

′

and T
′
and w

′
and u

′
, respectively, satisfying the normalizing

properties

w
′
T

′ = −
∫ ∞

0
FwT (K)dK (4)

and

u
′
w

′ = −
∫ ∞

0
Fuw(K)dK. (5)

The precise interpretation of K , whether be it a scalar wave
number formed by the squared sum of wave numbers in
each of the three flow directions or a one-dimensional cut
along the mean flow direction (as often invoked in field
experiments), is not crucial here provided the same interpreta-
tion and corresponding constants (e.g., for three-dimensional
versus one-dimensional cospectra) are used throughout in the
numerator and denominator.

For a flat and a uniform surface in the absence of subsidence,
these cospectra can be modeled via budgets simplified to
include only the main terms given as [15,26–30]

∂FwT (K)

∂t
+ ν

(
1 + Pr−1

m

)
K2FwT (K) = γwT (K), (6)

∂Fuw(K)

∂t
+ 2(ν)K2Fuw(K) = γuw(K), (7)

where ν is the kinematic viscosity, Prm = ν/Dm is the
molecular Prandtl number (≈0.71 in air), Dm is the molecular
diffusivity of heat, and the second terms on the left-hand side
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of the equations represent molecular destruction of covariance.
The right-hand side terms are given by

γwT (K) = PwT (K) + TwT (K) + πT (K) + βFT T (K) (8)

and

γuw(K) = Puw(K) + Tuw(K) + πu(K) + βFuT (K), (9)

where PwT (K) and Puw(K) are production terms arising
from the mean gradients in the longitudinal velocity and
air temperature, TwT (K) and Tuw(K) are the turbulent flux
transport terms arising from Fourier-transforming triple cor-
relation functions, πT (K) and πu(K) are decorrelation terms
due pressure-temperature and pressure-velocity interactions,

which upon integration across all K represent T ′ ∂p′
∂z

and u′ ∂p′
∂z

with p′ being the fluctuating kinematic pressure, FT T (K) is the
temperature spectrum, and βFT T (K) is the buoyancy term. The
buoyancy term βFuT (K) in the Fuw(K) cospectral budget is
usually small compared to Puw(K) and is ignored hereafter as
evidenced from recent direct numerical simulation (DNS) runs
(see the Appendix). The production terms can be expressed as

PwT (K) = �Fww(K); Puw(K) = SFww(K). (10)

Integrating these production terms across all K recovers the
main production terms in the averaged vertical momentum
flux (i.e., w′w′S) and sensible heat flux (i.e., w′w′�) budgets
when derived for stationary and planar homogeneous flows in
the absence of subsidence. A Rotta-type formulation [27–29]
is used to model the two pressure-induced decorrelation terms
as conventional in second-order closure modeling. While the
limitations of the Rotta approach are well established in the
presence of large molecular dissipation and rapid pressure-
strain rate component [31], it still serves as the primary “work-
horse” model to close pressure-scalar and pressure-velocity
covariances, with reasonable agreement between model and
data in many boundary layer flows [32,33]. With this type of
approximation,

πT (K) = −AT

FwT (K)

τ (K)
− CIT PwT (K), (11)

πu(K) = −Au

Fuw(K)

τ (K)
− CIUPuw(K). (12)

The AT ≈ Au (≈1.8) are the Rotta constants [34], and CIT ≈
CIU (≈3/5) are constants associated with isotropization of
production terms correcting the original Rotta model (i.e.,
reducing the production terms) and shown to be consistent with
Rapid Distortion Theory (RDT) in homogeneous turbulence.
The Rotta closure model along with its two constants is
conventionally labeled as the LRR-IP for the Launder-Reece-
Rodi (LRR) approach with isotropization of the production
(IP) term [32,34]. Analogous formulation (but not identical)
have also been used in second-order closure models of atmo-
spheric flows, though empirical closure constants have been
adopted [14,35]. The consistency of Au = AT = 1.8 with a
more fundamental constant to neutral boundary layers, the von
Kármán constant, is discussed later. This closure formulation
for the pressure-velocity interaction term is employed here
because of its ability to reproduce

∫ ∞
0 πu(K) dK for homoge-

neous shear flows [34]. When strongly inhomogeneous flows

in the axial direction are encountered, issues with this closure
scheme have been studied for rapid axisymmetric expansion or
contraction [31]. Other simulation studies [36] suggest that the
Rotta closure is valid as long as the time scale of the mean flow
is much larger than 0.2lf /[(2T KE)1/2], where lf is the integral
length scale of the flow, and the quantity 0.2lf /[(2T KE)1/2]
represents a characteristic time scale of the triple mo-
ments [36]. Naturally, for very stable flows where turbulent
eddies may be elongated longitudinally but suppressed ver-
tically, these considerations become important and the Rotta
closure scheme should be used with caution. The τ (K) is a
wave number-dependent relaxation time scale given by [27,28]

τ (K) = ε−1/3K−2/3, (13)

where ε is the TKE dissipation rate. This choice of τ (K) is
similar (but not identical) to relaxation time scales employed
in K–ε and other higher order closure models [13,32,34,35,37]
that define such time scales as the ratio of available turbulent
kinetic energy to a mean dissipation rate. For a stationary and
locally equilibrated (i.e., |TwT | � |PwT | and |Tuw| � |Puw|)
flow, a balance between production and destruction and
decorrelation results in

FwT (K) = (1 − CIT )�Fww(K) + βFT T (K)(
1 + Pr−1

m

)
νK2 + AT τ (K)−1

, (14)

Fuw(K) = (1 − CIU )SFww(K)

2νK2 + Auτ (K)−1
. (15)

To estimate Rf , models for Fww(K) and FT T (K) are
required. As a reference point, an idealized case where
turbulence is fully developed and molecular terms can be
ignored relative to the pressure decorrelation contributions
is considered (i.e., high Reynolds number flows, outside of
the viscous and buffer layers if wall-bounded; ignoring the
molecular terms is supported by results from direct numerical
simulation [27]). This approximation is akin to assuming
that only eddy sizes associated with Kη � 1 significantly
contribute to momentum and scalar turbulent fluxes, where
η = (ν3/ε)1/4 is the Kolmogorov microscale [38]. Hence,

FwT (K) = 1 − CIT

AT τ (K)−1

[
�Fww(K) + βFT T (K)

1 − CIT

]
, (16)

Fuw(K) = 1 − CIU

Auτ (K)−1
SFww(K). (17)

It is further assumed that Kolmogorov inertial subrange (ISR)
power-law scaling (or K41), ubiquitous in many field and
laboratory experiments [4,21,39], governs the velocity and
temperature spectra at sufficiently high K , which are then
given by [16]

Fww(K) = Coε
2/3K−5/3, (18)

FT T (K) = CT ε−1/3NT K−5/3, (19)

where NT is the thermal variance dissipation rate. The
constants Co and CT are the well-known Kolmogorov and
Kolmogorov-Obukvov-Corrsin constants for vertical velocity
and temperature fluctuation spectra, respectively (with a
one-dimensional wave number). Their common values are
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Co = (24/55)CK , CK = 1.5 being the Kolmogorov constant
associated with the three-dimensional wave number [40,41],
and CT = 0.8 [7]. These common values are employed
throughout when interpreting K as a one-dimensional cut
along the longitudinal direction (often the case in field
experiments). Field experiments [21] and DNS runs (see the
Appendix) also suggest that for K below a certain wave
number Ka , both Fww(K) and FT T (K) are approximately
constant independent of K . The Ka threshold can be viewed
as the wave number delimiting the production and inertial
subranges ranges and is commonly found to be ≈ 1/z since
eddies of size z or larger start interacting with the wall and
lose their isotropy [10]. However, for K > Ka , K41 scaling is
recovered in both Fww(K) and FT T (K). It is further assumed
that the transition from a K0 scaling at low K to a K−5/3 scaling
at high K within the ISR occurs abruptly at Ka . Imposing
continuity in Fww(K) and FT T (K) at Ka results in

Fww(K) = min
(
CwwK−5/3,CwwKa

−5/3
)
, (20)

FT T (K) = min
(
CT T K−5/3,CT T Ka

−5/3
)
, (21)

where Cww = Coε
2/3 and CT T = CT ε−1/3NT . These idealized

shapes of Fww(K) and FT T (K) are shown in Fig. 3. While Ka

varies with z, knowledge of this variation is not necessary
here. Interestingly, at low K , both Fww(K) and FT T (K) are
much smaller than extrapolations invoked using ISR scaling as
shown in Fig. 3. Extrapolating ISR scaling to the low K range
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FIG. 3. (Color online) The idealized spectral shapes of
Fww(K)/Cww and FT T (K)/CT T assumed to hold for K ∈ [0,∞].
The spectra at the transition wave number Ka are assumed to be
continuous but not smooth. The ISR scaling and its extrapolation to
K < Ka are shown for illustration. Note that these extrapolations
suggest the ISR eddies are more energetic than the reported
Fww(K)/Cww and FT T (K)/CT T for the same low K . The
exponential corrections (or alternatively the Pao corrections) to
the ISR spectra due to molecular effects become significant as
Kη → 1 (shown), but these corrections are ignored in the idealized
model given their small energy and cospectral content. Also, in this
idealized model, Ka for temperature and vertical velocity spectra are
assumed to be the same, though this assumption is relaxed in the
discussion section.

leads to more “energetic” states than reported at low K from
data and simulations due to the presence of a boundary, which
is the basis of Townsend’s attached eddy hypothesis [42].

The outcome from the simplified cospectral budgets here
is an analytical link between the mean gradients S and �, the
shapes of the energy spectra Fww(K) and FT T (K) given in
Fig. 3, and the cospectra FwT (K) and Fwu(K). In particular,
when K > Ka , the cospectra for heat and momentum fluxes
can be expressed as

FwT (K) = 2Coε
1
3

5AT

Q�K− 7
3 , (22)

Fuw(K) = 2 Coε
1
3

5Au

SK− 7
3 , (23)

where

Q =
[

1 + βCT NT

(1 − CIT )Co�ε

]
. (24)

For Fuw(K) within the ISR, the K−7/3 outcome
here agrees with numerous dimensional considerations,
experiments, and simulations that report Fuw(K) =
Auwε1/3SK−7/3 [10,29,34,43,44]. Moreover, when Au =
1.8 and Co = (24/55) × 1.5 = 0.65, the associated constant
2Co/(5Au) = 0.14 is also in good agreement with the ac-
cepted Auw = 0.15 value reported in many surface layer and
numerous laboratory studies when K is interpreted as one-
dimensional cut along the mean flow direction [10,34,43–45].
Lastly, when expressing FwT (K) = AwT ε1/3�K−7/3, it be-
comes evident why ASL experiments report AwT > Auw [10]
given that Q > 1. Some studies argued that the transport
terms [i.e., TwT (K),Tuw(K)] can be significant within the
ISR [27,28]. If so, then a K−7/3 cospectral scaling cannot be
maintained in the ISR [46] with such significant contributions
from TwT (K) and Tuw(K). Since the majority of the field
studies in the ASL support a K−7/3 cospectral scaling [10],
contributions of TwT (K) and Tuw(K) within the ISR (and their
integrals across all K) are ignored here. It is to be noted that
within the canopy sublayer (a layer directly influenced by the
presence of the canopy elements), deviations from a K−7/3

scalinghave been reported for FwT (K) and these deviations
have been linked via models to the TwT (K) [46], but these
conditions are outside the scope of the present work.

To describe Rf requires evaluating
∫ ∞

0 FwT (K)dK and∫ ∞
0 Fuw(K)dK derived here. For the spectra in Fig. 3, the

integration limits are decomposed into two regimes, K ∈
[0,Ka] and K ∈ [Ka,∞], and then the resulting integrals are
summed. For each regime, the integrals are given by

∫ Ka

0
Fuw(K)dK = 2Coε

1
3 S

5Au

Ka
−4/3, (25)

∫ ∞

Ka

Fuw(K)dK = 2Coε
1
3 S

5Au

3

4
Ka

−4/3, (26)

∫ Ka

0
FwT (K)dK = 2Coε

−1/3�Q

5AT

K−4/3
a , (27)

∫ ∞

Ka

FwT (K)dK = 2Coε
−1/3�Q

5AT

3

4
K−4/3

a . (28)
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Hence, the turbulent fluxes of momentum and heat are now
given as

w′u′ = 7Coε
1
3 S

10Au

Ka
−4/3; w′T ′ = 7Coε

1
3 �Q

10AT

Ka
−4/3. (29)

With β w
′
T

′ = Rf S u
′
w

′ = −PmRf , the stationary TKE bud-
get equation under local equilibrium yields the TKE mean
dissipation rate as ε = Pm + βw

′
T

′ = Pm(1 − Rf ). For near-
neutral conditions (i.e., Q = 1, ε = −w′u′S) and upon setting
Ka = z−1, the expressions in Eq. (29) simplify to(

7

10

Co

Au

)3/4
dU

dz

z√
−u′w′

= 1, (30)

(
7

10

Co

AT

)3/4
dT

dz

z

T∗
= 1, (31)

where T∗ = w′T ′/
√

−u′w′ is a temperature scale. When
formulated as such, the quantity

(
7

10

Co

Au

)3/4

= κ (32)

must be equivalent to the von Kármán constant in turbulent
boundary layers. The factor (0.7 × 0.65/1.8)3/4 ≈ 0.4 is suf-
ficiently close to the conventional value for κ and further
suggests links between the Kolmogorov, Rotta, and the von
Kármán constants.

For stratified flows, the temperature variance budget equa-
tion under the same idealized conditions as the TKE budget
yields a thermal variance dissipation rate given by

NT = w
′
T

′
� = − 1

β
Rf � Pm. (33)

It is interesting to note that the presence of FT T (K) (and
NT ) in previous expressions plays a role similar to the
addition of potential energy in the EFB theory [8], given
that the total potential energy here can be determined from
TPE = (β/N )

∫ ∞
0 FT T (K) dK .

Using the definition of Rf , in conjunction with these
estimates of ε and NT and the fluxes from Eq. (29), results
in

Rf = Rg

Au

AT

[
1 − CT

Co(1 − CIT )

Rf

(1 − Rf )

]
. (34)

This expression can be solved for Rf as a function of Rg

allowing Pr−1
t = Rf /Rg to be explicitly predicted from Rg or

Rf . With Au = AT as required to ensure Prt = 1 for near-
neutral conditions, Eq. (34) reduces to

Rf = Rg

[
1 − 1

1 − CIT

CT

Co

Rf

(1 − Rf )

]
. (35)

To be explicit, define ω1 = (1 − CIT )−1(CT /Co) (≈3) and
ω2 = 1 + ω1(≈4) so that Eq. (35) can be solved for Rf and
Prt as a function of Rg as

Rf = 1
2 [1 + ω2Rg −

√
−4Rg + (−1 − ω2Rg)2] (36)
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FIG. 4. (Color online) Comparison between modeled Rf -Rg us-
ing Eq. (34) and those reported in laboratory experiments taken
from Ref. [49], field experiments, LES taken from Ref. [50], and
second-order Reynolds-Averaged Navier-Stokes (RANS) closure
modeling with seven constants [14]. The SHEBA data described
in Grachev [21] selected here are for Rf < 1. The field studies in
Ref. [51] include experiments in Salt Lake City, Utah, and near Los
Alamos National Laboratory in New Mexico. The DNS runs are
reviewed in the Appendix and span Rb = 0.194 (DNS 1), Rb = 0.387
(DNS 2), Rb = 0.968 (DNS 3), and Rb = 1.934 (DNS 4). For DNS
runs 3 and 4, laminarization did occur. Note the “flattening” of the
proposed curve commences at Rg ≈ Rf ∼ 0.25 � 1.

and

Pr−1
t = 1 + ω2Rg − √−4Rg + (−1 − ω2Rg)2

2Rg

. (37)

This is the sought relation between Rf and Rg (or Pr−1
t and

Rg) involving two nontunable phenomenological constants
(CT /Co and CIT ). Figures 1 and 4 show good agreement
between measured and modeled Pr−1

t -Rg and Rf -Rg relations
using Eq. (36) or Eq. (37) suggesting that the universal relation
between Pr−1

t (or Rf ) and Rg is primarily inherited from the
Kolmogorov cascade in the inertial range, as noted by the
exclusive dependence of this relation on CT /Co. Furthermore,
it was shown here (and elsewhere [30]) that the proposed
cospectral budget recovers the conventional near-neutral eddy
diffusivity and K-theory formulation, the expected value
of κ = 0.4, and the logarithmic scaling in z for U (z) and
T (z) strictly from the energetics of the flow encoded in
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Eww(K) and ET T (K). This finding is also in agreement with
recent literature suggesting a range of macroscopic dynamical
features in the equilibrium region of wall-bounded turbulent
flows, which is the region where all of the data presented in
Figs. 1 and 4 are collected, are linked to the Kolmogorov
scaling [17,29,30,47,48].

The form of Eq. (35) is consistent with the expressions
obtained via the EFB approach discussed in the introduction
([13]). For example, it was shown that the TKE budget
alone appears insufficient to predict the Pr−1

t -Rg relation, but
when complemented by a total potential energy (TPE) and
total turbulent energy (TTE) budgets, an expression similar
to Eq. (35) can be recovered [13] following a number of
approximations. These approximations also make use of K41
scaling to estimate the TKE dissipation rate [13]. Likewise,
gradient-diffusion theories were assumed a priori to hold
and then employed to close the turbulent stresses with a
mean relaxation time assumed to scale with the TKE and
its dissipation rate [13]. In contrast, the cospectral budget
here is a single equation (in the spectral domain) forced by
Eww(K) and ET T (K), but whose canonical shapes were a
priori assumed to follow K41 scaling at large K and flat at
small K . The newly proposed treatment allows direct links
between the shapes of these two spectra and “macroscopic
expressions” such as the Pr−1

t -Rg expression to be explored
with no “tunable” constants. Other approaches reported in
the literature numerically solve higher order closure models
and the solution of these equations resemble Eq. (35). Such
higher order closure treatment necessitates seven closure
constants [14] that have to be calibrated. Lastly, it is to be
noted that Eq. (34) is not particularly sensitive to any imperfect
scaling such as deviations from K41 scaling as long as the
Eww(K) and ET T (K) follow similar spectral shapes (and this
similarity is supported by the DNS results in the Appendix).
This robustness to imperfect scaling is due to the fact that
Eq. (34) is dependent on the ratio of the integrated spectra as
implied by Eq. (3).

III. DISCUSSION

There are a number of features in the data-model intercom-
parisons of Figs. 1 and 4 that merit further elaboration. These
include the scatter in Pr−1

t as Rg → 0 shown in Fig. 1, the
apparent decoupling between Rf and Rg for large Rg in Fig. 4,
and the absence of any explicit incorporation of a Reynolds
number effect despite the very large Rg attained in experiments
and simulations.

A. The turbulent Prandtl number limit as Rg → 0

While the agreement between model calculations and
measurements is reasonable, much of the bias in Fig. 1
appears to originate in the limit of Rg → 0. As earlier
noted, setting Au = AT is equivalent to setting Prt = 1 for
neutral stratification. This point can be readily illustrated
from Eq. (29), where in the absence of any gravitational
effects (i.e., β = 0), Q = 1, Km = 7CwwKa

−4/3/(10Au), and
Kh = 7CwwKa

−4/3/(10AT ), and Km = Kh is achieved upon
setting Au = AT . However, data in Fig. 1 suggest large scatter
with Kh > Km for near-neutral conditions for some of the

experiments and simulations. The fact that the scatter is
large may be partly explained by the small sensible heat
flux and the finite T ′T ′, but not the persistent bias, which
is in fact a well-documented observation in many neutral
flows [9]. The framework here offers suggestions as to why
this bias may occur. The first is that the TKE or temperature
variance budgets are not in full equilibrium at near-neutral
conditions so that ε 
= Pm(1 − Rf ) or NT 
= w

′
T

′
�. This

lack of equilibrium occurs when nonstationarity, advection,
or flux transport terms become significant as reported in
several field experiments [52]. Such an explanation is more
relevant to field data than controlled laboratory experiments
and simulation studies, where an equilibrium region is often
identified based on a production-dissipation balance and used
in such calculations. The second explanation is a general
failure of the Rotta model in describing the pressure-scalar
and pressure-velocity interactions. This second suggestion,
however, does not explain the scatter in the data and is
incompatible with why the data-model comparison fares well
with increasing Rg where deficiencies of the Rotta model
should be more exposed. The third explanation is that the
idealized spectra assumed for Fww(K) and FT T (K) at low
K are not adequate descriptors, and other low-frequency
modulations may be occurring, most likely in FT T (K). This
explanation is not entirely independent of the first explanation,
as low-frequency modulations in FT T (K) cannot be easily
separated from nonstationarity. While not entirely independent
from the third explanation, the fourth explanation may be
attributed to the equality in the transition wave number Ka

for T and w. That is, the transition Ka to ISR scaling for
temperature (= Ka,T ) and vertical velocity (= Ka,w) may not
be identical as previously assumed. If differences between
Ka,T and Ka,w are not too large, then the earlier derivation can
be repeated to yield

Rf ≈ Rg

Au

AT

(
Ka,w

Ka,T

)4/3[
1 − (5/2)CT Rf

Co (1 − Rf )

]
. (38)

The additional simplification adopted here is that the ISR in
Fww(K) is assumed to commence at Ka,T instead of Ka,w when
performing the integration of FwT (K), though the effect of
this approximation is minor on the overall cospectral integrals
(not shown here). As near-neutral conditions are approached,
Rf � 1 and

Kh

Km

= Rf

Rg

≈ Au

AT

(
Ka,w

Ka,T

)4/3

. (39)

A number of field experiments [10] already suggested that for
near-neutral conditions, Ka,w/Ka,T > 1, which might explain
why the Kh/Km data in Fig. 1 are generally clustered above the
model predictions conducted for Ka,w/Ka,T = 1. In fact, when
Ka,w/Ka,T = 1.4, it shifts the Pr−1

t from unity to a Pr−1
t = 1.6,

which brackets the upper limit of the bias in Fig. 1 as Rg → 0.

B. A critical flux Richardson number

Another important result is the apparent near constant
behavior of Rf for very large Rg evidenced in Fig. 4. A
constant Rf = Rf c value of about 0.25 has been historically
associated with the so-called critical Richardson number
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needed to sustain turbulence. The increase in Rg is known
to dampen or even “wipe out” entirely both w′T ′ and w′u′,
perhaps even laminarizing the flow. However, the ratio of
w′T ′ and w′u′ as encoded in Rf may behave differently at
very large Rg , even when both w′T ′ and w′u′ are approaching
a near-zero limit. We state upfront that a finite and unique
Rf c associated with a laminarized state remains questionable
for many reasons. It has been known for some time that
turbulence can survive for Rf > 0.25 [53,54]. Anisotropiza-
tion resulting from vertical stratification can lead to some
enhanced horizontal mixing of both momentum and scalars
thereby preventing laminarization [55,56]. Also, formation of
internal waves (and their subsequent breaking) and other non-
stationarity conditions such as the passage of nocturnal clouds
in the atmosphere (e.g., see Ref. [57]) can contribute to the
preservation of vertical momentum mixing above its predicted
molecular level. In fact, the absence of such laminarization
and a nonuniqueness value in Rf c has lead some to suggest
abandonment of the concept of critical Richardson number
altogether [53,58]. Here we deviate from this conventional
association between laminarization and Rf = Rf c. Based on
the observation in Fig. 4 that the cospectral model developed
here does not produce an Rf c that exceeds 0.25, we interpret
this critical flux Richardson number as a threshold above
which stationarity, advection, subsidence, and flux transport
terms cannot remain insignificant with further increases in
Rf in the equilibrium region of wall-bounded turbulent flows.
Moreover, the canonical shapes (especially K41 scaling) of
the spectra presented in Fig. 3 tend to break down with
further increases in Rf . It is to be noted that recent long-
term experiments by Grachev and coworkers [21] already
showed that when Rf > 0.2 − 0.25, K41 scaling no longer
holds and vertical turbulent fluxes become quite small (and
unmeasurable). Some fine-scale turbulence appears to survive
in those experiments when Rf > 0.2 − 0.25, but the surviving
fine-scale turbulence does not follow K41 theory. Moreover,
it decays rapidly with further increases in stability. Hence,
within this restrictive definition, it can be argued that for
Fuw(K) to be finite at an arbitrary K > 0 (i.e., for momentum
flux to be from high-velocity to low-velocity regions), it
suffices that ε = Pm(1 − Rf ) > 0 resulting in Rf < 1, the
expected condition to sustain turbulence in mildly stable
conditions [8,54]. However, for FwT (K) to be positive at
K > 0 (stabilizing downward heat flux), it becomes necessary
that

Rf <
1

1 + (5/2)(CT /Co)
= 0.25 = Rf c. (40)

This predicted Rf c = 0.25, based on a Co = 0.65 and CT =
0.8, is bracketed by the accepted Rf c values 0.19–0.3 reviewed
elsewhere [14]. While the values of Co and CT depend
on whether K is interpreted as a three-dimensional wave
number or a one-dimensional cut (as often employed in field
experiments), Rf c = 0.25 depends only on their ratio and thus
remains unaffected by such interpretations. Interestingly, if
the Rotta model for πT (K) is further adjusted by the addition
of (1/3)βFT T (K) to include an “extra” buoyancy effect
directly applied to the pressure field itself as previously done
for convective boundary layers [59], this revision modifies

Eq. (35) to

Rf = Rg

[
1 − 4

3

5

2

CT

Co

Rf

(1 − Rf )

]
, (41)

thereby reducing Rf c from 0.25 to 0.19, a modest reduction
but within the uncertainty bounds for Rf c. Moreover, while
Rg � 1 exists in the turbulence data and simulations, Rf

appears to be bounded as shown in Fig. 3 for large Rg .
The decoupling of Rg from Rf at large Rg for a turbulent
state marks a major shift from its laminar state counterpart
despite similarity in Rf c = 0.20–0.25 for both flow states.
From the definition for Rg and substituting laminar fluxes
for their turbulent counterparts in the definition of Rf results
in Rf /Rg = Pr−1

m in laminar conditions. When Rg > 1/4,
laminar boundary layer theory predicts a linear increase in Rf

with increasing Rg as shown by the dashed line in Fig. 3, while
Rf asymptotes to 0.25 for the turbulent case. Moreover, when
Rg < 1/4, the laminar boundary layer case ceases to exist
due to stability considerations [25], yet the turbulent boundary
layer case recovers the linear dependence between Rf and
Rg (e.g., Rf ≈ Rg). In short, while the critical Richardson
number for laminar and turbulent cases appear close (but not
necessarily connected), the behavior of the flow neighboring
the Rf c = 0.25 remains markedly different. For the turbulent
case in the vicinity of Rf c = 0.2–0.25, the idealized spectra
presented in Fig. 3 appear to still hold suggestive of fully
developed turbulent conditions [21].

C. A critical gradient Richardson number

The previous analysis focused on the critical flux Richard-
son number, which was interpreted as a saturating Rf for
increasingly large Rg . However, it may be conjectured that to
maintain a turbulent state at this large Rg , a critical Reynolds
number must be exceeded as well. This interplay between Rg

and critical Reynolds number is a topic receiving interest [55].
To illustrate the scaling properties of such possible connection
(at least qualitatively), define an effective turbulent length scale
lm = u3

∗/ε associated with a Reynolds number Re = u∗lm/ν

so that the scale separation between lm and η abides by
lm/η = Re3/4, a conventional scaling in nonstratified turbulent
boundary layers [38]. For the logarithmic region of neutrally
stratified turbulent boundary layers, this definition leads to
lm = κz as discussed before (for the mean gradients). In
stratified turbulent boundary layers, the outer-layer length
scale above which buoyancy suppression becomes significant
is known as the Ozmidov length scale, given by Lo =
(ε/N3)1/2 [60]. It follows that α = Lo/η = (Re3/Rg)1/4 or
Re = α4R

1/3
g defines the largest scale that is not damped by

buoyancy. Turbulence requires separation between Lo and η to
persist or develop. This means that a critical Rec at a given Rg

is now given as Rec = (α4
c )Rg

1/3, where α � 1. Conversely,
this scaling identifies a critical Rg for given Re and α. The
Rec ∼ Rg

1/3 explains why increasing Rg by two orders of
magnitude as reported in Fig. 1 is accompanied by a modest
factor of 4 increase in the required Rec to sustain turbulence
thereby explaining the relative insensitivity of stable boundary
layer flow statistics to the Reynolds number.

023007-7



KATUL, PORPORATO, SHAH, AND BOU-ZEID PHYSICAL REVIEW E 89, 023007 (2014)

IV. CONCLUSIONS

To conclude, the long surmised link between Rf and
Rg , the dependence of Pr−1

t on Rg , and the robustness of
Rf c = 0.20–0.25 appearing in observed and simulated stable
boundary layer flows appear to inherit a universal character
from similarity in spectral shapes of kinetic [Eww(K)] and
potential [ET T (K)] energetics of eddies. Similarity in Eww(K)
and ET T (K) as derived here is linked to K41 scaling at high
wave numbers and “flat” spectra at low wave numbers. In
this framework, the Rf c is not interpreted in its conventional
laminarization form, but rather is connected to the maintenance
of K41 scaling in the spectra of vertical velocity and tem-
perature. Independent of the derivation here, recent long-term
experiments [21] have shown that when Rf > 0.20–0.25, K41
scaling no longer holds and vertical turbulent fluxes become
quite small. The cospectral budget proposed here suggests
that the trends in the spectral shapes of vertical velocity
and air temperature (including their K41 behavior at large
wave numbers), the Rf –Rg relations, and the existence of an
Rf c = 0.2–0.25 are all connected.
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APPENDIX: DIRECT NUMERICAL SIMULATION RUNS

To explore some of the assumptions in the analysis and
model development, a dataset generated by direct numerical
simulation (DNS) of stably stratified flows was used. The DNS
dataset is the one generated by Shah and Bou-Zeid [61] for the
analysis of the budgets of key second-order statistics. Brief de-
tails and new results relevant for the present work are provided.
The DNS code solves the unsteady incompressible Navier-
Stokes equations with the Boussinesq approximation, coupled
to an equation for the conservation of thermal energy. The flow
in the domain is driven by geostrophic forcing and experiences
a Coriolis force due to Earth’s rotation (the Coriolis parameter
is taken as f = 1.4 × 10−4˜s−1). The domain used for these
simulations is periodic and homogeneous in the spanwise
and streamwise directions. No-slip boundary condition is
applied at the smooth bottom wall, while at the top of the
domain, a stress-free boundary with zero vertical velocity and
zero heat flux is imposed. At the bottom wall, a constant
temperature lower than the temperature above the boundary
layer is imposed, resulting in a stabilizing downward heat flux.
The simulations reach a quasisteady state, where turbulence
is almost in equilibrium with the mean fields at any time,
after which statistics are computed. Further details about the

TABLE I. Simulation parameters include bulk Richardson num-
ber Rib = g�θδt/θ∞G2, Reynolds number Reδt

= Gδt/ν, number of
grid points in the three directions and grid spacing in inner coordinates
along each direction. The θ∞ is the reference temperature at a large
distance from the wall, �θ = θ∞ − θsurface, G the geostrophic wind
velocity, δt the boundary layer thickness, and ν the kinematic viscosity
as before.

Rib Reδt
Grid points �x+,�y+,�z+

0 5200 1282 × 512 5.282 × 1.21
0.052 5087 1282 × 512 5.172 × 1.18
0.104 4880 1282 × 512 4.962 × 1.13
0.261 4808 1282 × 512 4.882 × 1.11
0.523 4759 1282 × 512 4.832 × 1.10
0 10 710 2562 × 864 5.022 × 1.03
0.100 10 458 2562 × 864 4.902 × 1.00
0.200 10 296 2562 × 864 4.822 × 0.99
0.501 9414 2562 × 864 4.412 × 0.90
1.003 8891 2562 × 864 4.162 × 0.85
0 21 951 3202 × 1664 7.622 × 0.967
0.194 21 576 3202 × 1664 7.492 × 0.951
0.387 21 221 3202 × 1664 7.372 × 0.935
0.968 19 196 3202 × 1664 6.662 × 0.846
1.934 16 725 3202 × 1664 5.812 × 0.737

initialization of the temperature field and the setup in general
can be found in Refs. [62] and [61]. The numerical simulation
domain used is periodic in the spanwise and streamwise
directions; gradients in these directions are thus computed
using a pseudospectral approach. A second-order central
difference scheme is used on a uniform staggered grid in the
vertical direction. A second order Adams-Bashforth scheme
is used for time integration. The nonlinear terms in the mo-
mentum equations are dealiased using Orszag’s 3/2 rule [63].
Simulations are carried out on multiple cores, and this is made
possible through the use of message passing interface (MPI).

A. Physical parameters of the simulations

Summary of the simulations performed are given in the
Table I. Here the Reynolds number (Reδt

) and the bulk Richard-
son number (Rib) are varied (see the caption of Table I for the
exact definitions of these numbers). For the three sections
given in Table I, the domain sizes used are Lx × Ly × Lz =
26D × 26D × 24D, 36D × 36D × 25D and 50D × 50D ×
33D, respectively, where D = (2ν/f )1/2 is the laminar Ekman
layer length scale. The heights of the computational domains
in terms of the boundary layer thickness δt corresponding to
the same sections of Table I, are approximately 2δt , 1.5δt , and
1.33δt , respectively. Note that this ratio is higher for stable
cases [Rib > 0)] since the boundary layer thickness is smaller.

B. Numerical parameters

Computations for all cases in a particular section of Table I
were performed using the same number of grid points; the
corresponding grid resolution in inner coordinates and and
other simulation parameters are given in the table. The grid
resolution used for neutral cases to capture the Kolmogorov
scale eddies is also sufficient in the stable cases since the
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effective Reynolds number drops with increasing stability. An-
other requirement for DNS is the proper resolution of the vis-
cous sublayer. To ensure this, we place around 10 points in the
vertical direction at z+ < 10 for the neutral simulations. The
time step in inner coordinates (�t+ = �t u2

∗/ν) for the neutral
cases is around 0.015 (�t+ = 0.011,0.0104, and 0.017 for the
three sections in Table I, respectively). All the neutral case sim-
ulations have been run for at least 60 physical hours as a warm-
up time to allow the flow field to fully develop before statistics
are collected. Random perturbations of about 5% of the free
stream values were imposed as initial conditions and the flow is
allowed to evolve. These flow fields at the end of the warm-up
period are then used to initialize neutral and stable cases that
then generate the data for analysis. Simulations that gave statis-
tics for analysis are run for 12 hours (or one inertial period).
However, while stable cases are run for 12 hours, the data used
for analysis in these cases are from the last 6 hours. This is to
allow the stable simulations to reach a quasiequilibrium state.

C. The relevance of the buoyancy term in the momentum
transport equation

One term that was neglected in the w′-u′ cospectral budget
equation is the one associated with buoyancy, which in the
equivalent physical-space averaged budget equation is given
by the term g〈u′T ′〉/〈T 〉. To verify the validity of this omission,
the budget terms of 〈u′w′〉 are presented in Fig. 5, for multiple
stabilities from the highest Re suite of DNS. As can be seen, the
buoyancy term in the momentum flux budget is indeed quite
small relative to the other terms. In addition, one can note
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FIG. 5. (Color online) The main terms of the momentum flux
(〈u′w′〉) budget for the highest Reynolds number simulations
at various Rib. The different colors denote the different terms
of the budget: turbulent transport T13 = −∂〈u′w′w′〉/∂z, turbu-
lent production P13 ≈ −〈w′w′〉∂U/∂z, pressure transport �131 =
−1/〈ρ〉 (∂〈p′u′〉/∂z + ∂〈p′w′〉/∂x), pressure-strain redistribution
�132 = 2/〈ρ〉 〈p′S ′

13〉 where the strain-rate tensor Sij = 1
2

[
∂ui

∂xj
+

∂uj

∂xi

]
, and the buoyancy term B13 = g〈u′θ ′〉/〈θ〉. All omitted terms

have been computed and found to be negligible. All terms shown are
normalized by u4

∗,neutral/ν. The vertical line indicates the zero gain or
loss line.
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FIG. 6. (Color online) Normalized spectra (upper panel) and
premultiplied normalized spectra of w and T for the simulation with
Rib = 0.194 and Reδt

= 21,576, z = 0.228δt .

that the two dominant terms are the shear production term and
the pressure-strain redistribution term [that is, the component
of the pressure term that is associated with the decorrelation
effect in the cospectra represented by πu(K)]. This further
supports the simplifications employed in the cospectral budget
as balance between these two dominant terms.

D. Spectra of w and T

The development of the cospectral models relied on
assumed spectral shapes for w and T . In this section these
characteristic shapes are discussed within the context of the
DNS results for the near-equilibrium region focusing on (1)
the tendency of both spectra to become near constant below
a certain wave number K = Ka ≈ 1/z and (2) the similar
shapes of the two spectra. One can note from Fig. 6 that the
two spectra indeed have similar shapes at all K . While the
availability of only one decade with K < 1/z does not allow
a clear illustration of the range with constant spectra, it can be
noted that both Fww(K) and FT T (K) are approaching plateaus
at lower K . In premultiplied form, FT T (K) appears to peak
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at a slightly lower K = Ka,T than its Fww(K) counterpart
(that peaks at Ka,w). This DNS finding is suggestive that
Ka,w/Ka,T > 1 and that

Kh

Km

≈
(

Ka,w

Ka,T

)4/3

(42)

might partly explain why measured Kh/Km in Fig. 1 are
generally clustered above the model predictions that assume
Ka,w/Ka,T = 1. Lastly, both FT T (K) and Fww(K) exhibit a
−5/3 slope, albeit over a limited range in wave number ranges
as may be expected from these DNS resolutions.
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