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Scaling of heat flux and energy spectrum for very large Prandtl number convection
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Under the limit of infinite Prandtl number, we derive analytical expressions for the large-scale quantities, e.g.,
Péclet number Pe, Nusselt number Nu, and rms value of the temperature fluctuations θrms. We complement the
analytical work with direct numerical simulations, and show that Nu ∼ Raγ with γ ≈ (0.30–0.32), Pe ∼ Raη

with η ≈ (0.57–0.61), and θrms ∼ const. The Nusselt number is observed to be an intricate function of Pe, θrms,
and a correlation function between the vertical velocity and temperature. Using the scaling of large-scale fields,
we show that the energy spectrum Eu(k) ∼ k−13/3, which is in a very good agreement with our numerical results.
The entropy spectrum Eθ (k), however, exhibits dual branches consisting of k−2 and k0 spectra; the k−2 branch
corresponds to the Fourier modes θ̂ (0,0,2n), which are approximately −1/(2nπ ). The scaling relations for
Prandtl number beyond 102 match with those for infinite Prandtl number.
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I. INTRODUCTION

Thermal convection plays a significant role in many
engineering applications, as well as in natural phenomena, e.g.,
mantle convection, atmospheric circulation, stellar convection,
etc. To simplify the complex nature of convective flow, it is
customary to model the flow using a simpler setup called
Rayleigh-Bénard convection (RBC), in which a thin horizontal
layer of the fluid is heated from below and cooled from the
top [1,2]. The two nondimensional control parameters that
characterize RBC flow are the Rayleigh number Ra, which
is a measure of buoyancy force, and the Prandtl number Pr,
which is a ratio of kinematic viscosity and thermal diffusivity.
The Nusselt number Nu is defined as the ratio of the total
heat flux to conductive heat flux. Experiments and numerical
simulations show that the RBC flow depends quite critically on
the Prandtl number. In this paper, we will describe the scaling
of large-scale quantities and the energy spectrum for very
large and infinite Prandtl number convection. Physics of large
Prandtl number convection is important for understanding
convection in the Earth’s mantle, viscous oil, etc.

Kraichnan [3] studied the scaling of Nusselt and Reynolds
numbers theoretically using mixing-length theory, and de-
duced that Nu ∼ Ra1/3 for large Pr, Nu ∼ (PrRa)1/3 for small
Pr, and Nu ∼ 1 for very small Pr. For RBC with very large
Rayleigh numbers, called the “ultimate regime,” Kraichnan [3]
argued that Nu ∝ [Ra/ ln(Ra)]1/2. Grossmann and Lohse
[4–8], Ahlers et al. [1], and Stevens et al. [9] modeled the
scaling of Nusselt and Reynolds numbers using Shraiman and
Siggia’s exact relations [10] between the dissipation rates and
the Nusselt number. For the dissipation rates, they considered
the contributions from the bulk and boundary layers separately.
They showed that the parameter space (Ra, Pr) is divided into
four regimes: I for UBL,θBL dominated regime; II for Ubulk,θBL

dominated regime; III for UBL,θbulk dominated regime; and IV
for Ubulk,θbulk dominated regime; here UBL and θBL are, respec-
tively, the rms value of the velocity and temperature fields in
the boundary layer, while Ubulk and θbulk are the corresponding
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quantities in the bulk. For the infinite or very large Prandtl
number (kinematic viscosity � thermal diffusivity), most of
the flow is dominated by the viscous force. Grossmann and
Lohse [5] denote these regimes as I∞ and III∞ depending on
the dominance of θBL or θbulk, respectively. Throughout the
paper, we refer to the aforementioned scaling as “GL scaling.”
In this paper, we report several numerical simulations for very
large and infinite Prandtl number convection; these simulations
fall in either the I∞ regime or at the border of I∞ and Iu. Also
note that there are several mathematically rigorous bounds on
the Nusselt number exponent. Whitehead and Doering [11]
and Ierley et al. [12] showed that Nu � cRa5/12 for free-
slip boundary condition, while Constantin and Doering [13]
showed that Nu � cRa1/3[1 + ln(Ra)]2/3 in the limit of infinite
Prandtl number.

A large number of experiments report the Nusselt number
exponent within a range from 0.26 to 0.32 for Ra up to
1017 [14–20]. However, some experiments exhibit an increase
in the exponent from 0.32 to 0.37, thus signaling a signature
of ultimate regime [21–25]. The results from numerical
simulations for small and medium Prandtl numbers and for Ra
up to 1012 are consistent with the aforementioned experimental
results [26–34]. However, in this paper we focus on very large
and infinite Prandtl number convection.

There are only a small number of experiments that investi-
gate large Prandtl number convection. Xia et al. [35] studied
heat transport properties of 1-pentanol, triethylene glycol,
dipropylene glycol, and water (Pr = 4–1350), and reported
the Nusselt number exponent to be in a band of 0.281 to
0.307. Based on these observations, they claimed that Nu =
0.14Ra0.297Pr−0.03, thus suggesting a weak dependence of the
Nusselt number on the Prandtl number in the large Prandtl
number regime. Lam et al. [36] explored the dependence
of Reynolds number (Re) on Ra and Pr and showed that
Re = 0.84Ra0.40Pr−0.86. Since the Péclet number Pe = RePr,
the work of Lam et al. [36] indicates a weak dependence of Pe
on Pr.

Like experiments, numerical simulations of large Prandtl
number convection are limited. Silano et al. [37] numerically
analyzed the Nusselt number for a wide range of Prandtl
numbers (Pr = 10−1–104) and observed the Nusselt number
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exponents ranging from 2
7 for Pr = 1 to 0.31 for Pr = 103.

In addition, they reported that for large Pr, Pe ∼ Ra1/2, and
a constancy of thermal fluctuations with Ra. Roberts [38]
simulated two-dimensional RBC in the limit of Pr → ∞ and
Ra → ∞ and reported that Nu ∼ Ra1/3 for the free-slip runs,
and Nu ∼ Ra1/5 for the no-slip runs. Similar results have been
reported by Hansen et al. [39], Schmalzl et al. [40], and Breuer
et al. [41] in two- and three-dimensional box simulations
with free-slip boundary conditions. The aforementioned re-
searchers also studied the structures of the flow and thickness
of the boundary layers.

Another set of important quantities of interest in RBC
are the energy spectrum and entropy spectrum [|θ̂(k)|2]. For
intermediate Prandtl numbers, L’vov [42] and L’vov and
Falkovich [43] predicted the Bolgiano-Obukhov scaling for
small wave numbers, but the Kolmogorov-Obukhov scaling
for large wave numbers. We will show in this paper that the
spectra for the large and infinite Prandtl number convection
differ from both these laws. Our arguments are similar to those
of Batchelor [44] for small Prandtl number, except that the role
of temperature and velocity is reversed in our work since the
Prandtl number is large.

As discussed above, there are significant developments
in the understanding of large and infinite Prandtl number
convection, especially from the GL scaling [5]. Still, many
issues remain unresolved in this field. We address some of
these issues using analytical approach and direct numerical
simulation. Under the limit of infinite Prandtl number, we de-
rive a linear relationship between the velocity and temperature
fields, which enables us to derive interesting exact relations
for the Péclet and Nusselt numbers. We also derive energy
and entropy spectra analytically using the above relations,
as well as the temperature equation. In addition, we also
obtain analytic expressions for the thermal fluctuations, and
viscous and thermal dissipation rates. The Nusselt number
and thermal dissipation rates are intricately dependent on the
Ra-dependent correlation between the vertical velocity and
the temperature fluctuations. These relations provide valuable
insights into large-Pr convective turbulence. It is important to
note that our theoretical work is based on the dimensional
and scaling analysis of the equations for the velocity and
temperature fields. Our approach differs somewhat from the
GL scaling, which is based on the exact relation of Shraiman
and Siggia [10], and the scaling of the dissipation rates in the
bulk and boundary layers.

To validate our analytical predictions, we perform direct
numerical simulations of RBC flows for Pr = 102, 103, ∞
and Rayleigh numbers varying from 104 to 108. Using the nu-
merical data, we compute scaling for the large-scale quantities
such as the Nusselt and Péclet numbers, the rms fluctuations
of the temperature field, the viscous and thermal dissipation
rates, and compare them with analytic predictions. We also
compute energy and entropy spectra using the numerical data.
We find that our numerical results are in good agreement with
the analytical predictions, as well as with the GL scaling.

The structure of paper is as follows: In Sec. II, we present
the governing equations and analytical expressions for various
large-scale quantities such as the Nusselt and Péclet numbers,
and the viscous and thermal dissipation rates. In Sec. III,

we discuss the details of our numerical simulations. Scaling
relations of Pe, Nu, and dissipation rates are discussed in
Sec. IV. In Sec. V, we derive energy and entropy spectra using
the dynamical equations in the Pr = ∞ limit, and complement
them with the numerical results for infinite and large Prandtl
number simulations. We conclude in Sec. VI.

II. GOVERNING EQUATIONS AND
ANALYTIC COMPUTATIONS

The dynamical equations of RBC under Boussinesq ap-
proximations are

∂u
∂t

+ (u · ∇)u = −∇p

ρ0
+ αgθẑ + ν∇2u, (1)

∂θ

∂t
+ (u · ∇)θ = 


d
uz + κ∇2θ, (2)

∇ · u = 0, (3)

where u = (ux,uy,uz) is the velocity field, p and θ are,
respectively, the deviations of pressure and temperature from
the heat conduction state, ρ0 is the mean density of fluid,
α,ν, and κ are, respectively, the thermal expansion coefficient,
kinematic viscosity, and thermal diffusivity of fluid, g is the
acceleration due to gravity, ẑ is the buoyancy direction, and 


is the temperature difference between the two plates kept apart
by a vertical distance d.

For large and infinite Prandtl number convection, it is
customary to nondimensionalize the above set of equations
using

√
αg
d/Pr, d, and 
 as the velocity, length, and

temperature scales, respectively [37], which yields

1

Pr

[
∂u
∂t

+ (u · ∇)u
]

= −∇σ + θ ẑ + 1√
Ra

∇2u, (4)

∂θ

∂t
+ (u · ∇)θ = uz + 1√

Ra
∇2θ, (5)

∇ · u = 0, (6)

where Ra = αg
d3/νκ , Pr = ν/κ , and σ = p/Pr [37,40].
Under the limit of Pr = ∞, the momentum equation gets
simplified to [45]

−∇σ + θ ẑ + 1√
Ra

∇2u = 0. (7)

The equations for the temperature field and the incompressibil-
ity condition remain unchanged. Note that the pressure term
plays an important role in infinite Prandtl number convection,
and it can not be ignored. An easy inspection reveals that the
∇ · u = 0 condition would be violated in the absence of the
pressure term.

The momentum equation in a dimensional form is

−∇σ + αgθẑ + ν∇2u = 0. (8)

The above equation is linear, hence analytically tractable. It
is more convenient to analyze the above equation in Fourier
space, which is

− ikσ̂ (k) + αgθ̂ (k)ẑ − νk2û(k) = 0, (9)
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where k = (kx,ky,kz) is the wave number, and f̂ (k) is the
Fourier mode of the field f . Using the incompressible
condition [k · û(k) = 0], we deduce that

σ̂ (k) = −i
kz

k2
αgθ̂(k), (10)

ûz(k) = αg

ν

k2
⊥

k4
θ̂ (k), (11)

ûx,y(k) = −αg

ν

kzkx,y

k4
θ̂ (k), (12)

where k2
⊥ = k2

x + k2
y . The Fourier modes in general do not

satisfy the boundary conditions at the plates. Yet, they capture
the large-scale modes quite accurately since the energy of the
convective flow is dominated by these modes. This feature be-
comes more significant for infinite Prandtl number since the
amplitudes of the larger Fourier modes decrease steeply with
the wave number (∼k−2), as evident from the aforementioned
equations.

Using the above equations, we can derive the total kinetic
energy as

Eu = 1

2
u2 = 1

2

∑
k

|û(k)|2 = 1

2

(
αg

ν

)2 ∑
k

|θ̂(k)|2 k2
⊥

k6
.

(13)

The total energy is dominated by the large-scale flows.
Therefore, the Péclet number Pe is

Pe = ULd

κ
= d

κ

√
2Eu = αgd

νκ

(∑
k

|θ̂ (k)|2 k2
⊥

k6

)1/2

. (14)

In terms of nondimensional parameters,

Pe = Ra

(∑
k

|θ̂ (k)|2 k2
⊥

k6

1

d4
2

)1/2

. (15)

One of the generic features of thermal convection in a
box is the finite amplitude of θ̂(0,0,2n) Fourier modes for
small n, e.g., n = 1,2,3. Mishra and Verma [46] showed using
arguments based on energy transfers that

θ̂(0,0,2n) ≈ − 


2nπ
. (16)

The θ̂ (0,0,2n) modes play an important role in determining
the vertical profile of temperature. The temperature averaged
over horizontal planes drops sharply near the plates (in the
boundary layer), and it is approximately a constant in the bulk.
We will show later in the paper that the temperature drop near
the plates gets significant contributions from the θ̂ (0,0,2n)
modes [34].

We will demonstrate later in the paper that the θ̂ (0,0,2n)
modes dominate the temperature fluctuations for large and
infinite Prandtl number convection. Thus,

θL ≈ θrms ≈
√

2Eθ ≈ 
, (17)

where Eθ is defined as

Eθ = 1

2
θ2 = 1

2

∑
k

|θ̂(k)|2. (18)

To quantify the contributions from other thermal modes, we
define a residual temperature fluctuation θres as

θ2
res = θ2 −

∑
n

|θ̂(0,0,2n)|2. (19)

It is important to note that ûz(0,0,n) = 0 due to the absence of
net mass flux across any horizontal cross section in the box.
As a result, the θ̂ (0,0,2n) modes do not contribute to the heat
flux H , which is

H ∝ 〈uzθ〉 =
∑

k

[ûz(k)θ̂∗(k) + û∗
z (k)θ̂ (k)], (20)

where u∗
z and θ∗ denote, respectively, the complex conjugate

of the vertical velocity field and the temperature field. Thus,
the heat flux gets contributions only from θres fluctuations.

The viscous and thermal dissipation rates provide im-
portant information about the scaling of large-scale quan-
tities [4,10,47,48]. Shraiman and Siggia [10] relate these
dissipation rates to the Nusselt number using the following
exact relationships:

εu = ν〈|∇ × u|2〉 = ν3

d4

(Nu − 1)Ra

Pr2 , (21)

εT = κ〈|∇T |2〉 = κ

2

d2
Nu, (22)

where T is the temperature field defined as T = Tconduction + θ .
In the viscous regime, we use εu ∝ νU 2

L/d2 and define a
normalized viscous dissipation rate as

Cεu
= εu

νU 2
L/d2

= (Nu − 1)Ra

Pe2 . (23)

We define a normalized thermal dissipation rate as

CεT ,1 = εT

κ
2/d2
= Nu. (24)

Note that εu ∝ U 3
L/d in turbulent regime, but this formula

is not applicable for the large and infinite Prandtl number
convection because of the laminar nature of the flow. The
temperature equation, however, is fully nonlinear, hence,
εT ∝ ULθ2

L/d [5,34,47,48]. Therefore, we define another
normalized thermal dissipation rate as

CεT ,2 = εT

ULθ2
L/d

= Nu

Pe

(



θL

)2

. (25)

We will compute these dissipation rates using numerical data
and use them for validation, as well as for the prediction of
Nusselt number scaling.

III. NUMERICAL METHOD

We solve the nondimensionalized RBC equations
[Eqs. (4), (5), and (6)] numerically for both the free-slip
and no-slip boundary conditions. We simulate free-slip RBC
flow in a three-dimensional box of dimension 2

√
2 : 2

√
2 : 1

using a pseudospectral code TARANG [49]. On the top and
bottom plates, we employ free-slip and isothermal conditions
for the velocity and temperature fields, respectively. However,
periodic boundary condition is employed on the lateral walls.
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FIG. 1. (Color online) Temperature isosurfaces for (a) Pr = 102

and Ra = 107, (b) Pr = 103 and Ra = 6 × 106, and (c) Pr = ∞ and
Ra = 6.6 × 106. The red (light grey) structures represent hot plumes,
and blue (dark grey) ones represent cold plumes. The large-scale
structures get sharper with the increase of Pr.

The fourth-order Runge-Kutta (RK4) method is used for time
advancement, and the 2

3 rule for dealiasing.
To complement the aforementioned free-slip numerical

runs, we also simulate RBC flow under no-slip boundary
condition in a two-dimensional box of aspect ratio one.
We used the spectral element code NEK5000 [50] for this
purpose. Runs were performed in a box with 28 × 28 spectral
elements with 7th-order polynomials within each element,
resulting in a 1962 effective grid points in the box. For the
spectrum study, however, we used 15th-order polynomial,
which yields 4202 effective grid points in the box. We will
describe in the following that the two-dimensional no-slip and
three-dimensional free-slip runs exhibit similar results for the
large-scale quantities and energy spectrum.

We perform simulations for Pr = 102, 103, ∞, and Ra in the
range from 6 × 104 to 1 × 108. For such large Prandtl numbers,
the kinematic viscosity is much larger than the thermal
diffusion coefficient, consequently, coherent thin plumes are
generated in such flows [39–41,51]. Figure 1 illustrates the
temperature isosurfaces of the flow structures for (Pr = 102,

Ra = 107), (Pr = 103,Ra = 6 × 106), and (Pr = ∞,Ra =
6.6 × 106). The figures demonstrate that the plumes become
thinner and sharper with the increase of Prandtl number. The
Earth’s mantle that has very large Prandtl number (Pr ≈ 1025)

shows similar structures. A cross-sectional view of the flow
pattern exhibits spokelike patterns, first shown by Busse and
Whitehead [52] in their experiments with silicone oil. Also,
kmaxηu � 1 and kmaxηθ � 1 for all of our simulation runs;
here, ηu = (ν3/εu)1/4 and ηθ = (κ3/εu)1/4 are the Kolmogorov
length and Batchelor length for the velocity and temperature
fields, respectively. Thus, our simulations are numerically well
resolved.

We compute various global quantities (e.g., θL, Péclet and
Nusselt numbers), and energy and entropy spectra using the
numerical data generated by our simulations. These quantities
are averaged over 200–300 eddy turnover time after the flow
has reached a steady state. Note that the system takes around
a thermal diffusive time to reach a steady state. For better
statistical averaging, the Nusselt number is computed by
averaging the heat flux over the box volume. For all our runs,
the number of grid points in the thermal boundary layers are
greater than 5 to 6, which is consistent with the Grötzbach
criteria [53]. For example, for Pr = ∞ and Ra = 108, the
thermal boundary layers at both the plates contain 10 points.

Table I exhibits details of our free-slip numerical simu-
lations. In the table, we list the normalized dissipation rates
computed using the numerical data and compare them with
those derived using the exact relations (using the Nusselt
number). The estimated values are in very good agreement
with the numerically computed ones, thus validating our
numerical simulations. We, however, remark that the viscous
and thermal dissipation rates exhibit temporal and spatial
variability, as shown by many researchers. For example, Emran
and Schumacher [47,48] performed a detailed numerical
analysis of the thermal dissipation rate εT and showed that
the scaling of εT in boundary layer and in bulk are different.

The details of our no-slip runs are exhibited in Table II.
We also ensured grid independence of our numerical program
by performing simulations on grids with higher and lower
resolutions, and comparing our results. The global quantities
like Péclet and Nusselt numbers were found to be within
1%–2% for these simulations.

In the next section, we will describe the scaling of large-
scale quantities derived using the numerical data.

IV. SCALING OF LARGE-SCALE QUANTITIES

In this section we report average values of the Péclet
and Nusselt numbers, as well as those of the temperature
fluctuations and dissipation rates, for various Prandtl and
Rayleigh numbers. These values are compared with the
analytical predictions.

A. Temperature fluctuations

For large Prandtl number convection, Silano et al. [37]
showed that the temperature fluctuations are independent of Ra
and Pr. Here, we analyze this issue in more detail. As discussed
in the previous section, θ̂ (0,0,2n) modes play an important
role in turbulent convection. We compute θ̂(0,0,2n) modes
for small n using the numerical data of our simulation. These
values, exhibited in Table III for some typical parameters,
are in good agreement with the predictions of Mishra and
Verma [46] that θ̂ (0,0,2n) ≈ −
/(2nπ ). In Fig. 2, we plot
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TABLE I. Details of numerical simulations performed for free-slip boundary condition. The table contains Péclet number Pe, Nusselt
number Nu; the normalized viscous dissipation rate: numerically computed Ccomp.

εu
= εu/(νU 2

L/d2), and estimated Cest.
εu

= (Nu − 1)Ra/Pe2;
the normalized thermal dissipation rates: numerically computed C

comp.

ε
T

,1 = ε
T
/(κ
2/d2), C

comp.

ε
T

,2 = ε
T
/(ULθ 2

L/d), and estimated Cest.
ε
T

,2 =
(Nu/Pe)(
/θL)2. It also lists globally averaged kmaxηu and kmaxηθ , which are �1 for all the cases.

Pr Ra Grid Nu Pe Ccomp.
εu

Cest.
εu

C
comp.

ε
T

,1 C
comp.

ε
T

,2 Cest.
ε
T

,2 kmaxηu kmaxηθ

102 1.0 × 105 2563 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 61.4 1.9
102 2.0 × 105 2563 11.2 2.92 × 102 24.0 23.9 11.2 0.47 0.46 50.0 1.6
102 6.5 × 105 2563 17.3 6.15 × 102 28.6 28.3 17.5 0.36 0.34 32.0 1.0
102 2.0 × 106 5123 24.1 1.20 × 103 32.1 32.2 24.1 0.25 0.24 45.7 1.4
102 5.0 × 106 5123 31.0 1.96 × 103 39.5 39.1 30.9 0.19 0.19 33.9 1.1
102 1.0 × 107 10243 38.1 2.92 × 103 43.7 43.4 38.2 0.16 0.16 54.3 1.7
103 6.5 × 104 2563 8.6 1.53 × 102 21.4 21.4 8.6 0.69 0.68 223 1.3
103 1.0 × 105 2563 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 194 1.1
103 2.0 × 105 5123 12.1 3.01 × 102 23.9 23.9 12.1 0.48 0.48 309 1.7
103 3.2 × 105 5123 14.1 3.98 × 102 27.2 27.1 14.1 0.42 0.43 261 1.5
103 2.0 × 106 10243 24.3 1.10 × 103 38.7 38.3 24.3 0.26 0.26 277 1.6
103 6.0 × 106 10243 34.2 2.13 × 103 43.4 43.7 34.2 0.19 0.19 200 1.1
∞ 7.0 × 104 1283 8.8 1.59 × 102 21.4 21.6 8.8 0.67 0.68 ∞ 1.7
∞ 1.9 × 105 1283 12.1 3.02 × 102 23.9 24.0 12.0 0.48 0.49 ∞ 2.4
∞ 3.2 × 105 1283 14.1 4.14 × 102 25.1 25.1 14.1 0.41 0.42 ∞ 2.0
∞ 6.5 × 105 1283 17.4 6.36 × 102 26.7 26.7 17.4 0.33 0.34 ∞ 1.6
∞ 3.9 × 106 2563 30.3 1.95 × 103 30.3 30.4 30.3 0.19 0.19 ∞ 1.8
∞ 6.5 × 106 2563 36.1 2.70 × 103 33.5 31.8 36.0 0.16 0.16 ∞ 1.5
∞ 9.8 × 106 2563 41.2 3.34 × 103 35.8 35.6 41.1 0.15 0.15 ∞ 1.3
∞ 1.9 × 107 2563 51.2 5.20 × 103 36.8 36.6 51.2 0.12 0.12 ∞ 1.1
∞ 1.0 × 108 5123 87.5 1.38 × 104 45.6 45.3 87.2 0.07 0.07 ∞ 1.3

the averaged temperature profile T̄ (z), as well as 1 − z +∑
n 2θ̂ (0,0,2n) sin(2πnz) for n = 1, 2, 4, and 10 (note that

Tconduction = 1 − z). The figure demonstrates that the T̄ (z)
is well approximated by 1 − z + ∑10

n=0 2θ̂ (0,0,2n) sin(2πnz).
Hence, we conclude that the θ̂ (0,0,2n) modes contribute
significantly to T̄ (z).

We also compute the residual temperature fluctuations θres

defined using Eq. (19), and observe that

θres = a1
Ra−δ, (26)

as shown in Fig. 3. We deduce that θres/
 =
(0.59 ± 0.08)Ra−0.15±0.01 for Pr = ∞, θres/
 = (0.49 ±
0.02)Ra−0.13±0.01 for Pr = 102, and θres/
 = (0.56 ±
0.04)Ra−0.14±0.01 for Pr = 103. Thus, the scaling exponents
as well as the prefactors of θres for various Prandtl numbers
are nearly the same for Pr � 102.

For our large Pr convection with free-slip boundary condi-
tion, we observe that θres � θ̂ (0,0,2). Consequently, the rms

TABLE II. Details of RBC simulations with no-slip boundary
condition for a two-dimensional box of aspect ratio one.

Pr Ra Grid Nu Pe

102 1 × 104 1962 2.2 1.43 × 101

102 1 × 105 1962 3.9 5.73 × 101

102 1 × 106 1962 7.1 1.93 × 102

102 1 × 107 4202 14.4 7.55 × 102

102 5 × 107 1962 22.6 1.99 × 103

fluctuation of θ is dominated by θ̂ (0,0,2) mode, thus yielding

θrms ≈
√

2Eθ ≈ θL = a2
, (27)

which is independent of Ra and Pr, as depicted in Fig. 4(a) for
our free-slip runs. The constant a2 ≈ (0.29 ± 0.01) for free-
slip runs with Pr = ∞, 102, and 103, which is reasonably close
to the corresponding θrms for intermediate Pr (Pr ∼ 1) [33].
For the no-slip condition, however, θrms is smaller than that
for the free-slip value, as shown by Silano et al. [37] in their
simulations [see Fig. 4(b)]. In addition, Silano et al. [37] also
report that as a function of Ra, θrms remains constant for Ra �
106, but it decreases very slowly for larger Ra, with the power-
law exponent smaller than 0.08 [37].

The aforementioned difference in the behavior of θrms

for the two boundary conditions appears to be related to
the thickness of boundary layers for these cases. Petschel
et al. [54] showed that the thermal boundary layer for the

TABLE III. Numerically computed values of the Fourier modes
θ̂ (0,0,2), θ̂ (0,0,4), θ̂ (0,0,6), and θ̂ (0,0,8) for Pr = 102, 103, and ∞.
The values obtained from our simulation are in good agreement with
the theoretical prediction of Mishra and Verma [46] that θ̂ (0,0,2n)
≈ −1/2πn (the last row of the table).

Pr Ra θ̂ (0,0,2) θ̂ (0,0,4) θ̂ (0,0,6) θ̂ (0,0,8)

102 1 × 107 −0.16 −0.081 −0.054 −0.040
103 6 × 106 −0.16 −0.082 −0.055 −0.040
∞ 1 × 108 −0.16 −0.080 −0.054 −0.041

−1/2πn −0.16 −0.080 −0.053 −0.039
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FIG. 2. (Color online) Averaged temperature T (z) (dashed blue
curve) as a function of z for Pr = ∞ and Ra = 108. The mean
temperature remains almost a constant in the bulk, and it displays
a sharp gradient near the top and bottom plates. The red (solid
curve connected with circles), sky blue (dash-dot), black (dotted),
and brown (solid) curves represent Tc + ∑

n 2θ̂ (0,0,2n) sin(2πnz)
for n = 1,2,4, and 10 respectively; here, Tc = 1 − z is the conduction
profile. The curve for n = 10 matches quite well with T (z).

free-slip boundary condition is several times thinner than that
for the no-slip boundary condition. Hence, the amplitudes
of θ̂ (0,0,2n) modes for the no-slip boundary condition are
expected to be smaller than those for the free-slip boundary
condition, and θrms could be comparable to the θres for the no-
slip condition. As a result, θrms for no-slip boundary condition
is smaller than that for the free-slip boundary condition, as
well as appear to show a weak decrease with Ra somewhat
similar to θres (see Fig. 3).

B. Péclet number scaling

Now, we analyze the scaling of the Péclet number for large
and infinite Prandtl number convection. Using our numerical

FIG. 3. (Color online) Normalized residual temperature fluctua-
tion (θres/
) as a function of Ra for free-slip runs. The data for
Pr = ∞ (red squares), Pr = 102 (blue down-pointing triangles), and
Pr = 103 (green circles) collapse to a single function θres ≈ a1
Ra−δ .
The prefactors and exponents for the three runs are approximately
equal.

FIG. 4. (Color online) Plots of normalized root mean square
thermal fluctuations (θrms/
) vs Ra: (a) upper panel: for our 3D free-
slip runs with Pr = ∞ (red squares), Pr = 102 (blue down-pointing
triangles), and Pr = 103 (green circles); (b) bottom panel: for the 3D
no-slip simulations by Silano et al. [37] with Pr = 103 (pink stars),
and Pr = 102 (black hexagons). θrms/
 is an approximate constant
for the free-slip boundary condition. For the no-slip boundaries [37],
θrms/
 is a constant for lower Ra, and it is a weakly decreasing
function of Ra for larger Ra.

data and Eq. (15), we find that(∑
k

|θ̂(k)|2 k2
⊥

k6

1

d4
2

)1/2

≈ Ra−ζ , (28)

with ζ ≈ 0.38. Hence,

Pe = a3Ra1−ζ = a3Ra0.62. (29)

Similar relations are observed for Pr = 102 and Pr = 103,
as shown in Fig. 5 in which we plot PeRa−3/5 ver-
sus Ra. We find that Pe = (0.20 ± 0.02)Ra0.61±0.01, (0.29 ±
0.07)Ra0.57±0.02, (0.24 ± 0.05)Ra0.58±0.01 for Pr = ∞, 102,
and 103 respectively. For a no-slip simulation with Pr = 102,
Pe = (0.05 ± 0.01)Ra0.60±0.01. It is clear from Fig. 5 that the
prefactors for the no-slip runs (data from Silano et al. [37]) are
smaller than those for the free-slip runs, which is due to the
absence of wall friction for the free-slip boundary condition.
Note that the wall friction slows down the flow further. These
results are in reasonable agreement with the earlier results of
Silano et al. [37] (see Fig. 5), as well as with the GL scaling
that Pe ≈ 0.038Ra2/3 (the Pr = 102 no-slip data set belongs
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FIG. 5. (Color online) Plot of normalized Péclet number
(PeRa−3/5) vs Ra for the free-slip runs with Pr = ∞ (red squares),
Pr = 102 (blue down-pointing triangles), and Pr = 103 (green cir-
cles); and for the no-slip runs with Pr = 102 (orange triangles) and
Pr = 103 (pink stars; data from Silano et al. [37]). The prefactors for
the no-slip runs are lower than those for the free-slip runs.

to the I<∞ regime). Another interesting aspect of the above
scaling is its independence from Pr, unlike that for moderate
Pr’s (Pr ∼ 1) for which Pe ≈ √

RaPr [4,33].
Since the Reynolds number Re = Pe/Pr, Re = 0 for Pr =

∞, and Re is small for Pr � 1. Hence, the flow is viscous
when the Prandtl number is large or infinite. Note, however,
that the Reynolds number tends to become larger than one (yet
near one) for very large Ra (see Table I).

C. Nusselt number scaling

Nusselt number is defined as the ratio of total heat flux to
the conductive heat flux, i.e.,

Nu = κ
/d + 〈uzT 〉
κ
/d

= 1 +
〈
uzd

κ

θres




〉
= 1 + 〈u′

zθ
′
res〉,

(30)
where θ ′

res = θres/
 is the normalized temperature fluctuation
without θ̂ (0,0,2n) modes, and u′

z = uzd/κ . The absence of
(0,0,2n) Fourier modes in the above expression is due to the
fact that ûz(0,0,2n) = 0 (see Sec. II).

The above expression for Nu can be rewritten as [33,34]

Nu − 1 = 〈u′
zθ

′
res〉 = Cuθ (Ra)

〈
u′2

z

〉1/2
V

〈
θ ′2

res

〉1/2
V

, (31)

where the correlation function between the vertical velocity
and temperature fields Cuθ (Ra) is

Cuθ (Ra) =
〈

〈u′
zθ

′
res〉V〈

u′2
z

〉1/2
V

〈
θ ′2

res

〉1/2
V

〉
t

. (32)

Here, V and t stand for the volume and temporal aver-
ages, respectively. Our numerical data reveal that Cuθ (Ra) =
a4Ra−0.15, as exhibited in Fig. 6. We observe that Cuθ = (3.8 ±
0.6)Ra−0.15±0.01 for Pr = ∞, Cuθ = (2.9 ± 0.6)Ra−0.13±0.02

for Pr = 102, and Cuθ = (3.4 ± 0.2)Ra−0.14±0.01 for Pr = 103.
Equation (31) can be expressed as

Nu − 1 ≈ Nu ≈ Cuθ (Ra)
〈
u′2

z

〉1/2
V

〈
θ ′2

res

〉1/2
V

. (33)

FIG. 6. (Color online) Plot of correlation function between the
vertical velocity and temperature fields Cuθ (Ra) vs Ra for the free-
slip runs with Pr = ∞ (red squares), Pr = 102 (blue down-pointing
triangles), and Pr = 103 (green circles). Cuθ ≈ a4Ra−0.15.

Using the scaling relations Cuθ = a4Ra−0.15, Pe = a3Ra1−ζ ,
and θres = a1Ra−δ , we deduce that

Nu = a1a3a4Ra1−ζ−δ−0.15 = a5Ra0.32, (34)

with ζ ≈ 0.38 and δ ≈ 0.15, and a5 = a1a3a4. Our arguments
show that subtle variations of Pe and θ ′ with respect to Ra, and
the correlation between the vertical velocity and temperature
fields, yield Nu ≈ a5Ra0.32.

Scaling relations for Pr = ∞, 102, and 103 (free-slip
runs) computed using our numerical data are Nu = (0.23 ±
0.02)Ra0.32±0.01, Nu = (0.32 ± 0.07)Ra0.30±0.01, and Nu =
(0.29 ± 0.01)Ra0.31±0.01, respectively. In addition, for the
no-slip run, Nu = (0.14 ± 0.03)Ra0.29±0.01 for Pr = 102. The
prefactor for the free-slip runs is higher than that for
the no-slip runs (data from Silano et al. [37] and Xia et al. [35]),
which is reasonable since the heat transport is enhanced
for the free-slip runs due to lower friction at the top and
bottom plates (see Fig. 7). Also, for Pr = ∞ with free-slip
run, we observe that a1 ≈ 0.58, a3 ≈ 0.20, and a4 ≈ 3.8, and
consequently a5 ≈ 0.44, which is in a reasonable agreement
with the observed a5 ≈ 0.23. Similar consistency is observed
for Pr = 102 and 103 as well. Thus, our scaling results for θ ,
Pe, and Nu are consistent with each other.

The aforementioned scaling results are in good agreement
with GL scaling [5], according to which Nu = 0.17Ra1/3

in the I<∞ regime. Our results are also consistent with the
experimental results of Xia et al. [35] for Pr = 205 and 818,
and the numerical results of Silano et al. [37] and Roberts [38]
for large Pr simulations (see Fig. 7).

D. Scaling of dissipation rates

In Sec. II, we derived relationships between the normalized
dissipation rates and the Nusselt number. In this section,
we compute the normalized dissipation rates Cεu

, CεT ,1,CεT ,2

using numerical data and compare them with the exact results.
From the exact relationship between the viscous dissipation

rate and the Nusselt number [Eq. (23)], we obtain

Cεu
= (Nu − 1)Ra

Pe2 ≈ a5

a2
3

Raγ+2ζ−1 = a5

a2
3

Ra0.08 (35)
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FIG. 7. (Color online) Normalized Nusselt number (NuRa−0.29)
as a function of Ra for free-slip runs with Pr = ∞ (red squares),
Pr = 102 (blue down-pointing triangles), Pr = 103 (green circles),
and for Pr = ∞ (2D) (open red squares, data taken from Hansen
et al. [39]); and for no-slip runs with Pr = 102 (2D) (orange triangles),
Pr = 102 (pink stars, data taken from Silano et al. [37]), and Pr = 103

(black hexagons, data taken from Silano et al. [37]). Experimental
data of Xia et al. [35] for Pr = 205 and 818 are shown as cyan filled
pentagons and burlywood diamonds, respectively.

using γ = 0.32 and ζ = 0.38. For Pr = ∞, a5 ≈ 0.23 and
a3 ≈ 0.20 provide the prefactor to be 5.8. Figure 8 shows
the variation of Cεu

with Ra for Pr = 102, 103, and ∞.
From our numerical data (Table I) we find that Cεu

= (3.8 ±
1.2)Ra0.15±0.02 for Pr = 102, Cεu

= (3.3 ± 1.1)Ra0.17±0.02 for
Pr = 103, and Cεu

= (6.6 ± 1.3)Ra0.10±0.01 for Pr = ∞. These
computed results are in good agreement with the aforemen-
tioned estimates using exact relationships, thus they validate
our computations as well as show consistency with the other
scaling relations.

According to Eq. (24), the normalized thermal dissipation
rate is defined as

CεT ,1 = εT

κ
2/d2
= Nu = a5Raγ . (36)

FIG. 8. (Color online) Plot of normalized viscous dissipation rate
Cεu

vs Ra for the free-slip runs with Pr = ∞ (red squares), Pr =
102 (blue down-pointing triangles), and Pr = 103 (green circles).
Cεu

(Ra) ∼ Ra0.15, Ra0.17, and Ra0.10 for Pr = 102, 103, and ∞
respectively.

FIG. 9. (Color online) Plot of normalized thermal dissipation rate
CεT ,2 vs Ra for the free-slip runs with Pr = ∞ (red squares), Pr = 102

(blue down-pointing triangles), and Pr = 103 (green circles). CεT ,2 ∼
Ra−0.29, Ra−0.28, and Ra−0.31 for Pr = 102, 103, and ∞ respectively.

Thus, CεT ,1 has a same scaling as the Nusselt number
(see Table I). The scaling of the other normalized thermal
dissipation rate is more complex. Equation (25) yields

CεT ,2 = εT

ULθ2
L/d

= Nu

Pe

(



θL

)2

. (37)

Using the scaling of Nu, Pe, and θL, we deduce

CεT ,2 = a5

a3a
2
2

Raγ+ζ−1 = a5

a3a
2
2

Ra−0.30, (38)

with γ = 0.32 and ζ = 0.38. Using the constants ai’s, the
prefactor is approximately 14 for Pr = ∞. Similar exponents
and prefactors are observed for other large Pr simulations. In
Fig. 9, we plot CεT ,2 versus Ra, which exhibits CεT ,2 = (17 ±
5.1)Ra−0.29±0.02 for Pr = 102, CεT ,2 = (16 ± 4.1)Ra−0.28±0.02

for Pr = 103, and CεT ,2 = (22 ± 2.2)Ra−0.31±0.01 for Pr =
∞. These numerical results are in good agreement with
the theoretical estimates computed earlier. For Pr = 0.7,
Emran and Schumacher [47,48] also observed nearly similar
scaling for thermal dissipation rate. They estimated thermal
dissipation rates separately in the bulk and boundary layers,
as well as in the plume-dominated regions and in the turbulent
background.

The aforementioned scaling of the dissipation rates and
their consistency with other global quantities such as Nu and
Pe indicate consistency of our arguments. These results are
summarized in Table IV for a free-slip simulation with Pr =
∞, and in Table V for a no-slip simulation with Pr = 102.
The exponents and the prefactors are nearly the same for all
Pr � 102.

After our discussion on the global quantities, we turn to the
computations of energy and entropy spectra, as well as their
fluxes.

V. ENERGY AND ENTROPY SPECTRA

Energy and entropy contained in a wave-number shell of
radius k are called the energy spectrum Eu(k) and entropy
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TABLE IV. Summary of the scaling functions for various quantities for free-slip runs with Pr = ∞. The estimated values using analytical
arguments agree quite well with the numerically computed ones. The formulas for the scaling functions using ai’s are listed in the second
column.

Quantity Formula Estimated Computed

θres/
 a1Ra−δ (0.59 ± 0.08)Ra−0.15±0.01

θrms/
 a2 (0.29 ± 0.01)
Pe a3Ra1−ζ 0.16Ra0.62 (0.20 ± 0.02)Ra0.61±0.01

Cuθ a4Ra−0.15 (3.8 ± 0.6)Ra−0.15±0.01

Nu a5Raγ 0.43Ra0.32 (0.23 ± 0.02)Ra0.32±0.01

Cεu
(a5/a

2
3 )Raγ+2ζ−1 5.8Ra0.08 (6.6 ± 1.3)Ra0.10±0.01

CεT ,2 a5/(a3a
2
2 )Raγ+ζ−1 14Ra−0.30 (22 ± 2.2)Ra−0.31±0.01

Ẽu(k) (a2
2a3)2/3k−13/3 0.063k−13/3 (0.06 ± 0.02)k−13/3

Ẽθ (k) (a2
2a3)2/3k−1/3 0.063k−1/3 Dual branches

spectrum Eθ (k), respectively, i.e.,

Eu(k) =
∑

k�|k′|<k+1

|û(k′)|2
2

, (39)

Eθ (k) =
∑

k�|k′|<k+1

|θ̂ (k′)|2
2

. (40)

Nonlinear interactions lead to a transfer of energy and entropy
from smaller wave-number modes to larger wave-number
modes. These transfers are quantified using energy flux �u(k0)
and entropy flux �θ (k0), which are the fluxes coming out of a
wave-number sphere of radius k0 [46,55]:

�u(k0) =
∑
k�k0

∑
p<k0

δk,p+qIm{[k · û(q)][û∗(k) · û(p)]}, (41)

�θ (k0) =
∑
k�k0

∑
p<k0

δk,p+qIm{[k · û(q)][θ̂∗(k) · θ̂ (p)]}, (42)

where Im is the imaginary part of the argument, and k,p,q are
the wave numbers of a triad with k = p + q.

For Pr = ∞, the momentum equation [Eq. (8)] yields

αg(θres)l ≈ νul

l2
. (43)

We take (θres)l = Ra−δθl with δ defined in Eq. (26). We also
assume a constant entropy flux, which yields

εθ = θ2
LUL

d
Cεθ ,2 = θ2

l ul

l
Cεθ ,2. (44)

TABLE V. Summary of the scaling functions for various quanti-
ties for no-slip runs with Pr = 102. The computed θrms is taken from
Silano et al. [37]. The estimated Pe and Nu scaling are taken from
the theoretical work of Grossmann and Lohse [5] (the I<∞ regime).

Quantity Estimated Computed

θrms (0.12 ± 0.02)

Pe 0.038Ra2/3 (0.05 ± 0.01)Ra0.60±0.01

Nu 0.17Ra1/3 (0.14 ± 0.03)Ra0.29±0.01

Ẽu(k) 0.008k−13/3 (0.006 ± 0.004)k−13/3

Ẽθ (k) 0.008k−1/3 Dual branches

We use the expressions of θL and UL derived earlier [Eqs. (27)
and (29)]. After substitutions of these expressions in the above
equations, we obtain

ul = (
a2

2a3
) 1

3
κ

d
Ra

1
3 (3−2δ−ζ )

(
l

d

) 5
3

, (45)

θl = (
a2

2a3
) 1

3 
Ra
1
3 (δ−ζ )

(
l

d

)− 1
3

, (46)

and therefore the energy and entropy spectra are

Eu(k) = (
a2

2a3
) 2

3 d
(κ

d

)2
Ra

2
3 (3−2δ−ζ )(kd)−

13
3 , (47)

Eθ (k) = (
a2

2a3
) 2

3 d
2Ra
2
3 (δ−ζ )(kd)−

1
3 . (48)

We define normalized spectra Ẽu(k) and Ẽθ (k) as

Ẽu(k) = Eu(k)

d
(

κ
d

)2
Ra

2
3 (3−2δ−ζ )

= (
a2

2a3
) 2

3 (kd)−
13
3 , (49)

Ẽθ (k) = Eθ (k)

d
2Ra
2
3 (δ−ζ )

= (
a2

2a3
) 2

3 (kd)−
1
3 . (50)

FIG. 10. (Color online) Kinetic energy spectrum Ẽu(k) for Pr =
∞, Ra = 108 (thick red dashed curve), and for Pr = 102, Ra =
107 (thick green curve). The respective normalized kinetic spectra
Ẽu(k)k13/3 (thin curves) are approximate constants in the power-law
range, thus Eu(k) ∼ k−13/3.
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FIG. 11. (Color online) For no-slip box with Pr = 102 and Ra =
107: the kinetic energy spectrum Ẽu(k) (thick blue curve) and the
compensated kinetic energy spectrum Ẽu(k)k13/3 (thin green curve).
The scaling is similar to that for the free-slip runs, except for a smaller
prefactor.

For Pr = ∞, the prefactor (a2
2a3)2/3 computed using ai’s

discussed earlier is approximately 6.3 × 10−2.
In Fig. 10, we plot kinetic spectrum Ẽu(k) and normalized

kinetic spectrum Ẽu(k)k13/3 for (Pr = ∞, Ra = 108) and
(Pr = 102, Ra = 107). Normalized kinetic spectrum appears
nearly constant for more than one decade of wave number
with Ẽu(k) ≈ (0.06 ± 0.02)k−13/3. This result is in a very good
agreement with the predictions based on scaling arguments.
Note that the Eu(k) follows neither the Bolgiano-Obukhov nor
the Kolmogorov-Obukhov scaling [43,46] since the velocity
field is viscous. The above scaling law for the kinetic energy
spectrum also holds for Pr = 103 for free-slip boundary
condition, and for Pr = 102 for no-slip boundary condition, as
exhibited in Fig. 11. For better statistics, we average approxi-
mately 35 frames for free-slip data; the no-slip data, however,
are not averaged. The prefactors for the free-slip runs are larger
than those for the no-slip run due to lower frictional forces for
the free-slip convection. We, however, remark that the data
points for the no-slip boundary condition are not uniformly

FIG. 12. (Color online) Plot of entropy spectrum Ẽθ (k) vs k for
Pr = ∞, Ra = 108 (red filled circles) and for Pr = 102, Ra = 107

(green filled squares). The upper branches of the spectra represent
θ̂ (0,0,2n) modes that exhibit k−2 scaling (red dashed and green solid
curves). The lower branch is somewhat flat.

FIG. 13. (Color online) Plot of entropy spectrum Ẽθ (k) for Pr =
102, Ra = 107 with no-slip boundary condition. The spectrum ex-
hibits similar scaling as large-Pr free-slip runs.

distributed, which necessitates interpolation of the data points
to a uniform mesh. It is possible that the sawtoothlike spectrum
at high wave numbers could be due to the interpolation process.
Also, the sharp viscous boundary layer for the no-slip box
could produce fluctuations in the spectrum.

The entropy spectrum, however, is more complex.
The entropy spectrum Ẽθ (k) exhibited in Fig. 12 for
(Pr = ∞, Ra = 108) and (Pr = 102, Ra = 107) exhibits
dual branches. The upper branch, which corresponds to
the θ̂ (0,0,2n) Fourier modes, follows k−2 energy spectrum
since θ̂ (0,0,2n) ≈ −1/(2nπ ) (see Sec. II and [46]). The
lower branch is the energy spectrum of the Fourier modes
other than θ̂ (0,0,2n), and it follows nearly a flat spectrum.
The nature of the entropy spectrum is very different from
our phenomenological predictions that Eθ (k) ∝ k−1/3. This
discrepancy is due to the boundary condition (the conducting
plates) which yields significant θ̂ (0,0,2n) branch (see Sec. II
and Mishra and Verma [46]). Similar behavior is observed for
Pr = 103 with the free-slip boundary condition, and for Pr =
102 with no-slip boundary condition, as exhibited in Fig. 13.

FIG. 14. (Color online) Plot of entropy flux �θ (k) vs k for Pr =
∞, Ra = 108 (thick red curve), and for Pr = 102, Ra = 107 (thin
green curve). The fluxes are approximate constants in the power-law
range.
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We also compute the entropy flux �θ (k0) using the
numerical data. In Fig. 14, we plot �θ (k) for Pr = ∞ and
Ra = 108, and for Pr = 102 and Ra = 107. The plots indicate
a nearly constant entropy flux in the power-law regime. The
constancy of �θ (k) is due to the dominance of nonlinear
term in the temperature equation. The kinetic energy flux
�u(k), however, is zero for Pr = ∞ due to the absence of
the nonlinearity in the velocity equation. For large Pr runs,
�u(k) is very small due to weak nonlinearity.

In Table IV, we summarize the scaling results for Pr = ∞
simulation under free-slip boundary condition, and Table V for
Pr = 102 simulation under no-slip boundary condition. Here,
we list the theoretically estimated and numerically computed
values. The two sets of values are in good agreement with each
other. The scaling for large Pr (Pr � 102) RBC is very similar
to that for Pr = ∞ RBC. Our data for the no-slip boundary
condition are somewhat limited at present.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we derive scaling properties of the large-scale
quantities (e.g., Péclet and Nusselt numbers) as well as that of
energy and entropy spectra for very large and infinite Prandtl
number convection. The equation for the velocity field is
linear for the Pr = ∞ limit that helps us derive relationships
between various quantities. These scaling relations are verified
using numerical simulations for infinite and large Prandtl
numbers (Pr � 102). We observe that the scaling of flows with
large Prandtl number (Pr � 102) is the same as that for the
infinite Prandtl number, thus making them Pr independent. Our
results are consistent with the earlier theoretical predictions
of Grossmann and Lohse [5], experimental results of Xia
et al. [35], and the numerical results of Silano et al. [37]. Note,
however, that the analytical work of Grossmann and Lohse [5]
is based on Shraiman and Siggia’s [10] exact relations and
modeling of the dissipation rates at the bulk and boundary
layers, while our theoretical work is based on the dimensional
and scaling analysis of the dynamical equation of the velocity
and temperature fields, as well as several inputs from the
numerical simulations.

A summary of our results is as follows.
(1) The temperature field is dominated by the Fourier

modes θ̂ (0,0,2n), which are approximately −1/(2nπ ) for
small n in accordance with the predictions by Mishra and
Verma [46]. The modes other than θ̂ (0,0,2n) are termed as
“residual modes” whose rms fluctuations scale as Ra−δ with
δ ≈ 0.15. Due to the dominance of θ̂ (0,0,2n) modes, the large-
scale temperature fluctuations follow θrms ∼ 
 for the free-slip
boundary condition, where 
 is the temperature difference
between the hot and cold plates. However, the numerical results
of Silano et al. [37] for the no-slip boundary condition exhibit
the above behavior (with a smaller prefactor) for lower Ra,
but θrms appear to decrease slowly with Ra for larger Ra. We
show that the residual modes play a very important role in the
scaling of Nusselt number, energy spectrum, etc.

(2) The Péclet number, which is proportional to the large-
scale velocity, scales as Ra1−ζ with ζ ≈ 0.38. Note that the
Reynolds number in the large Pr limit is small, i.e., Re � 1.
These results are consistent with the theoretical predictions of
GL [5] and the numerical results of Silano et al. [37].

(3) The Nusselt number scales as Raγ with the exponent
lying in the range from 0.30 to 0.32, which is consistent with
the results of Grossmann and Lohse [5], Silano et al. [37],
Roberts [38], Xia et al. [35], and Constantin and Doering [13].
This scaling arises due to a complex interplay between the
residual modes, Péclet number, and the velocity-temperature
correlation.

(4) The normalized viscous and thermal dissipation rates
are functions of Ra. We observe that

Cεu
= εu

νU 2
L/d2

≈ Rab1 , (51)

CεT ,2 = εT

ULθ2
L/d

≈ Ra−b2 , (52)

with b1 ≈ 0.10 and b2 ≈ 0.31. These relations are consistent
with the Nu scaling derived using the exact relations of
Shraiman and Siggia [10]. Here, we derive explicit Ra-
dependent normalized dissipation rates for large Pr.

(5) Using analytical arguments, we derive that the energy
spectrum Eu(k) ∼ k−13/3. Our simulations verify this power
law in the power-law range for both the free-slip and no-slip
boundary conditions.

(6) We predict that the entropy spectrum Eθ (k) ∼ k−1/3.
Unfortunately, this power law is not observed in the numerical
simulations. Instead, we find dual entropy spectra consisting
of an upper branch with the k−2 spectrum corresponding to
θ̂ (0,0,2n) ≈ −1/(2nπ ), and a nearly flat lower branch. The
dual branching is due to the presence of boundary layers [46].

(7) Our numerical simulations show that the free-slip and
no-slip boundary conditions provide similar scaling relations
for the global quantities, as well as for the energy and entropy
spectra. However, the prefactors of the Péclet and Nusselt
numbers, and that of the energy spectrum are smaller for
the no-slip condition than those for the free-slip boundary
condition. This discrepancy is due to a smaller frictional force
experienced by the flow for the free-slip boundary condition.
The similarities of the scaling functions between the free-slip
and no-slip convection are due to the dominance of the
large-scale flows, which have similar structures for both the
free-slip and no-slip boundary conditions. Note that viscous
boundary layers pervade the whole box for Pr = ∞, hence
they determine the properties of the bulk flow.

In summary, we derived scaling relations for large-scale
quantities and energy and entropy spectra for large and
infinite Prandtl number convection. The scaling properties
are independent of the Prandtl number in this regime. Our
analytical and numerical results are consistent with earlier
results of Grossmann and Lohse [5], Silano et al. [37], and
Xia et al. [35].
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