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Spectral properties of microwave graphs with local absorption
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The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave
networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50 �

load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing
distributions were compared with a generalization of the Wigner surmise in the presence of open channels
proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using
an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable
microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in
the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation,
whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected
decrease with increasing attenuation.
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I. INTRODUCTION

Quantum graphs, consisting of connected networks of
bonds and vertices, are an ideal playing ground to study
questions coming from quantum chaos and random matrix
theory (RMT). For example, the trace formula expressing the
spectra of graphs in terms of periodic orbits is exact, in contrast
to its equivalent for quantum-chaotic systems, the Gutzwiller
trace formula [1]. Moreover, a classification of the periodic
orbits in terms of a symbolic alphabet is straightforward for
graphs. Details can be found in the paper by Kottos and
Smilansky [2].

In closed quantum graphs, the main interest focused on
the statistical properties of the spectra. Most studies in this
respect were motivated by the famous conjecture by Bohigas,
Giannoni, and Schmit (BGS) stating that the universal features
of the spectra of chaotic systems can be described by RMT
[3] (see also Ref. [4]). Using supersymmetry techniques,
Gnutzmann and Altland [5] succeeded to prove the BGS
conjecture for the two-point correlation function for graphs
with incommensurate bond lengths, provided the underlying
classical dynamics is chaotic. Their result was recently gener-
alized for all correlation functions by Pluhař and Weidenmüller
[6]. Graphs without time-reversal invariance (TRI) should,
hence, share their universal properties with those of the
Gaussian unitary ensemble (GUE) and systems with TRI and
no half-integer spin with those of the Gaussian orthogonal
ensemble (GOE). Experimentally, this conjecture was tested
in microwave graphs for the nearest-neighbor level-spacing
distribution. Good agreement with the Wigner distributions
predicted by RMT for graphs with and without TRI was found
[7].
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For closed systems, Wigner distributions are known to be
good approximations for the nearest-neighbor level-spacing
distribution in chaotic systems, which were obtained using
two by two Hamiltonian (see, e.g., Refs. [8,9]). New features
come into play if the graph is gradually opened. For a weak
opening, individual resonances can still be observed, and they
are only slightly shifted into the complex plane. For such a
situation, Poli et al. [10] proposed a generalization of the
Wigner distribution being exact for 2 × 2 matrices and one
attached channel. Additionally, they found numerically that
this surmise is a good approximation for arbitrary matrix ranks
and arbitrary channel numbers if the channel coupling strength
is used as an effective parameter.

If the graph is opened even more, up to the point where the
widths of the resonances become comparable with or even
larger than the mean level spacings, individual resonances
can no longer be resolved and scattering theory comes in.
On the experimental side, there are investigations on the
Wigner reaction matrix [11], the elastic enhancement factor
[12], and graphs with isospectral scattering properties [13].
The theoretical studies of the scattering properties of quantum
graphs again started with a paper by Kottos and Smilansky
[14] and are still an active part of research [6,15–19].

Starting with a description of the experiment in the next
section, in Sec. III, an experimental test of the level-spacing
distributions of Poli et al. in open microwave graphs is
presented. In Sec. IV, the spectra of graphs with a variable
attenuator along one of the bonds are discussed in terms of
periodic orbits.

II. EXPERIMENT

In the experiments, we used microwave networks to
simulate quantum graphs similarly as they had been used
by Hul et al. [7,11,12] (see Fig. 1). The bonds are formed
by Huber & Suhner EZ-141 coaxial semirigid cables with
SMA connectors, coupled by T junctions at the vertices. The
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(a)

(b)

FIG. 1. Microwave graphs: (a) Graph with an additional open
channel which is closed by a 50 � terminator. (b) Graph where,
inside a single bond, an attenuator is attached. The first graph (a) has
been used for the study of level-spacing statistics, and the second one
(b) has been used for the investigation of the length spectrum.

inner and outer radii of the cables are 0.45 and 1.45 mm,
respectively, hence, below 34.8 GHz only the lowest TEM
mode is propagating (see Sec. 8.8 of Ref. [20]). Reflection
measurements were performed with an Agilent 8720ES vector
network analyzer (VNA) coupled to one of the vertices
(see Fig. 1).

The optical lengths of all cables were determined experi-
mentally in a separate measurement. The scattering matrix of
the T junction (such as all scattering matrices) may be written
as S = V S0W , where V, W are unitary and S0 is orthogonal
[21]. V, W take care of the phase shifts on the leads within the
connector and may be absorbed in a redefinition of the bond
lengths. Without loss of generality, we may, hence, assume that
S is orthogonal. The T junctions were found to be symmetric
with respect to the three ports, corresponding to a scattering
matrix,

S = 1

3

⎛
⎜⎝

−1 2 2

2 −1 2

2 2 −1

⎞
⎟⎠, (1)

up to a sign, the only possibility for symmetric connectors be-
ing in accordance with orthogonality. This means nothing but
current conservation. The sign has been chosen in accordance
with Ref. [2]. In quantum transport measurements, a different
sign convention is applied [21]. The quantum-mechanical
analog of the microwave network is, hence, a quantum graph
with von Neumann boundary conditions at the vertices.

The cables and T junctions were assembled to form con-
nected tetrahedral microwave graphs. We introduce absorption
locally in two different ways. The first way is an additional
channel to the environment realized by a 50 � terminator
connected to one of the vertices [see Fig. 1(a)]. The second
way is a variable attenuation in one of the bonds [see Fig. 1(b)].

Using the additional channel, we investigate the level-
spacing statistics, e.g., the distance between the real parts of
the eigenvalues. To improve statistics, the results for different

(a)

(b)

( )

( )

FIG. 2. Typical spectra obtained for the two types of graphs
shown in Fig. 1. (a) shows spectra for the GOE graph with one
(solid line) and two (one additional 50 � load, dashed line) attached
channels. (b) shows spectra for three different values of additional
attenuation [0 dB (solid), 2 dB (dashed), and 11 dB (dotted)] on one
bond.

graphs and different positions of the 50 � terminator were
superimposed. For a part of these measurements, one of the
T junctions was replaced by an Aerotek I70-1FFF microwave
circulator to break the time-reversal symmetry. A circulator
corresponds to a T junction with unidirectional properties
allowing transport only from port 1 to port 2, port 2 to port 3,
and port 3 to port 1 but not in the opposite direction.

A HP 8494H microwave attenuator was introduced at one
of the bonds allowing for attenuations between 0 and 11 dB
in steps of 1 dB. With this setup, the effect of local absorption
on the complex eigenvalues has been studied, especially its
relation to the length spectrum.

All experiments were performed in the single mode regime.
The measurements on GOE graphs were performed from 4 to
18 GHz. Due to the limitation of the circulators operating
frequency range from 6 to 12 GHz, only this frequency range
was investigated for the GUE spacing distribution. For the
length spectra investigation, we used the operating frequency
range of the attenuator (0–18 GHz). Figure 2 shows typical
reflection spectra for the two types of graphs.
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III. LEVEL-SPACING DISTRIBUTIONS

For many years, RMT has been known to give an excellent
description of the universal properties of the spectra of
chaotic systems. The quantity most often studied in the past
was the level-spacing distribution of neighbored eigenvalues
[9,22–25]. RMT yields analytic expressions for the ensemble
average of this quantity where the average is taken over the
GOE for the system with time-reversal symmetry and no
spin 1/2 and GUE for the system with broken time-reversal
symmetry [26]. For 2 × 2 matrices, the ensemble averaged
level-spacing distributions are described by the famous Wigner
distributions. They deviate from the exact expressions in the
large N limit, where N is the rank of the matrix, only by several
percent [9], a deviation usually too small to be detected in
experiments. This is why the Wigner distribution, in particular,
for the GOE case, enjoys a particular popularity.

This was the motivation for Poli et al. [10] to extend the
Wigner surmise to open systems. They obtained an exact
expression for the distribution Pβ(s) for the spacings s of
the real parts of the eigenvalues of 2 × 2 matrices with
one attached open channel, where 1/η corresponds to the
channel coupling strength. In the case of time-reversal systems,
corresponding to the GOE (β = 1), it reads

P1(s) = Aη

16
e−(A/2)s2

∫ ∞

0
dx

1√
s2 + x2

4

e−(A/16)x2−xη/2

×
[

(8s2 + x2)I0

(
Ax2

16

)
+ x2I1

(
Ax2

16

)]
, (2)

where Ik(z) is a modified Bessel function. For systems without
time-reversal invariance, corresponding to the GUE (β = 2),
they found

P2(s) = e−(A/2)s2

√
A

2π
η

(
E(A,η)s2 + 2

η2
− E(A,η)

A

)
, (3)

where

E(A,η) = eη2/2AE1

(
η2

2A

)
, (4)

with the exponential integral E1(z) = ∫ ∞
z

dx e−x

x
. In both cases,

A fixes the mean level spacing. Poli et al. found that the channel
coupling strength 1/η can be used as an effective parameter to
get a good description of the numerical results for all matrix
ranks N and the number of coupled channels M tested in the
paper.

In this part of the paper, we present experimental tests of
the Poli et al. distributions in the graphs. For the TRI systems
(GOE), we realized seven different microwave graphs without
and six microwave graphs with one additional 50 � terminator.
The graphs consist of cables with lengths ranging from 366
to 600 cm and 533 to 600 cm, respectively. In the case of
the non-TRI systems (GUE), we realized eight realizations
without and nine with one additional 50 � terminator. In
this case, the cables length range from 394 to 574 cm and
431 to 624 cm, respectively. Adding a second additional
50 � terminator led to such a strong damping that a reliable
extraction of the eigenvalues was no longer possible. Thus, we
stick to one additional channel.

(a)

(b)

FIG. 3. Level-spacing distribution for the real parts of the
eigenvalues for a graph with time-reversal invariance with (a) the
measuring channel only and with (b) an additional 50 � terminator
at one of the vertices. The dashed lines correspond to the Wigner
prediction for GOE systems, and the solid line corresponds to the
Poli et al. distribution where the effective channel coupling strength
1/ηeff has been obtained by a fit. In (a), the distribution was obtained
from 1228 resonances and 1/ηeff = 0.19, and in (b), the distribution
was obtained from 1468 resonances and 1/ηeff = 0.32.

For all spectra presented in this paper, real and imaginary
parts of the eigenvalues have been obtained from complex
multi-Lorenz fits to the reflection signal S11. The results are
collected in Figs. 3 and 4 for the graphs with and without TRI,
respectively. All spectra have been unfolded to a mean level
spacing � of one by using the Weyl formula for closed graphs
(� = π/L). The figures show the level-spacing distributions
with and without an additional 50 � load. This corresponds
to one and two open channels, respectively, since the attached
VNA is equivalent to another 50 � load. Microwave networks
are based on a 50 � technology, meaning that, for 50 �

terminators, there is an ideal impedance matching with no
reflection at the end. The solid lines correspond to the Poli
et al. distributions where the channel coupling strength has
been adjusted by a fit. For the fit, we discarded the first bin, as
very small spacings cannot be resolved, and discarded values
for spacings s larger than 2. Due to the additional channel, the
hole in the original Wigner distribution for small distances now
is partially filled. This does not mean that there no longer is a
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(a)

(b)

FIG. 4. Level-spacing distribution for the real parts of the eigen-
values for a graph with broken time-reversal symmetry (GUE) (a)
without and (b) with an additional 50 � load at one of the vertices. The
dashed lines correspond to the Wigner prediction for GUE systems,
and the solid line corresponds to the Poli et al. distribution where
the effective channel coupling strength 1/ηeff has been obtained by
a fit. In (a), the distribution was obtained from 710 resonances and
1/ηeff = 0.17, and in (b), the distribution was obtained from 929
resonances and 1/ηeff = 0.31.

level repulsion. In the complex plane, the eigenvalues still repel
each other, but for their real parts, corresponding to a projection
onto the real axis, this is no longer true. In the previous paper
by Hul et al. [7], this has not been observed as they coupled
the graphs not via a T junction but via a six junction, thereby
reducing the coupling to the VNA considerably.

The resulting coupling constants are shown in Table I where
the errors correspond to one standard deviation of the fit. In
billiards, the explicit calculation of the coupling strengths is
difficult (see, e.g., Ref. [27]), but for graphs, it does not pose
problems since the scattering properties of the junctions are
known. The calculation of the scattering matrix for graphs
follows exactly the same route as for billiards, see Sec. 6.1.2
of Ref. [8]. One obtains a value of 1/η = 1/(2π ) for the
coupling constant for one channel in units of the mean level
spacing. This is in good agreement with the experimentally
found values, both for the GOE and for the GUE. For two
channels, the Poli et al. distribution yields only an effective
coupling constant, mimicking two coupled channels by a

TABLE I. Effective channel coupling constants 1/ηeff , obtained
by fitting the Poli et al. distributions for the GOE and GUE to the
experimental level-spacing distributions. The theoretical predictions
hold for open channels ideally coupled via a T junction (see text for
details).

One channel Two channels

GOE 0.19 ± 0.05 0.32 ± 0.05
GUE 0.17 ± 0.05 0.31 ± 0.05
Theory 1/(2π ) = 0.159 1/π = 0.318

single one. Provided the linewidths are small compared to
the mean level spacing, i.e., in the so-called Breit-Wigner
approximation, the effective coupling constant for the two
channels should be just twice the coupling constant for a
single channel, i.e., 1/ηeff = 1/π . Again, good agreement is
found with the experimental values, in fact, a bit too good
since, in the case of two coupled channels, the Breit-Wigner
approximation, strictly speaking, is no longer justified.

In principle, the coupling strength of the channels could
be determined independently from a reflection measurement
using Ta = 1 − |〈Saa〉|2 = 4 Re(1/η)/|1 + 1/η|2 where the
average is taken over the ensemble [28,29]. For a sufficient
statistics, however, one would have to also average over
frequency being unreliable because of global phase changes
with frequency.

IV. PERIODIC ORBITS

The quantum-mechanical spectrum of a system can be
expressed in terms of its classical periodic orbits via the
Gutzwiller trace formula [30]. The standard derivation relies
on a stationary phase approximation of the Feynman path
integral, therefore, the formula is applicable only in the
semiclassical limit. In this respect, quantum graphs are much
simpler. The identification and classification of the periodic
orbits are straightforward, making them an ideal model system
to study the relation between its classical and its quantum-
mechanical properties. Details can be found in the paper by
Kottos and Smilansky [2]. From an expansion of the spectral
determinant, they obtained a periodic orbit expansion of the
spectrum, which, for graphs with TRS and von Neumann
boundary conditions, read

ρ(k) = L

π
+ 1

π

∑
p,r

lpAr
p cos rklp. (5)

ρ(k) is the spectral density of the eigen-wavenumber kn, as is
indicated by the notation, not of the eigenenergies En = k2

n. In
billiard systems, the wave number k is a much more convenient
quantity to look at than the energy. This is, in particular, true
for the periodic orbit expansion where k enters but not E. For
one-dimensional systems, such as graphs, there is the further
advantage that, with k as the variable, the mean density of
states is constant, which is a prerequisite for the study, e.g.,
of level-spacing distributions. The usually needed unfolding of
the energy axis to a constant mean density is, thus, dispensable
with k as the variable.
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Equation (5) bears a striking similarity to the Gutzwiller
trace formula but is exact in contrast to the latter one. The
first term constitutes the smooth part of the spectrum. It is
proportional to the total length L of the graph, reflecting the
fact that graphs are one-dimensional systems (in Ref. [2],
this term is written as L/(2π ), where L corresponds to twice
the total length). The second term, the fluctuating part of the
spectrum, is given by a sum over all primitive periodic orbits
p and their repetitions r. lp is the length of the primitive orbit,
and Ap is a stability factor given by

Ap =
(

1

3

)μp
(

2

3

)νp

, (6)

where μp is the number of vertices in the orbit at which
reflection occurs and νp is the number of vertices where
transmission occurs. This is an immediate consequence of the
specific form (1) of the scattering matrix of the T junction. With
an attenuator in one of the bonds, this expression is modified
to

Ap = anp

(
1

3

)μp
(

2

3

)νp

, (7)

where np is the number of passages of orbit p through
the absorber. The periodic orbit expansion (5) now may be
decomposed as

ρ(k) = L

π
+ ρ0(k) + aρ1(k) + a2ρ2(k) + · · · , (8)

where each ρn(k) contains only the contribution of those orbits
passing the attenuation n times. The attenuation factor a is
related to the attenuation of the attenuator α given in decibels
(dB) via a = 10−α/(10 · 2). The factor 1/2 in the exponent arises
from the fact that the attenuation refers to the energy, whereas,
a is an amplitude. It is, hence, expected that the amplitude
factor of ρn(k) as a function of α decays with 10−nα/20.

The test of this expectation was one of the objects of this
paper. Measurements were performed with the graph shown
in Fig. 1(b) for the time-reversal invariant graph. Figure 5
shows eigenfrequency spectra as a function of attenuation.
In contrast to the measurements with the 50 � terminator,

FIG. 5. Eigenfrequency spectra of the tetrahedral graph (see the
inset of Fig. 6) in the complex plane for small attenuations α (0–3 dB)
in one of the bonds.

FIG. 6. (Color online) Length spectrum |FFT(S11)|2 of the tetra-
hedral graph with attenuation in one of the bonds for different
attenuations (0–11 dB, black to yellow, respectively). The height
dependences of the three peaks marked by arrows are shown in
Fig. 7. The inset shows the configuration of the used microwave graph.
The optical lengths of the cables, including the contribution of the
T junctions, are A = 21.0, k1 = 21.9, k2 = 36.3, k3 = 48.8, k4 =
54.7, and k5 = 84.9 cm.

now the eigenvalues acquire imaginary parts proportional
to the attenuation coefficient α, but the real parts are only
marginally influenced by the attenuator. This is why these
measurements were not suited as a test for the Poli et al.
distributions presented in Sec. III. We would like to emphasize
that the attenuator conforming to the 50 � technology, too,
actually does not change the phase acquired along the bond,
thus, leaving the phase difference for the two vortices at
the bond ends equal. Therefore, the phase condition for the
resonances stays the same, which probably is the explanation
for the fact that their real parts are only weakly influenced by
the attenuation, whereas, an attached 50 � terminator changes
the conditions at the neighboring vertices leading to a change
in the real parts as well. In both cases, we do have local
absorption, but it enters differently into the scattering problem.
The situation is analogous to chaotic billiards where wall
absorption induces an imaginary part only to the resonances,
whereas, open channels change both imaginary and real parts.

From the measurements of the S11 reflection signal for
12 different attenuations α ranging from 0 to 11 dB, we
obtained the periodic orbit spectrum by applying a fast Fourier
transformation (FFT) to the spectra. This length spectrum is
shown in Fig. 6. Almost all observed peaks can be identified
with periodic orbits on the graph. Orbits passing through
the attenuator once or twice are marked with one or two
asterisks, respectively. The peaks related to orbits not passing
the attenuator are constant, whereas, the peaks related to orbits
passing the attenuator are decreasing with attenuation strength
α. Additionally, we observe a small shift in orbit length, which
is caused by the fact that, with increasing attenuation strength,
the electrical length of the attenuator is slightly increasing.
This is, as well, probably the reason why the real parts of the
resonances in Fig. 5 are changing.

To investigate the decrease in the peaks with attenuation
strength in a quantitative way, in Fig. 7, the heights of
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FIG. 7. Amplitude of three orbits in dependence of the attenua-
tion: one avoiding the attenuator (×), one passing it once (�), and
another one passing it twice (�). The slopes of the straight lines
reflect the expectations from Eq. (8).

three peaks are shown in dependence of the attenuation. One
corresponds to an orbit avoiding the attenuator, one to an
orbit passing the attenuator once, and another one passing
the attenuator twice. For the orbit avoiding the attenuator, the
amplitude is found to be nearly independent of the attenuation,

whereas, for the orbits passing the attenuator once and twice,
the expected exponential decay of the amplitude with α is
observed. Analogous behaviors were found for all identified
orbits, thus, illustrating the periodic orbit decomposition of
Eq. (8).

V. CONCLUSIONS

We have shown that microwave networks cannot only repro-
duce the results for the nearest-neighbor distance distribution
of closed quantum graphs [7], but also may serve as a means of
investigating the influence of open channels. As an example,
we could verify the level-spacing distribution proposed by
Poli et al. [10] for systems with attached open channels both
for the GOE and for the GUE. Furthermore, we were able to
investigate the influence of local attenuation in a bond on the
periodic orbit spectrum of quantum graphs. In this context,
we were able to show that attenuation on one bond of the
graph directly influences the amplitudes of periodic orbits in
the length spectrum that includes the microwave attenuator.
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