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Classical model reduction techniques approximate the solution of a physical model by a limited number
of global modes. These modes are usually determined by variants of principal component analysis. Global
modes can lead to reduced models that perform well in terms of stability and accuracy. However, when the
physics of the model is mainly characterized by advection, the nonlocal representation of the solution by global
modes essentially reduces to a Fourier expansion. In this paper we describe a method to determine a low-order
representation of advection. This method is based on the solution of Monge-Kantorovich mass transfer problems.
Examples of application to point vortex scattering, Korteweg–de Vries equation, and hurricane Dean advection
are discussed.
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I. INTRODUCTION

Principal component analysis (PCA) is the main tool behind
many techniques to perform model reduction of systems of
partial differential equations (PDEs). The objective of model
reduction is to obtain a simpler model that retains the main
dynamical features of the full model, typically for optimization
and control purposes. The principle of PCA is to find the base
of a small dimensional subspace in such a way that the solution
of a given PDE is accurately represented in this subspace.
This is the main idea behind proper orthogonal decomposition
(POD) [1,2]: for a given database of model solutions, POD
extracts a basis that minimizes the L2 average distance between
the reduced representation and the solution database. POD
approximations are usually satisfactory for those problems
where the solution has a global behavior or is periodic [3],
but perform poorly for systems characterized by concentrated
structures that are advected. The main reason for this is that a
simple shift cannot be represented by a linear combination of
global modes.

Alternatives to POD taking implicitly into account the
notion of transport in the definition of a global reduced
basis are provided by Koopman modes [4,5] and dynamic
mode decomposition (DMD) [6]. These approaches assume
the existence of a linear propagator (relative to some possibly
nonlinear map) whose spectrum provides a frequency-based
mode decomposition of the considered evolution. Starting
from snapshots of some observables of the physical system,
an Arnoldi-type algorithm is employed to estimate the linear
propagator.

Our objective is different. We introduce the notion of
advection modes: when advection is the leading phenomenon,
a hierarchy of advection modes can adequately approximate
the evolution of coherent structures. Let us see how in two
steps.
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A. Transport

In Fig. 1 a conceptual description of transport is shown.
Given a point ξ ∈ �0, where �0 ⊂ Rd is the reference configu-
ration, transport at time t is described by a mapping X(ξ,t). The
point x = X(ξ,t) belongs to the physical configuration � ⊂
Rd at time t . Let us consider a point x in the actual physical con-
figuration. The inverse mapping, ξ = Y (x,t) (called otherwise
backward characteristics), identifies the point in the reference
configuration that has been transported by the direct map in x at
time t .

The following relations hold:

Y = X−1, [∇ξX][∇xY ] = I, (1)

where [∇ξX] is the Jacobian of the transformation X(ξ,t) and
[∇xY ] its inverse, i.e., the Jacobian of the inverse mapping.
Also, we have

∂tY + v · ∇xY = 0, Y (x,0) = x, (2)

v = ∂tX, X(ξ,0) = ξ, (3)

where v is the velocity field. Transport is uniquely determined
by v(x,t) or equivalently by ∂tX(ξ,t).

Let us now consider a transport purely governed by
advection. The nonlinear advection equation

∂tv + v · ∇xv = 0 (4)

with v(x,0) = v0(x), can be interpreted as a model for a
pressureless Euler flow. Since no force is acting on the fluid, the
velocity is constant along the characteristics and the solution
consists of particles moving on straight lines (no acceleration)
determined by the initial transport velocity. In Lagrangian
coordinates we have (x = ξ for t = 0)

∂2
t X(ξ,t) = 0 =⇒ X(ξ,t) = ξ + v0(ξ ) t. (5)

B. Optimal transport

Let us consider the following problem of mass transporta-
tion: two densities of equal mass are given, namely �0 and �1,
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FIG. 1. The reference configuration is �0, points ξ ∈ �0 are
transported by the direct mapping in X(ξ,t). Given the actual
configuration �, a point x ∈ � is sent back to its counterimage in the
reference configuration by backward characteristics, i.e., the inverse
mapping Y (x,t).

defined in the initial (ξ ∈ �0) and in the final configuration
[x = X(ξ,t = 1) ∈ �1]. The mass is normalized so that∫

�0

�0(ξ ) dξ =
∫

�1

�1(x) dx = 1. (6)

The objective is to find the mapping X(ξ ) that transports �0

into �1. To this end, let us first rewrite the mass conservation
equation by using the mapping definition x = X(ξ ):∫

�0

�0(ξ ) dξ =
∫

�0

�1(X(ξ )) det(∇ξX) dξ, (7)

that, for X(ξ ) one to one, may be recast as

�0(ξ )d ξ = �1(X(ξ )) det(∇ξX), (8)

which is the Jacobian equation, accounting for mass conserva-
tion from a Lagrangian standpoint. The solution of the Jacobian
equation is not unique. Among all the mappings satisfying the
Jacobian equation, the optimal mapping is defined as the one
that minimizes:

J =
∫

�0

�0|X(ξ ) − ξ |2 dξ. (9)

The problem of finding the minimizer of this cost under
the mass conservation constraint is called the L2 Monge-
Kantorovich problem. It is proved that the solution exists
unique and it is of the form X(ξ ) = ∇ξ�(ξ ), where � is
convex almost everywhere in the sense of measures. Other
costs have been proposed in the literature, and we refer to [7]
for a comprehensive review of the topic.

The solution of the optimal mass transport problem defines
naturally a distance between density pairs, which is the
Wasserstein distance:

W2(�i,�j ) = inf
X̃

{∫
�

�i(ξ )|X̃(ξ ) − ξ |2 dξ

}
, subject to

(10)

�i(ξ ) = �j (X̃(ξ )) det(∇ξ X̃). (11)

It is worth noting that the problem of L2 Monge-Kantorovich
optimal transport may be formulated in an Eulerian framework
(i.e., the Benamou-Brenier formulation; see for instance [8]).

By introducing the time t , so that x = X(ξ,t),

(�̃,ṽ) = arg min
�,v

{∫ 1

0

∫
�

1

2
�v2 + λ(∂t�+∇ · (�v)) d� dt

}
,

(12)

whose solution is the couple (�̃(x,t),ṽ(x,t)) satisfying a
pressureless Euler flow, with prescribed initial and final density
configurations.

The principle of the method is to represent subsequent
instances of a given field (the snapshots) as the mapping of
a reference distribution. The mapping is defined by a combi-
nation of pure advection transports. If the snapshots cannot
be described by purely advected structures, we represent the
residual fields by empirical global modes.

The physical reason for which this approach should lead to
more accurate low-dimensional representations compared to
POD is that fluid flows often present characteristic features
that are mainly advected and then diffused, e.g., vorticity,
solitary waves, shocks waves. Here we propose a modal
expansion taking into account these two basic mechanisms via
a representation that is adapted to each of them. Advection will
be described by a ranked sequence of mappings and diffusion
by a ranked global mode expansion. Each ranking is based on
an appropriate error norm. This representation respects both
these mechanisms (advection and diffusion) contrary to a sole
global modal expansion like in POD.

C. Global modes and transport modes

A modal decomposition of a flow field can be obtained
by defining an optimal approximation subspace of given size.
Given a sequence of flow-field snapshots, this is usually done
by minimizing the difference between one snapshot and its
projection in the subspace to be determined. Let u(x,t) be a
scalar quantity relative to the flow field, and û(x,t), ũ(x,t) two
(small dimensional) approximations of such a scalar.

With POD, the difference to be minimized is defined by an
appropriate norm and the flow field is represented by

û(x,t) =
∑

i

ai(t)ϕi(x), (13)

where the function ϕi is called the ith POD mode and is
computed as a linear combination of the snapshots. The POD
modes are global fields, i.e., defined everywhere in the actual
physical configuration.

For advection mode decomposition the principle is differ-
ent. We take

ũ(x,t) = [u0(Y (x,t)) + R(Y (x,t),t)] det (∇xY (x,t)), (14)

where u0(ξ ) is a reference mode that is mapped by Y (x,t)
and R(ξ,t) is the residual in the reference configuration. The
equivalent of this representation in the reference configuration
is

u0(ξ ) = ũ(X(ξ,t),t) det (∇ξX(ξ,t)) − R(ξ,t). (15)

022923-2



ADVECTION MODES BY OPTIMAL MASS TRANSFER PHYSICAL REVIEW E 89, 022923 (2014)

The main idea is to give a small-dimensional expansion of
the mapping X(ξ,t) and of the residual R(ξ,t) such that

R(ξ,t) =
∑

j

αj (t)ϕj (ξ ), (16)

X(ξ,t) =
∑

k

βk(t)�k(ξ ), (17)

where αj (t) and βk(t) are time dependent scalars, ϕj (ξ ) are
POD modes for the residual R, and �k(ξ ) are the advection
modes to be found as explained in the following.

II. ADVECTION MODE DECOMPOSITION

In this section we explain how to determine the reference
(or barycentral) mode u0(ξ ), the advection modes, and the
residual modes starting from a snapshot set.

The modal decomposition for the advection may be de-
termined by setting up an approximated principal component
analysis based on the Wasserstein distance. When performing
this operation, the modes are vector fields realizing an optimal
transport.

A. Euclidean embedding

The squared Wasserstein distance can be computed for
all i,j = 1, . . . ,Ns , i.e., 1

2Ns(Ns − 1) Monge-Kantorovich
problems are solved. Then, the following matrix D ∈ RNs×Ns

is defined:

D = {Dij } = {W2(�i,�j )}, (18)

that is, the matrix of the squared distances between the
densities. This matrix is symmetric [W(�i,�j ) = W(�j ,�i)]
and all the elements on the diagonal are zero [W(�i,�i) = 0].

In an Euclidean vector space, one can uniquely transform
a matrix of canonical squared distances relative to a set of
points, in a positive semidefinite matrix whose entries are the
corresponding scalar products between the position vectors χi ,
i = 1, . . . ,Ns , of those points. In other words

Dij = ‖χi − χj‖2 = Bii + Bjj − 2Bij , (19)

where Bij = χi · χj are the entries of a matrix B ∈ RNs×Ns .
Let χi ∈ E ⊂ RNs and let 1 ∈ RNs be a column vector whose
components are all 1. We assume that the origin of the vector
space is such that

∑Ns

i=1 χi = 0 and hence that B 1 = 0. Then
Eq. (19) can be inverted and we have

B = − 1
2JDJ (20)

and

J = I − 1

Ns

11T , (21)

where I is the identity matrix. We assumed that E is an
Euclidean space. In this case it can be shown that Eq. (20)
leads to a matrix B that is positive semidefinite.

For a Wasserstein distance matrix this is not necessarily the
case. However, one can look for a Euclidean set of vectors that
gives a squared distance matrix which is an approximation of
the Wasserstein square distance matrix. In order to do this, we
adopt the same technique presented in [9].

Matrix B is real and symmetric and hence it can be
decomposed as

B = USUT , (22)

where U, S ∈ RNs×Ns , U is a unitary matrix, and S is the
diagonal matrix whose entries are the eigenvalues of B. Let us
take the positive part of B,

B+ = US+UT where S+ = S + |S|
2

(23)

so that D ≈ B+, ‖D − B+‖ = ‖ S−|S|
2 ‖, and B+ is of course

positive semidefinite. It is now possible to determine matrix X
whose columns are the position vectors χi as X = √

S+ UT .
In the Appendix we discuss a normalization technique relative
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FIG. 2. (Color online) Three different scattering trajectories of
vortex cores for (a) l = 1.5, β = 0.5, f = 0.25; (b) l = 1.0, β =
0.75, f = 0.15; (c) l = 2.0, β = 0.15, f = 0.30.
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to this embedding which is useful when a large number of
snapshots are considered.

In synthesis we have determined a Euclidean space where
the flow snapshots are represented by points whose relative
Euclidean distance approximates their Wasserstein distance.
Moreover, linear combinations of vectors in this Euclidean
space correspond to linear combinations of transports. The
main approximation is that linear combinations of optimal
transports are not optimal. A measure of this nonoptimality is
‖D − B+‖.

B. Advection modes

As stated, the embedding is performed with respect to the
barycentral density distribution u0(ξ ). The vector χi represents
the position in phase space of the ith flow snapshot with respect
to this density distribution. The advection modes are simply
defined as the optimal transports corresponding to a base of
this space. We refine this idea hereafter.

A small-dimensional representation of the space spanned
by the position vectors χ can be found if the spectrum of
B+ rapidly decays to 0, i.e., S+ has only a few diagonal
nonzero entries. For example, assume that only the largest
Nt eigenvalues of S+ are retained and that the others are set
to 0. Also, consider a canonical base of RNt and let χ̄i be the
expression of vectors χi in this space. The components of χ̄i

are simply the first Nt components of χi .
Let us take any point χ̄α and choose Nt linearly independent

vectors among the Ns − 1 vectors χi − χα , such that i �= α.
The origin of RNt can be expressed in this base thanks to Nt

uniquely defined scalar coefficients {β1,β2, . . . ,βNt
}.

We define the mapping that transports �α in the barycentral
density u0 as

Xo(ξ ) =
Nt∑
i=1

βiXα i(ξ ), (24)

where Xα i(ξ ) denotes the mapping that transports �α onto �i .
In consequence, u0 can be found by

u0(Xo(ξ )) = �α(ξ )

det (∇ξXo(ξ ))
. (25)

The advection modes are found as the optimal transports
Xo i(ξ ) between u0(ξ ) and the snapshots corresponding to
linearly independent χi , i.e., snapshots that are not connected
by the same transport. Thus, Nt advection modes are defined
as �i(ξ ) = Xo i(ξ ).

C. Residual representation

Let the flow-field snapshots correspond to a time-dependent
phenomenon and let each snapshot be relative to time ti . We
define the following residual fields:

Ri(ξ ) = Ri(X(ξ,ti))

= u(X(ξ,ti),ti) det (∇ξX(ξ,ti)) − u0(ξ ), (26)

where u(x,ti) = u(X(ξ,ti),ti) are the solution snapshots,

X(ξ,ti) = βj (ti)�j (ξ ), (27)

and the coefficients βj (ti) are the components of χi in the base
of the space spanned by the advection modes.

The residual is approximated by a global mode expansion
based on POD modes. The elements of the correlation matrix
A = {Aij } are defined by

Aij =
∫

�0

Ri(ξ ) Rj (ξ ) dξ, (28)

and the POD residual modes are determined through
the eigenvalues and eigenvectors of the autocorrelation
matrix:

ϕk(ξ ) =
∑Ns

h=1 bk
hRh(ξ )

λ
1/2
k

, (29)

where bk
h is the hth component of the kth eigenvector of A and

λk its corresponding eigenvector.
We finally obtained a representation in a reference config-

uration of a time dependent field, decomposed in a mean field
(the barycentral density or equivalently the initial condition)
and a POD expansion.
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FIG. 3. First case: (a) the eigenvalues of the embedding matrix in logarithmic scale; (b) the first two eigenvectors are represented in a
phase-plane plot.
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FIG. 4. Second case: (a) the eigenvalues of the embedding matrix in logarithmic scale; in (b) the first two eigenvectors represented in a
phase-plane plot.

III. APPLICATIONS

In this section we present four illustrations of increasing
complexity ranging from an exact idealized case to experimen-
tal data. In order to actually compute the Wasserstein distance
matrix we refer to the technique presented in [10], where the
optimal mass transfer problem is solved by a method based
on the fact that optimal transport reduces to straight lines in
Lagrangian coordinates.

A. Ideal vortex scattering

We consider two couples of counter-rotating ideal point
vortices in the plane. The flow is incompressible and the
vorticity is represented by four Dirac masses located at
the vortex centers, so that the flow is irrotational almost
everywhere. Under these hypotheses the flow is potential and
the trajectories of the point vortices are obtained by the solution
of a Hamiltonian dynamical system. The detailed derivation
of the governing equations is found in [11].

The flow domain is R2 and the coordinates of the vortex
cores are

xa = r1 cos(θ1) ya = r1 sin(θ1), (30)

xb = r2 cos(θ2) yb = r2 sin(θ2), (31)

xc = r1 cos(θ1 + π ) yc = r1 sin(θ1 + π ), (32)

xd = r2 cos(θ2 + π ) yd = r2 sin(θ2 + π ), (33)

where r1, r2, θ1, and θ2 are the only variables necessary to
describe the interaction. They are initialized as follows:

r1(0) = [l2 + (1 + β)f 2]1/2, (34)

r2(0) = [l2 + (1 − β)f 2]1/2, (35)

θ1(0) = arctan

[
(1 + β)f

l

]
, (36)

θ2(0) = arctan

[
(1 − β)f

l

]
, (37)

where l, β, and f are three parameters that determine
the distance of the dipoles, the relative distance of the
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FIG. 5. Third case: (a) the eigenvalues of the embedding matrix in logarithmic scale; in (b) the first eigenvector.
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FIG. 6. Image of experimental vortex collision (courtesy of G.
van Heijst). Two subsequent images visualizing rotational regions
post collision. 100 × 100 pixel images.

counter-rotating vortices, and the offset of the dipole axis.
The initial geometry of the system determines the nature
of the scattering occurring between the dipoles. The ODEs
describing the evolution are

ṙ1 = − 2 sin[2(θ1 − θ2)]r1r
2
2

π
{
r4

1 − 2 cos[2(θ1 − θ2)]r2
1 r2

2 + r4
2

} , (38)

ṙ2 = − 2 sin[2(θ1 − θ2)]r2r
2
1

π
{
r4

1 − 2 cos[2(θ1 − θ2)]r2
1 r2

2 + r4
2

} , (39)

θ̇1 = 3r4
1 − 2 cos[2(θ1 − θ2)]r2

1 r2
2 − r4

2

2πr2
1

{
r4

1 − 2 cos[2(θ1 − θ2)]r2
1 r2

2 + r4
2

} , (40)

θ̇2 = r4
1 + 2 cos[2(θ1 − θ2)]r2

1 r2
2 − 3r4

2

2πr2
2

{
r4

1 − 2 cos[2(θ1 − θ2)]r2
1 r2

2 + r4
2

} . (41)

The equations of motion are integrated via an adaptive-step
fourth-order Runge-Kutta scheme in the time interval [0,2.5].
In Fig. 2, three different situations are represented: (a) a
scattering where the vortices keep their partner (the parameters
used are l = 1.5, β = 0.5, f = 0.25); (b) a case where the
vortices exchange their partner and escape with the counter-
rotating vortex belonging to the other dipole (l = 1.0, β =
0.75, f = 0.15); (c) a weak interaction in which the dipoles
simply move on (almost) straight lines (l = 2.0, β = 0.15,
f = 0.30).

We consider the L2 norm of vorticity (enstrophy) as the
transported density �. In this motion enstrophy is constant, so
that we analyze the dynamics of four unitary Dirac masses. In

this case, the Wasserstein distance between the time snapshots
was computed by means of an exact combinatorial algorithm.
For all the following cases 50 time frames were taken between
initial and final time.

The embedding technique presented in the previous section
was adopted. The spectrum of matrix B includes a few negative
eigenvalues due to the fact that the distance is not Euclidean.
They are small in modulus so that B ≈ B+. In Fig. 3 the
eigenvalues of the embedding matrix are represented for the
first case described (a). Only two eigenvalues are relevant
in the approximation of the phenomenon. The corresponding
eigenvectors are represented in a phase-plane plot. The circles
represent the components of the eigenvectors and can be
associated to the time frames. Two directions that represent the
optimal transports occurring before and after the interaction
can be observed. The points which are not aligned represents
the snapshots of the enstrophy configurations occurring during
the interaction. For case (b) (see Fig. 4) the spectrum of
the embedding matrix is similar to that obtained for the first
case: two eigenvalues emerge. The phase plot of the first two
eigenvectors shows that the vortex interaction is quite different,
but again two main transport directions corresponding to the
dynamics before and after the interaction are present.

The third case (see Fig. 5) is different from the others.
The interaction is weak and the resulting motion is practically
an optimal transport. This third case may be considered as a
perturbation of a single optimal transport. Indeed, in Fig. 5(a)
the plot of the eigenvalues confirms that only one eigenvalue
is important. The plot of the corresponding eigenvector in
Fig. 5(b) shows that most of the snapshots are aligned, that
is, they may be obtained by nonlinear interpolation (i.e., by
transport) of the barycentral density via a unique optimal
transport.

In this simple example the comparison with standard POD
is straightforward. For the second and the third cases [Figs. 2(b)
and 2(c)] the autocorrelation matrix (i.e., the matrix of scalar
products of the snapshots) is the identity matrix. Hence, no
reduction can be provided by using POD. For the first case
[Fig. 2(a)], the trajectories intersect, so that the autocorrelation
matrix may not be diagonal for some specific samplings.
However, only few extra diagonal elements appear, so that,
even in this case, no signal reduction is possible.

Although this is a conceptual test case, there are real flows
that can be described by this model. In Fig. 6 we present
two subsequent images of an experimental vortex collision

FIG. 7. Smoothed densities. The leftmost and rightmost figures correspond to initial time and final time, respectively. In the middle, the
nonlinear interpolation at time T = 1/2. 100 × 100 pixel images.
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FIG. 8. Solution of the KdV model: (a) contour of x-t diagram, 20 values between minimum and maximum; (b) solution at different times,
where T = 2.5.

obtained in a configuration that is close to the ideal case
presented (courtesy of G. van Heijst) [12]. These images
correspond to a postcollision dipole evolution. In order to
perform an optimal transport analysis, we took the normalized
modulus of the color intensity (green or red) as the density to
be mapped �.

In order to find one advection mode, we took these
two postinteraction images and solved an optimal transport
problem between them. Thanks to this mode, an intermediate
image of the dipole was reconstructed. In particular, the density
associated to initial time [see Fig. 7(a)] was mapped into that
at final time [in Fig. 7(c)]. Then the density associated to
Xint = ξ + 1/2v0 is computed and shown in Fig. 7(b). Since
the initial images are noisy, we have smoothed them with a
Gaussian filter to numerically solve the transport problem.
The reconstructed image is clearly not a linear interpolation
of the initial and final images and qualitatively models an
intermediate configuration between the initial and final one.

B. Waves on shallow water surfaces

Waves on shallow water surfaces can be modeled by
the one-dimensional Korteveg–de-Vries equation. It is an
interesting test case because in this model transport and
dispersion can be modulated. The model equation reads

∂tu + u∂xu + γ ∂xxxu = 0, (42)

where u(x,t) is the wave elevation at time t ∈ [0,2.5] and
position x ∈ [0,2π ], γ = 1e − 3 is the dispersion parameter.
Periodic boundary conditions are imposed. The initial con-
dition is u(x,0) = u0(x) and for the present case is taken as

u0(x) = 0.1 + exp

{
−2

(
x − π

2

)2
}

. (43)

This equation was numerically integrated using a spectral
discretization in space (256 Fourier modes), and a second
order Cranck-Nicholson method with 103 steps in time.

The preserved measure is in this case the energy of the
signal. Let e = u2, then it can be proved that ∀t ,

E(t) =
∫ 2π

0
e(x,t) dx = E(0) =

∫ 2π

0
u0(x)2 dx. (44)

Solutions of this model, displayed in Fig. 8, show transport
and dispersion. In particular, as γ is small, in the first part of
the evolution the system evolves as an inviscid Burgers model
[Fig. 8(b)]. When a shock tends to form, the third derivative
norm becomes large and dispersion makes the solution brake
in several waves, with different characteristic velocities.

For this case, a comparison between POD and the proposed
technique is carried out. We take set of 24 snapshots of the
solution energy, normalized by its integral (which is constant)
between the time t = 0 and the time t = T = 2.5.
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FIG. 9. Embedding matrix analysis: (a) first ten normalized eigenvalues in modulus; (b) components of the first eigenvector.
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FIG. 10. Comparison between standard POD and the POD of the
residuals pushed back. Normalized eigenvalues of the autocorrelation
matrix

Let us compute the advection modes defined by means
of Wasserstein distance. We computed the optimal transport
between all the possible couples of snapshots and then we
formed the embedding matrix as described in the previous
sections. The eigenvalues and eigenvectors of this matrix
are shown in Fig. 9(a). The absolute value of the first ten
eigenvalues is plotted, normalized with the value of the
first one: one dominant eigenvalue appears. In Fig. 9(b) the
corresponding eigenvector is plotted for each snapshot.

This advection mode may be defined using the straight line
connecting the first snapshot with the last one [see Fig. 9(b)], as
it is a good interpolant of all the snapshots. This is by definition
the optimal mapping that transports the first snapshot, e(x,0),
into the last one e(x,T ). Let us denote by X1(ξ,t) this mapping.

The second step of the procedure consists in computing
the residuals of this representation. The snapshots e(x,ti) are
mapped back to the initial configuration defined by X1(ξ,t).
The differences between the solution snapshots pushed back
and e(x,0) = e0(ξ ) is computed by

Ri = R(ξ,ti) = e(X1(ξ,ti),ti)∂ξX1 − e0(ξ ), (45)

where e(X1(ξ,ti),ti)∂ξX1 are the snapshots ei(x,ti) pushed
back by the advection mode. These residuals are then decom-
posed in the reference configuration by means of a standard
POD analysis. Let us compare the results of this analysis with
that of the POD applied to the original set of snapshots. In
Fig. 10 the normalized spectrum of the autocorrelation matrix
is shown for the standard POD applied to the snapshots of the
energy, and for the POD applied to the residuals pushed back.
The eigenvalues cascade for the latter is steeper, i.e., a smaller
number of modes is necessary for given representation error.

In Fig. 11(a) the advection mode U1 is represented as
function of X1(ξ,0) = ξ . The Lagrangian coordinate used to
push back the residuals is X1(ξ,t) = ξ + tU1(ξ ). In Figs. 11(b)
and 11(c) the first and second residual mode is represented
as a function of ξ . Let us remark that these modes have
significant variations in the portion of the domain where the
initial energy distribution varies. Let us compare these modes
with the classical POD modes for the energy distribution,
represented in Fig. 12. The POD modes are quite different
from the residual modes: they are global and their support
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FIG. 11. Advection modes expansion for KdV model: (a) advec-
tion mode; (b) first mode of the residuals; (c) second mode of the
residuals.

approximately extends to the whole domain. We compare now
the reconstruction of the snapshots using the advection mode
decomposition (AMD) and POD. The same number of modes
is used for both techniques. Hence, for the POD reconstruction
we will use one additional mode compared to the number of
residual modes. This allows a fair comparison because for the
advection mode decomposition we also have (in this case) one
transport.

Three different reconstructions are considered using four,
six, and ten POD modes respectively. In Fig. 13 the L2

normalized errors are plotted as a function of the snapshot
number for POD and advection mode decomposition. In all
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FIG. 12. POD modes for the normalized kinetic energy: (a) first
mode; (b) second mode; (c) third mode.

three cases the advection mode decomposition shows an error
that is significantly smaller with respect to that of POD.
Also, it tends to diminish faster as the number of modes is
increased. This could be anticipated from the spectrum decay.
The reconstructions in the physical space for both methods are
compared to the snapshot for which the representation given
by advection mode decomposition is worst, that is n = 23.

When few modes are used, like in Fig. 14(a), POD is not
able to reproduce the peaks that characterize the solution. In
the cases shown in Figs. 14(b) and 14(c) POD provides a
nonphysical solution due to its essentially oscillatory nature:
the reconstructed kinetic energy is negative in a few regions of
the domain. The advection mode decomposition in Fig. 14(b)
is such that all the key features of the solution are well
reproduced. In Fig. 14(c) the agreement is even improved.
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FIG. 13. L2 errors as a function of the snapshot number: (a) four
modes; (b) six modes; (c) ten modes.

C. Hurricane Dean

We consider the satellite images of the Caribbean Sea
between the 17th and 22nd of August 2007 showing the
trajectory of hurricane Dean. The images are based on data
from the NOAA archive [13] to get the location and time line
of the storm. The images were generated by a NASA Goddard
Space Center application[14]. Again, only ten snapshots are
considered. In this case, the density is simply defined as the
normalized grey scale image. The time sampling was 6 h, so
that the time interval between the first snapshot and the last
one is T = 54 h. In Fig. 15 three images are shown, at time
t = 0,T /2,T . The resolution is 512 × 256.

Here we concentrate on the possibility of using advection
mode decomposition and POD to estimate a subsequent
image not included in the initial database. The most energetic
POD mode obtained from the ten snapshots database is
shown in Fig. 16(a): it is the average of the snapshots. The
average position of the hurricane may be inferred from this
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FIG. 14. (Color online) Solid line is the solution, dotted line is
the advection mode decomposition, cross line is POD representation
when (a) four modes, (b) six modes, (c) ten modes are used.

picture. The other modes, see Figs. 16(b) and 16(c), render
the hurricane motion through global oscillating modes. No
particular structure is visible in these modes. This is consistent
with the fact that POD tends to the Fourier basis when it
represents transported structures.

As for advection mode decomposition, a set of Ns − 1
mapping is considered (Ns = 10 is the number of snapshots).
This allows us to map the snapshot �n into �n+1. This set
may be used to define, by numerical integration, a Lagrangian
coordinate for the system. Let �n be the mapping that

FIG. 15. Images of hurricane Dean at (a) t = 0, (b) t = 27 h, and
(c) 54 h.

transports �n into �n + 1. The following holds:

X(ξ,tn) =
∫ tn

0
v dτ =

∫ tn

0
∇� dτ = Q(ξ,�n), (46)

where X is the Lagrangian coordinate and Q is a quadrature
formula. In this case a second order Adams-Bashforth scheme
was used to integrate the mappings. Let us remark that X is
not the Lagrangian coordinate of the physical system, but it is
a mapping that allows us to recover its state starting from the
initial condition thanks to the Wasserstein map between each
image. In Fig. 17 the Lagrangian coordinate is represented
at times t = 0,T /2,T . The deformation of the space is more
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FIG. 16. POD modes: (a) first mode, (b) second mode, (c) third
mode.

intense around the hurricane [see for instance Figs. 17(b) and
17(c)]. This is due to the fact that its motion is more coherent
than that of all the other structures. Optimal transport allows
us to highlight this feature in a straightforward manner.

We computed the advection modes. These modes represent
potentials that suitably combined allow us to map the first
image of the sequence to all the others. With three advection

FIG. 17. Lagrangian Coordinate at time a) t = 0 b) t = T/2 c)
t = T .

modes, we can recover all the images with an error which is
about 9% in norm L2 of the gray scale.

We considered a subsequent hurricane image at time T ∗ =
60 h not included in the database to compute the POD modes
and the advection modes. For POD representation, a simple
problem of approximation is investigated, i.e., how accurately
the new snapshot is represented using the POD modes com-
puted using the database whose last snapshot is at T = 54h.
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The error of the reconstruction of this last image based on
POD modes is about 16% using all the POD modes and does
not vary significantly with the number of the modes used.

The approach based on Wasserstein distance allows us to
extrapolate the regularized Lagrangian coordinate in a natural
way. The discrete points (computed as explained above)
X(ξ,tn), n = 1, . . . ,10, are used to estimate X(ξ,tn+1) via
a standard polynomial extrapolation. The error between the
extrapolated Lagrangian coordinate and that computed using
the novel datum at T = 60 h differs by 0.0108 in norm L2.
This means that the position of the hurricane is extrapolated
with an error that is at most of 1%.

IV. CONCLUSION

In this paper we have proposed an advection based modal
decomposition. It exploits the Wasserstein distance to define
an advection mode hierarchy that describes the main features
of advection. Additional features are included by using a
POD mode expansion of the residual in a reference domain.
When dealing with systems in which transport is the leading
phenomenon, this method provides an efficient and meaningful
low-order representation. This has been shown by contrasting
the results of this approach to standard POD analysis for
different cases ranging from idealized vortex motion, to actual
hurricane data.

APPENDIX: NORMALIZATION OF THE EMBEDDING

Let us suppose that the densities �i are taken by uniformly
sampling in time an optimal transport between �0 and �Ns−1.
In this case, Xi , mapping �0 into �i is written by interpolation
(see [8]):

Xi = ξ + i�t∇ξ�(ξ ), (A1)

where �t is the sampling time, and � is a (almost everywhere)
convex potential. In this particular case, all the densities are
aligned on a one-dimensional subspace of the Wasserstein
space, since they belong to the same optimal transport. Hence,
we expect that only one eigenvalue of matrix B is different
from 0.

The squared Wasserstein distance between the ith and the
j th sample is

W2(�i,�j ) =
∫

�i

�i(η)|Xij (η) − η|2dη, (A2)

where Xij (η) is the optimal mapping between �i and �j . For
these particular mappings the elements of the matrix have the
form

Dij = W2(�i,�j ) = C

N2
s

(i − j )2, (A3)

where C is a constant, representing the squared Wasserstein
distance (i.e., twice the kinetic energy) of the unique mapping
linking all the snapshots. The time at which the last snapshot
is taken is taken to be T = 1.

Let us consider the matrix D̃ = (i − j )2, D̃ ∈ Rn×n and
prove that the associated embedding matrix B has only one
zero eigenvalue and that this value is λ = n(n+1)(n−1)

12 .
The elements of B are computed using two standard results

in finite series:
n∑
j

j = n(n + 1)

2
,

n∑
j

j 2 = n(n + 1)(2n + 1)

6
. (A4)

By performing all the matrix vector products and exploiting
the projector properties we have

− (2B)ij = (n + 1)(i + j ) − 2ij − (n + 1)2

2

⇒ Bij = (n + 1)2

4
+ ij − (n + 1)

2
(i + j ). (A5)

Let k = n+1
2 . The expression for the entries of B can be recast

as follows:

Bij = k2 − k(i + j ) + ij ⇒ Bij = (k − i)(k − j ). (A6)

The relation written above states that B is the tensor product
of a unique vector, whose components are yi = (k − i). This
is sufficient to prove the first point. Let us now explicitly
compute the only nonzero eigenvalue λ. Again, the results on
finite series are used, leading to

λ =
n∑
i

(k − i)2 = n(n + 1)(n − 1)

12
. (A7)

The normalization condition for the generic B ∈ RNs×Ns is
then

B = B

N = − 6Ns

N2
s − 1

JDJ. (A8)
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