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Boltzmann rovibrational collisional coarse-grained model for internal energy excitation
and dissociation in hypersonic flows
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A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism
database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N
interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2

molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann
distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy
bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species,
thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is
applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging
nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with
those obtained by direct solution of the master equation for the rovibrational collisional model and a more
conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately
resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes
with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the
nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional
multitemperature models.
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I. INTRODUCTION

Hypersonic aerothermodynamics finds its chief application
in the description of the flow surrounding spacecraft entering
planetary atmospheres [1–3]. The correct modeling of the
physicochemical phenomena occurring in hypersonic flows
is important for the design of heat shields of space vehicles
and for a correct interpretation of experimental measurements
in high-enthalpy wind tunnels.

Nonequilibrium effects occur as a result of the finite-rate
nature of collisional and radiative processes. The theoretical
framework for their description depends on the time scales
of the physical processes of interest [4]. When the Knudsen
number is sufficiently small, collisions dominate the convec-
tive transport and the translational velocity of the gas species
are close to equilibrium (Maxwell-Boltzmann distribution
function) [5,6]. A hydrodynamic description based on the
Navier-Stokes equations can be adopted to determine flow
quantities such as velocity and chemical composition, and
transport fluxes such as heat flux and stress tensor [7–10].
The inclusion of the internal structure of the gas species (e.g.,
rotational and vibrational energy levels of molecules) makes
the description more complex as the distribution function of
the internal energy may deviate from local equilibrium. This
situation is found when the elementary processes (such as
dissociation and internal energy excitation) occur at the same
time scales of the flow often encountered behind shock waves
[11–13] and within converging-diverging nozzles [14–17]. The
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non-Boltzmann character of the internal energy distribution
function can have a significant impact on the dynamics
of internal energy excitation and dissociation-recombination
processes [18]. In the case of the flow inside nozzles in
high-enthalpy wind tunnels, nonequilibrium effects can affect
the gas outlet conditions, which in turn have an important
impact on the outcome of the experimental observations.
For example, the shock standoff distance and the pressure
distribution over a test sample placed at the nozzle outlet
are strongly influenced by the chemical composition and the
degree of excitation of internal energy of the test gas [1].
Similar considerations also apply to the description of the
dissociating flow occurring behind shock waves developed in
front of space vehicles during a planetary entry.

Multitemperature models [1,19,20] have been proposed to
model nonequilibrium effects. In these models, the population
of each internal energy mode (rotational, vibrational, or elec-
tronic) follows a Boltzmann distribution at its own temperature
(e.g., rotational, vibrational, and electronic temperatures).
To calculate these temperatures and the energy exchanged
between all the energy modes, conservation equations for the
internal energy modes in thermal nonequilibrium are added to
the set of conservation equations for mass, momentum, and to-
tal energy. Multitemperature models are easy to implement and
have been used extensively in multidimensional flow codes due
to their computational efficiency [21–23]. However, since in
hypersonic flows the internal energy level populations may sig-
nificantly depart from Boltzmann distributions, their use is jus-
tified only in the case of small departure from equilibrium [24].

Collisional models [14,15,25–41] represent a valid alter-
native to multitemperature models as they exhibit a wider
spectrum of applicability. Each internal energy level is treated
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as a separate pseudospecies, thus allowing for the model-
ing of non-Boltzmann population distributions. The higher
accuracy and flexibility obtained with the collisional models
is counterbalanced by a higher computational cost due the
drastic increase in the number of governing equations to
be solved and the complexity of the chemical mechanism
considered. Moreover, in order to obtain the numerical values
of cross sections and rate coefficients for each elementary
process, complex and lengthy quantum-chemistry calculations
are usually required. For these reasons, the use of collisional
models in computational fluid dynamics (CFD) applications
has become feasible only recently, due to the advances in
computational resources [42–47]. Even in that case, however,
the computational time required is still high compared to
multitemperature models.

A possible approach to the reduction of the mathematical
complexity and the computational cost is coarsening the reso-
lution of the dynamics of the internal energy levels [14,48–53].
This is motivated by the fact that, in CFD applications, one is
more interested in the correct prediction of the dynamics of
flow quantities and transport fluxes at the wall than resolving
the finest details of the internal energy distribution function. In
this context, vibrational collisional (VC) models [14,15,31,52]
have been proposed assuming that the rotational energy mode
is in equilibrium with the translational energy mode.

The purpose of this paper is the development of a Boltz-
mann rovibrational collisional (BRVC) coarse-grained model
for an accurate description of the internal energy excitation and
dissociation for the N2(1�g

+
)-N(4Su) system in hypersonic

flows. This coarse-grained model is constructed by lumping
the rovibrational energy levels of the N2 molecule into energy
bins. A bin collisional model is then derived by assuming
that the population of the levels within each bin follows a
Boltzmann distribution at the local translational temperature.
A similar model has been previously proposed based on a
uniform distribution [the Boltzmann uniform rovibrational
collisional (URVC) coarse-grained model] [49]. The latter
does not allow for retrieving the equilibrium state (chemical
composition and energy distribution) and the Boltzmann
model is developed here in order to overcome this problem.
The BRVC model is based on the ab initio database developed
by the Computational Quantum Chemistry Group at NASA
Ames Research Center [25–27]. This database provides rate
coefficients for the rovibrational excitation and dissociation of
the ground electronic state of the nitrogen molecule N2(1�g

+
)

colliding with a nitrogen atom in its ground electronic state
N(4Su). The coarse-grained model is applied to the modeling
of the nonequilibrium flows behind normal shock waves and
within converging-diverging nozzles. The modeling of nozzle
flows could not be achieved with the URVC model [49] in view
of the difficulty of retrieving the equilibrium state (usually
assumed in the nozzle reservoir). In all the cases, the flow is
considered inviscid, quasi-one-dimensional, and steady. The
reason justifying these simplifying assumptions is twofold.
First, for one-dimensional and inviscid flows, it is possible
to obtain numerical solutions for the rovibrational collisional
model with reasonable computational effort. This allows for a
direct quantification of the degree of approximation introduced
by the coarse-grained model. Second, the assumptions intro-
duced allow for a description of the main features of internal

energy excitation and dissociation-recombination processes
characterizing hypersonic flows.

The paper is organized as follows. Section II describes the
Boltzmann coarse-grained model developed for the reduction
of the NASA Ames database together with the flow governing
equations. The numerical methods applied to the analysis
of the flows under investigation are explained in Sec. III.
Computational results are analyzed and discussed in Sec. IV.
Finally, the findings are outlined in Sec. V.

II. PHYSICAL MODELING

This section describes the coarse-grained modeling strategy
applied to the analysis of hypersonic flows in compressing
and expanding environments. First, the main features of
the NASA Ames database, describing the dynamics of the
N2(1�g

+
)-N(4Su) interactions, are briefly summarized. Then,

the steps needed for the development of the BRVC model
are discussed in detail. Finally, the governing equations for
inviscid and quasi-one-dimensional nonequilibrium flows are
prescribed.

A. The NASA Ames database for the N2(1�g
+)-N(4 Su) system

The NASA Ames database [25–27] comprises a complete
and self-consistent set of thermodynamic and kinetic data
needed to describe the elementary state-to-state kinetics
of N2(1�g

+
)-N(4Su) and N2(1�g

+
)-N2(1�g

+
) interactions.

While the analysis carried out in this work is restricted
to the study of the N2(1�g

+
)-N(4Su) interaction, an on-

going effort addresses the study of the dynamics of the
N2(1�g

+
)-N2(1�g

+
) system [54].

The number of rovibrational energy levels N2(v,J ) of the
ground electronic state of the N2 molecule is 9390, where the
indices v and J stand for the vibrational and rotational quantum
numbers, respectively. Most of these rovibrational levels
(7421) are bound. This means that their energy is lower than
the dissociation energy relative to the (v = 0, J = 0) level,
equal to 9.75 eV. The remaining levels are predissociated (or
quasibound). Thus their energy is higher than the dissociation
energy relative to the level (v = 0, J = 0), but lower than the
J -dependent centrifugal barrier. The numerical values of the
rovibrational energy levels have been obtained by applying
the Wentzel-Kramer-Brillouin approximation [55], using the
potential for N2(1�g

+
) developed by Le Roy et al. [56].

The bound and predissociated energy levels can be denoted,
respectively, by means of the sets IB and IP . These satisfy the
relations IBP = IB ∪ IP and IB ∩ IP = ∅. For the sake of later
convenience, it is useful to sort the energy levels according to
increasing energy and denoting them by means of a global
index i. The values of the energy and degeneracy of the level
i ∈ IBP are indicated by the symbols Ei and gi , respectively.

More than 20 million reactions are considered: (i) colli-
sional dissociation from bound and predissociated states:

N2(i) + N
kD
i (T )

�
kR
i (T )

N + N + N, i ∈ IBP ; (1)
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(ii) predissociation (or tunneling) of predissociated states:

N2(i)
kP
i (T )

�
kIP
i (T )

N + N, i ∈ IP ; (2)

and (iii) collisional excitation among bound and predissociated
states:

N2(i) + N
kE
i→j (T )

�
kE
j→i (T )

N2(j ) + N, i < j ; i,j ∈ IBP . (3)

In the present work, predissociation is not accounted for. The
rate coefficients for collisional dissociation and excitation
[kD

i (T ) and kE
i→j (T ), with i < j , respectively] have been

computed by integrating over a Maxwell-Boltzmann distri-
bution function for the translational energy the cross-section
values obtained by means of the quasi-classical-trajectory
method [25–27]. Rate coefficients are available at nine values
of temperature between 7500 and 50 000 K.

The (exothermic) rate coefficients for recombination and
deexcitation processes [kR

i (T ) and kE
j→i(T ), with i < j , re-

spectively] are computed based on microreversibility [57,58]:

kR
i (T )

kD
i (T )

= giQ
tr
N2

(T )[
gNQtr

N(T )
]2 exp

(
2EN − Ei

kbT

)
, i ∈ IBP , (4)

kE
j→i(T )

kE
i→j (T )

= gi

gj

exp

(
Ej − Ei

kbT

)
, i < j ; i,j ∈ IBP , (5)

where kb is Boltzmann’s constant. The degeneracy of the N
atom in its ground electronic state gN in Eq. (4) is equal to
12. The quantity EN represents the formation energy of the N
atom. The translational partition functions of N and N2 are:

Qtr
N(T ) =

(
2πmNkbT

h2
p

)3/2

, Qtr
N2

(T ) =
(

2πmN2kbT

h2
p

)3/2

,

(6)

where hp is Planck’s constant and mN and mN2 are the masses
of N and N2, respectively. The production rates for N and for
the internal energy levels of N2 due to collisional dissociation
and excitation (and the related reverse exothermic processes)
are computed based on the zeroth-order reaction rate theory
[57,58]:

ωN = 2mNnN

∑
i∈IBP

[
nik

D
i (T ) − n2

NkR
i (T )

]
, (7)

ωi = −mN2nN
[
nik

D
i (T ) − n2

NkR
i (T )

]
+mN2nN

∑
j ∈ IBP

j < i

[
njk

E
j→i(T ) − nik

E
i→j (T )

]

−mN2nN

∑
j ∈ IBP

j > i

[
nik

E
i→j (T ) − njk

E
j→i(T )

]
, i ∈ IBP ,

(8)

where nN and ni are the number densities of N and the internal
energy level i of N2, respectively.

The set of thermodynamic and state-to-state kinetics data
described in this section constitutes a rovibrational collisional

(RVC) model [18]. This has been applied to study rovibrational
energy transfer and dissociation in zero- [18] and one-
dimensional [59] systems. The RVC model provides the basis
for the construction of the BRVC model, which is explained
in detail in Sec. II B.

B. Boltzmann rovibrational collisional model

The BRVC model is constructed based on the RVC model
(described in Sec. II A) by lumping the energy levels of N2 into
energy bins. The construction of the proposed coarse-grained
model goes as follows.

First, the whole internal energy ladder of N2 is divided
in two parts: one for the bound levels and the other for
the predissociated levels. Second, both regions are evenly
subdivided with spacing:

�EB = 2EN/NB, �EP = (E� − 2EN)/NP , (9)

where the number of energy bins for the bound and predissoci-
ated regions (NB and NP , respectively) is a free parameter and
such that NBP = NB + NP (where NBP is the total number
of energy bins). The quantity E� represents the energy of the
last energy level. The next step consists in the construction
of a map between energy bins and energy levels in order to
associate the energy level i with the energy bin k it belongs to:

B(i) =
{�Ei/�EB� + 1, i ∈ IB

�(Ei − 2EN)/�EP � + NB + 1, i ∈ IP ,
(10)

where B denotes bin and the symbol � � stands for the
floor function. It is important to mention that the procedure
discussed here can lead to the formation of empty bins,
which are then removed from the model. For the sake of
later convenience it is useful to introduce the sets KB , KP ,
and KBP , storing, respectively, the indices for the energy
bins associated with the bound, predissociated, and both
the bound and predissociated levels (satisfying the relations
KBP = KB ∪ KP and KB ∩ KP = ∅) and the set Ik storing
the energy levels belonging to the energy bin k:

Ik = {i ∈ IBP |B(i) = k}, k ∈ KBP . (11)

Based on the subdivision into energy bins constructed through
Eqs. (9)–(11), it is possible to write the energy Ei of the level
i within the energy bin k based on the energy Ẽk of the first
level within the same bin as:

Ei = Ẽk + �Ẽk(i), i ∈ Ik; k ∈ KBP . (12)

The bin energy Ẽk and the �Ẽk(i) energy contribution
are the equivalent of the vibrational and rotational energy,
respectively, in a VC model [14]. The population of the
rovibrational energy levels grouped in the energy bins can
be easily obtained once the bin distribution is specified. In this
work, it is assumed that the population of the energy levels
within each bin follows a Boltzmann distribution at the local
translational temperature T :

ni

ñk

= gi

Q̃k(T )
exp

(
−�Ẽk(i)

kbT

)
, i ∈ Ik; k ∈ KBP , (13)
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where the number density ñk and the partition function Q̃k(T )
of the energy bin k in Eq. (13) are defined as:

ñk =
∑
i∈Ik

ni, (14)

Q̃k(T ) =
∑
i∈Ik

gi exp

(
−�Ẽk(i)

kbT

)
, k ∈ KBP . (15)

The assumption of local equilibrium of the internal levels
within each bin is justified by the large reaction rate coefficients
for excitation and deexcitation that characterize groups of
levels with similar internal energy. This assumption is found
to work quite well in the condition of interest to this work,
as shown in Sec. IV. Furthermore, increasing the number of
energy bins can easily extend the range of validity of this model
to stronger nonequilibrium conditions.

Equation (13) holds true in equilibrium conditions. This
means that the BRVC model does not introduce modifications,
when compared to the RVC model, as far as equilibrium
thermodynamic properties are concerned. This was not the
case for the URVC model [49]. For the BRVC model, it can
be shown that the equilibrium population of the energy bins is
given by a Boltzmann distribution:

ñk

nN2

= Q̃k(T ) exp (−Ẽk/kbT )∑
k∈KBP

Q̃k(T ) exp (−Ẽk/kbT )
, k ∈ KBP , (16)

where the partition function Q̃k(T ) of the energy bin k plays
the role of a degeneracy. The number density of N2 in Eq. (16)
is computed as nN2 = ∑

k∈KBP
ñk .

1. Bin-averaged rate coefficients

In order to obtain the bin-averaged rate coefficients, Eqs. (7)
and (8) are considered and Eq. (8) (providing the mass
production rate ωi for the energy level i) is summed over
all the energy levels belonging to the energy bin k (stored in
the set Ik). After performing some algebraic manipulations,
the mass production terms for N and the energy bin k of N2

are obtained:

ωN = 2mNnN

∑
k∈KBP

[
ñkk̃

D
k (T ) − n2

Nk̃R
k (T )

]
, (17)

ω̃k = −mN2nN
[
ñkk̃

D
k (T ) − n2

Nk̃R
k (T )

]
+mN2nN

∑
l ∈ KBP

l < k

[
ñl k̃

E
l→k(T ) − ñkk̃

E
k→l(T )

]

−mN2nN

∑
l ∈ KBP

l > k

[
ñkk̃

E
k→l(T ) − ñl k̃

E
l→k(T )

]
, k ∈ KBP .

(18)

The bin-averaged dissociation and excitation rate coefficients
[k̃D

k (T ) and k̃E
k→l(T ), with k < l, respectively] are defined as:

k̃D
k (T ) = 1

Q̃k(T )

∑
i∈Ik

gi exp

(
−�Ẽk(i)

kbT

)
kD
i (T ), k ∈ KBP ,

(19)

k̃E
k→l(T ) = 1

Q̃k(T )

∑
i∈Ik

gi exp

(
−�Ẽk(i)

kbT

) ∑
j∈Il

kE
i→j (T ),

k < l; k,l ∈ KBP , (20)

while the rate coefficients for the reverse processes read:

k̃R
k (T )

k̃D
k (T )

= Qtr
N2

(T )Q̃k(T )[
gNQtr

N(T )
]2 exp

(
2EN − Ẽk

kbT

)
,

(21)
k ∈ KBP ,

k̃E
l→k(T )

k̃E
k→l(T )

= Q̃k(T )

Q̃l(T )
exp

(
Ẽl − Ẽk

kbT

)
,

(22)
k < l; k,l ∈ KBP .

Equations (21) and (22) state that the bin-averaged rate coeffi-
cients for the reverse processes can be computed by applying
microreversibility to the bin-averaged rate coefficients for the
direct processes as opposed to the URVC model [49].

2. Thermodynamic properties

The gas number density n is obtained by summing the
contributions of N and N2:

n = nN + nN2 , (23)

and the static pressure is computed based on Dalton’s law
p = nNkbT + nN2kbT . The gas thermal energy density ρe is
obtained by summing the contributions from the translational
energy of N and N2, the formation energy of N, and the internal
energy levels of N2:

ρe = 3

2
nNkbT + 3

2
nN2kbT + nNEN +

∑
i∈IBP

niEi. (24)

Using Eqs. (13)–(15) it is possible to write the last term in
Eq. (24) (associated with the internal energy levels of N2) in
the following form:

∑
i∈IBP

niEi =
∑

k∈KBP

ñkẼk +
∑

k∈KBP

ñkkbT
2 ∂ ln Q̃k(T )

∂T
. (25)

The first and second contributions in Eq. (25) are the
macroscopic bin energy density and the macroscopic intrabin
energy density, respectively. These are the equivalent of
the macroscopic vibrational and rotational energy densities,
respectively, in a VC model [14]. The gas total energy density
ρE is obtained by adding the kinetic energy contribution to the
gas thermal energy density ρE = ρe + ρu2/2 (with u being
the gas velocity and ρ its density ρ = nNmN + nN2mN2 ). The
gas total enthalpy density is computed by adding the static
pressure to the total energy density ρH = ρE + p.

The internal temperature Tint is extracted from the com-
puted energy bin population (assumed to be Boltzmann) as
postprocessing as follows:
∑

k∈IBP
ñkẼk

nN2

=
∑

k∈IBP
Q̃k(T )Ẽk exp (−Ẽk/kbTint)∑

k∈IBP
Q̃k(T ) exp (−Ẽk/kbTint)

. (26)
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C. Governing equations

The governing equations for an inviscid and quasi-one-
dimensional nonequilibrium flow within a channel of variable
cross-sectional area A = A(x) can be written in conservation
law form as [60]:

∂U
∂t

+ ∂F
∂x

= S. (27)

The vector quantities U, F, and S appearing in Eq. (27) are the
conservative variable, inviscid flux, and source term vectors,
respectively. The source term vector S in Eq. (27) is the sum
of two distinct contributions:

S = � − d ln A

dx
G, (28)

where the vector � accounts for the collisional processes
considered in the proposed BRVC model (see Sec. II B) and the
vector −d ln A/dxG accounts for the channel cross-sectional
area variation [for the case of a normal shock wave A = const
in Eq. (28) and hence S = �]. The detailed expressions for the
vectors U, F, G, and � in Eqs. (27) and (28) are:

U = [ ρN ρ̃k ρu ρE ]T, (29)

F = [ ρNu ρ̃ku p + ρu2 ρHu ]T, (30)

G = [ ρNu ρ̃ku ρu2 ρHu ]T, (31)

� = [ ωN ω̃k 0 0 ]T, k ∈ KBP , (32)

where the partial densities of N and the energy bin k of N2 are
ρN = mNnN and ρ̃k = ñkmN2 , respectively.

III. NUMERICAL METHODS

In the present work, two families of numerical methods
are considered. A finite-difference (FD) method is used
for the investigation of the nonequilibrium flow behind a
normal shock wave and a finite-volume (FV) method is used
for computing the nonequilibrium flow within converging-
diverging nozzles.

A. Finite-difference method

The inviscid and steady nonequilibrium flow behind a
normal shock wave is studied in the shock wave reference
frame. In this way, the mathematical problem reduces to
an initial-value problem (IVP) for a system of ordinary
differential equations (ODEs). Numerical solutions are sought
as follows.

The flow governing equations (27) are rewritten under the
hypothesis of steady flow and rearranged as a set of ODEs in
canonical form [61]:

dP
dx

= Q(P). (33)

In the present work, the vector of working variables P in
Eq. (33) is conveniently set to:

P = [ yN ỹk u T ]T, k ∈ KBP , (34)

where the mass fractions of N and the energy bin k of N2 are
yN = ρN/ρ and ỹk = ρ̃k/ρ, respectively. The vector Q(P) in
Eq. (33) is equal to (∂F/∂P)−1�.

In order to solve the first-order IVP represented by Eq. (33),
an initial condition must be provided [61]. This is obtained
based on the jump relations expressing the conservation of
mass, momentum, and energy fluxes across the shock wave
(where it is assumed that the dissociation and excitation are
frozen). Notice that the postshock conditions to be used as the
initial value for the solution of Eq. (33) depend on the number
of energy bins in view of the nonlinear temperature-dependent
term of Eq. (25).

Due to the typical stiffness of chemical kinetics prob-
lems, Eq. (33) is solved by using the family of backward-
differentiation-formula implicit methods [61] as implemented
in the LSODE FORTRAN library [62].

B. Finite-volume method

The numerical procedure used for computing the inviscid
and nonequilibrium steady flow within nozzles is based on the
application of the method of lines [60], i.e. by separating the
spatial and temporal discretization. The spatial discretization
of Eq. (27) is performed by means of the FV method [60].
Its application leads to the following ODE describing the time
evolution of the conservative variable vector of the cell i:

dUi

dt
�xi + F̃i+1/2 − F̃i−1/2 = Si�xi, (35)

with the cell volume (length) �xi = xi+1/2 − xi−1/2. The
numerical inviscid flux F̃i+1/2 in Eq. (35) is computed by
means of Roe’s approximate Riemann solver [63]:

F̃i+1/2 = 1
2 [F(Ui+1) + F(Ui)] − 1

2 |A(U)|(Ui+1 − Ui), (36)

where |A(U)| = R(U)|�(U)|L(U) (with �, R, and L being,
respectively, the eigenvalue, right eigenvector, and left eigen-
vector matrices associated with the inviscid flux Jacobian ma-
trix A = ∂F/∂U = R�L [21,22,60]). The overbar in Eq. (36)
indicates that the conservative variables must be evaluated at
Roe’s averaged state. In the present work, the latter is computed
based on the linearization proposed by Prabhu [64].

Once the spatial discretization performed, Eq. (35) is
integrated in time by means of the implicit backward-Euler
method [60,61]:

δUn
i

�ti
�xi + F̃n+1

i+1/2 − F̃n+1
i−1/2 = Sn+1

i �xi, (37)

with δUn
i = Un+1

i − Un
i . The local time step �ti for the cell i in

Eq. (37) is computed based on the Courant-Friedrichs-Lewy
number σ as �ti = σ�xi/(|u| + c)i , with c being the local
frozen speed of sound [22]. In order to advance the solution
from the time level n to the time level n + 1, the flux and
source terms in Eq. (37) are linearized around the solution at
the time level n. In doing this, the source term Jacobian matrix
is computed by means of an exact differentiation (in order to
enhance stability) while the numerical flux Jacobian matrices
are approximated by means of the positive-negative split
Jacobian matrices A± = R�±L [60,65]. The final outcome
is a block-tridiagonal system to be solved at each time
step:

B̃ n
L i δUn

i−1 + B̃ n
C i δUn

i + B̃ n
R i δUn

i+1 = −R̃n
i . (38)
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The right-hand-side residual R̃i and the matrices B̃L i , B̃C i , and
B̃R i in Eq. (38) have the following expressions:

R̃i = F̃i+1/2 − F̃i−1/2 − Si�xi, (39)

B̃L i = −A+
i−1, (40)

B̃C i = I
�xi

�ti
+ |Ai | − ∂Si

∂Ui

�xi, (41)

B̃R i = A−
i+1. (42)

The symbol I in Eq. (41) stands for the identity matrix. The
algebraic system in Eq. (38) is solved by means of Thomas’
algorithm [60] and the solution updated at the time level n + 1:

Un+1
i = Un

i + δUn
i . (43)

This process is continued until steady state is not reached.
The monotone upstream centered schemes for conservation

laws approach [66] is considered (with van Albada’s slope
limiter [67]) in order to achieve second-order accuracy in
space. Boundary conditions are applied through ghost cells
[60].

IV. COMPUTATIONAL RESULTS

The BRVC model described in Sec. II B has been applied
to the investigation of the inviscid and nonequilibrium steady
flows behind a normal shock wave and within converging-
diverging nozzles. The simulations have been run by using the
number of energy bins given in Table I. The number of energy
bins associated with the bound levels is about 80% of the total
(based on the fact that about 80% of the rovibrational levels
are bound). For each case investigated, the results have been
compared with those obtained by means of multitemperature
(MT) models [1,19] and the RVC model (only for the case of
shock waves).

A. Flow behind a normal shock wave

The inviscid flow behind a normal shock wave has been
computed by applying the FD method outlined in Sec. III A.
Since only N2 + N collisions are accounted for, the free stream
is seeded with 2.8% of N. Table II provides the free stream
and postshock equilibrium values for pressure, temperature,
and velocity.

Figure 1 shows the evolution behind the shock wave of the
temperatures and the N and N2 mole fractions when using 100
energy bins (BRVC 100). In the region lying between the x = 0

TABLE I. Number of energy bins (BRVC model).

No. NBP NB NP

1 2 1 1
2 5 4 1
3 10 8 2
4 20 16 4
5 30 24 6
6 40 32 8
7 50 40 10
8 75 60 15
9 100 80 20

TABLE II. Free stream and postshock equilibrium conditions.

Condition p (Pa) T (K) u (m/s)

free stream 13.33 300 10 000
postshock equilibrium 13 695 11 420 730

and 2.5 × 10−3 m positions, collisions among the gas particles
lead to the excitation of internal energy, as can be appreciated
from the increase of the internal temperature. Moving further
downstream, the excitation process continues with the internal
temperature reaching a maximum and then approaching its
postshock equilibrium value. At the same time, the dissociation
of N2 starts occurring and becomes significant once the
x = 2.5 × 10−3 m location has passed. A first non-negligible
part of the dissociation occurs under thermal nonequilibrium
conditions [see Fig. 9(b)]. Thermal equilibrium is reached
around the location x = 5 × 10−3 m, where more than one-
half of N2 is already dissociated. The remaining part of
the dissociation occurs under thermal equilibrium conditions.
Notice that, unlike with what is usually observed when using
multitemperature models [19], the internal temperature always
remains lower than the translational temperature.

A more accurate description of the energy transfer and
dissociation processes occurring in the postshock relaxation
area can be obtained from the analysis of the energy bin

0 0.005 0.01 0.015 0.02
x (m)
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10000

20000

30000

40000
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in
t (K

)

(a)

0 0.005 0.01 0.015 0.02
x (m)

0

0.25
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1

X
N

, X
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(b)

FIG. 1. Temperature and mole fraction evolution behind the
shock wave (BRVC 100): (a) T (solid line) and Tint (dashed line)
and (b) XN (solid line) and XN2 (dashed line).
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FIG. 2. Population evolution behind the shock wave (BRVC 100).

dynamics. This can be observed in Fig. 2, which shows
the energy bin distribution at different locations (with the
corresponding values for the N mole fraction and temperatures
provided in Table III). The initial part of the excitation occurs
through sequences of strongly-non-Boltzmann distributions.
After this phase, where multiquantum transitions lead to
an increase of the population of high-lying energy bins,
the population distribution becomes almost Boltzmann, with
the exception of the region close to the ground state. The
dissociation initially occurs under thermal nonequilibrium
conditions. Deviations from a Boltzmann distribution (around
the ground state) are still noticeable at the location x =
3.6 × 10−3 m, where more than 40% of N2 has already
undergone dissociation. The rest of the dissociation occurs
through sequences of Boltzmann distributions.

Figure 3 compares the BRVC model solution with those
obtained by means of the RVC and MT models. The MT
model used was proposed by Park [19] and it accounts
for three distinct temperatures (translational, rotational, and
vibrational). In this model, the rotational translational and vi-
brational translational energy transfers are described by using
the Parker [68] and the Landau-Teller [1] models, respectively.
The comparison in Fig. 3 shows that the BRVC model solution
is in good agreement with that of the RVC model, even if the
dissociation is slightly faster. On the contrary, the MT model
drastically overestimates the dissociation rate. In particular,
it is possible to observe a drastic drop in the translational
temperature preceding the onset of dissociation. The source

TABLE III. Position, N mole fraction, and temperatures behind
the shock (BRVC 100 model).

x (m) XN T (K) Tint (K)

2.5 × 10−6 2.8 × 10−2 62 413 377
2.5 × 10−5 2.8 × 10−2 62 353 643
2.5 × 10−4 2.9 × 10−2 61 755 1 846
2.3 × 10−3 7.5 × 10−2 52 655 11 948
3.3 × 10−3 2.4 × 10−1 39 649 20 778
3.6 × 10−3 4.2 × 10−1 31 975 23 952
4.6 × 10−3 7.7 × 10−1 20 367 19 168
1.1 × 10−2 9.6 × 10−1 13 431 13 197
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FIG. 3. Comparison between the BRVC 100 (dashed line), RVC
(solid line), and MT (dotted line) models for the (a) translational
temperature and (b) N mole fraction evolution behind the shock wave.

of this problem could be traced back to the inadequacy of the
Parker model [68] in predicting rotational relaxation at high
temperatures.

In order to promote a better understanding of the differences
observed in Fig. 3 between the BRVC and RVC model
solutions, the N mass production term ωN [given in Eq. (7)]
and the chemistry-internal energy and translational-internal
energy transfer terms (�CI and �TI, respectively) are shown in
Fig. 4 for both models. The �CI and �TI energy transfer terms
are defined as:

�CI = −nN

∑
i∈IBP

Ei

[
nik

D
i (T ) − n2

NkR
i (T )

]
, (44)

�TI = nN

∑
i,j ∈ IBP

j < i

Ei

[
njk

E
j→i(T ) − nik

E
i→j (T )

]

− nN

∑
i,j ∈ IBP

j > i

Ei

[
nik

E
i→j (T ) − njk

E
j→i(T )

]
. (45)

The results in Fig. 4 show that the BRVC model describes
the translational-internal energy transfer with great accuracy.
In contrast, ωN (�CI) exhibits a more pronounced maximum
(minimum). This is consistent with the behavior observed in
Fig. 3, where the dissociation rate is slightly overestimated by
the BRVC model.
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A. MUNAFÒ, M. PANESI, AND T. E. MAGIN PHYSICAL REVIEW E 89, 023001 (2014)

0.001 0.01
x (m)

0

100

200

300

400

500

600

700
ω

N
 (k

g/
(m

3
x

s)
)

(a)

0.001 0.01
x (m)

-2×1010

-1×1010

0

1×1010

Ω
TI

,Ω
C

I  (W
/m

3 )

(b)

FIG. 4. Comparison between the BRVC 100 and RVC models
for (a) the N mass production term and (b) the chemistry-internal
and translational-internal energy transfer terms evolution behind the
shock wave: (a) ωN RVC (solid line) and ωN BRVC (dashed line) and
(b) �TI RVC (solid line), �CI RVC (dashed line), �TI BRVC (circles),
and �CI BRVC (triangles).

The analysis shown through Figs. 1–4 is restricted to a
fixed number of energy bins. In order to assess the minimum
number of energy bins needed to obtain an accurate description
of the system dynamics, a convergence study of flow quantities
has been performed. Before analyzing the results, it is worth
recalling that the postshock values of pressure, temperature,
and velocity for the BRVC model depend on the number of
energy bins (see Table IV). The corresponding values when

TABLE IV. Postshock conditions (BRVC model).

NBP pps (Pa) Tps (K) ups (m/s)

2 12 595 41 386 1457
5 11 521 56 800 2186
10 11 280 59 777 2350
20 11 151 61 302 2437
30 11 111 61 756 2464
40 11 085 62 052 2482
50 11 073 62 198 2490
75 11 060 62 336 2499
100 11 053 62 419 2504
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FIG. 5. Bin number convergence study of (a) the translational
temperature, (b) the internal temperature, and (c) the N mole fraction
evolution behind the shock wave.

using the RVC model are, respectively, 11 041 Pa, 62 547 K,
and 2511 m/s (not too far from those obtained with 10 and 20
energy bins).

Figure 5 shows the evolution of the temperatures and the N
mole fraction behind the shock wave for different numbers of
energy bins. The solutions obtained when using two and five
energy bins overestimate the dissociation rate, implying that a
larger number of bins should be used. This behavior could be
partly due to the lower value of the postshock temperature. For
all the cases, both the translational and internal temperature
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FIG. 6. Normalized area distributions of the (a) Minitorch and (b) Scirocco nozzles: (a) inlet x = 0 m, throat x = 0.029 m, and outlet
x = 0.042 m and (b) inlet x = −0.28 m, throat x = 0 m, and outlet x = 5 m.

approach the postshock equilibrium value (as opposed to the
case of the URVC model [49]). The dissociation dynamics is
already well resolved with only 20 energy bins. The use of a
larger number does not introduce appreciable changes as can
be observed from the small differences between the 50- and
100-energy-bin solutions.
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FIG. 7. Temperature evolution along the axes of the (a) Minitorch
and (b) Scirocco nozzles (BRVC 100): T (solid line) and Tint (dashed
line).

B. Nozzle flow

The BRVC model has been applied to study the nonequilib-
rium steady nozzle flow within the following realistic nozzle
geometries: Minitorch (von Karman Institute) and Scirocco
(Centro Italiano Ricerche Aerospaziali). Figure 6 shows their
normalized area distributions.
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FIG. 8. Mole fraction evolution along the axes of the (a) Mini-
torch and (b) Scirocco nozzles (BRVC 100): XN (solid line) and XN2

(dashed line).

023001-9



A. MUNAFÒ, M. PANESI, AND T. E. MAGIN PHYSICAL REVIEW E 89, 023001 (2014)

TABLE V. Nozzle outlet conditions (BRVC 100 model).

Geometry p (Pa) T (K) Tint (K) u (m/s) XN2

Minitorch 2287 2225 2548 4816 7.9 × 10−3

Scirocco 0.41 78 618 5556 1.74 × 10−2

The calculation of the supersonic expanding flow is per-
formed by means of the FV method discussed in Sec. III B.
At the nozzle inlet, local thermodynamic equilibrium (LTE)
conditions are assumed. The inlet static pressure and temper-
ature are set to 101 325 Pa and 10 000 K, respectively. The
corresponding mole fractions of N and N2 are 0.993 and 0.07,
respectively. These conditions are selected so that N2 + N
collisions are the dominant mechanism in the flow.

Figures 7 and 8 show the evolution of the temperatures and
the mole fractions along the nozzle axis when using 100 energy
bins. The spatial evolution of the internal temperature closely
follows the translational temperature. This could be due to the
fact that in the definition for the internal temperature [given in
Eq. (26)] rotational and vibrational levels are mixed together.
The recombination occurs in correspondence with the throat
region and quickly freezes [1,2] once the flow moves further
downstream. The outlet conditions are provided in Table V.
The expansion in the Scirocco nozzle is much more severe,
as can be also inferred from Fig. 7. However, the N2 mole
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FIG. 9. Population at different locations along the axis of the
Minitorch nozzle (BRVC 100): (a) evolution along the nozzle axis
and (b) nozzle outlet x = 0.042 m.

fraction at the nozzle outlet is roughly twice that obtained for
the Minitorch nozzle.

The dynamics of the expansion can be also investigated
at the microscopic level. This is done in Fig. 9(a), showing
the evolution along the axis of the Minitorch nozzle of the
population distribution of the energy bins. The population
is Boltzmann at the nozzle inlet, as a result of the LTE
assumption. Deviations from a Boltzmann distribution occur
in the throat region due to preferential recombination in
high-lying energy bins. At the nozzle outlet, the distribution is
highly distorted, putting forward differences in the dynamics of
quasibound and bound energy bins. Figure 9(b) focuses on the
population distribution at the outlet of the Minitorch nozzle.
Three regions can be identified. The first comprises the energy
bins close to ground state. The second includes the medium-
and high-lying bound energy bins, while the third region
contains all the predissociated energy bins. Temperatures are
extracted for the first and third regions and are indicated in
Fig. 9(b). The values obtained reveal that the bound energy
bins lying close to the ground state are in partial equilibrium at
the internal temperature, while the predissociated energy bins
are in partial equilibrium at the translational temperature (i.e.,
they are in chemical equilibrium with the free state).

The computational results obtained by means of the BRVC
model have been compared with the MT solution. Figure 10
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FIG. 10. Comparison between the BRVC 100 (solid line) and MT
(dashed line) models for (a) the N2 mole fraction and (b) the velocity
evolution along the axis of the Scirocco nozzle.
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TABLE VI. Outlet condition comparison (Scirocco nozzle).

Model p (Pa) T (K) u (m/s) XN2

BRVC 100 0.41 78 5556 1.74 × 10−2

MT 0.67 133 5671 3.34 × 10−2

shows a comparison for the N2 mole fraction and the velocity
in the case of the Scirocco nozzle. Outlet conditions for both
models are provided in Table VI. The MT model gives almost
twice the recombination predicted by the BRVC model. This
in turn has an effect on the outlet values of the velocity and
temperature.

A bin number convergence study has been performed
for both nozzle geometries. The results for the N2 mole
fraction are shown in Fig. 11. The dynamics of recombination
is already well resolved with 20 bins. Due to the limited
recombination, the differences among the various solutions
are less pronounced than what is observed for the flow behind
a normal shock wave (see Fig. 5). The same holds true for flow
quantities such as velocity and temperatures (not shown here).

The influence of the number of energy bins can also be
observed at the microscopic level, as done in Fig. 12, showing
the population distribution at the outlet of the Minitorch nozzle
for different numbers of energy bins.
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FIG. 11. Bin convergence study of the N2 mole fraction evolution
along the axes of the (a) Minitorch and (b) Scirocco nozzles.
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Minitorch nozzle.

V. CONCLUSION

A Boltzmann rovibrational collisional coarse-grained
model for internal energy excitation and dissociation in hyper-
sonic flows has been proposed as alternative to a previously
developed uniform coarse-grained model. The model has been
built by lumping the rovibrational energy levels of the N2

molecule into energy bins and by assuming that the levels
within each bin are populated according to a Boltzmann
distribution at the local translational temperature. Rate coef-
ficients for collisional excitation and dissociation have been
obtained by averaging the elementary rovibrational kinetic
data provided by the Computational Quantum Chemistry
Group at NASA Ames Research Center.

Applications have focused on the investigation of the
nonequilibrium flows behind a normal shock wave and inside
two different nozzles. The computational results obtained have
shown that the proposed coarse-grained model is able to
provide an accurate description of the dynamics of internal
energy excitation and dissociation with only 20 energy bins.
Excellent agreement with the numerical solutions obtained
by direct solution of the master equation of the rovibrational
collisional model has been observed.

Future work would entail the extension of the model to
dissipative transport. The flow governing equations and the
expressions of the transport fluxes can be obtained based on the
kinetic theory of gases. A complete derivation was performed
for vibrational collisional models in Ref. [58] and preliminary
results were obtained for a model similar to the bin approach
in Ref. [69]. In this situation, a difficulty is the identification of
the collision invariants of the fast collision operator requiring
an expansion in the perturbation parameters [58,69].
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