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Nearest-neighbor-spacing distribution of prime numbers and quantum chaos
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We give heuristic arguments and computer results to support the hypothesis that, after appropriate rescaling, the
statistics of spacings between adjacent prime numbers follows the Poisson distribution. The scaling transformation
removes the oscillations in the nearest-neighbor-spacing distribution of primes. These oscillations have the very
profound period of length six. We also calculate the spectral rigidity �3 for prime numbers by two methods.
After suitable averaging one of these methods gives the Poisson dependence �3(L) = L/15.
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I. INTRODUCTION

The prime numbers often provided a toy model for some
physical ideas of the past. For example, in Ref. [1] the
multifractal formalism was applied to prime numbers, in
Ref. [2] the appropriately defined Lyapunov exponents for the
distribution of primes were calculated numerically. In Ref. [3]
it was shown that the distribution of prime numbers displays
1/f noise, while in Ref. [4] 1/f 2 noise was found in the
difference between the prime-number-counting π (x) function
and Riemann’s function R(x). In Refs. [5] and [6] random
walks on prime numbers were defined. In Ref. [7] an attempt
to construct the dynamical model for prime numbers was
taken and computable information content as well as entropy
information of the set of prime numbers were calculated.

The prime numbers can be regarded as eigenvalues of
some quantum Hamiltonian. The problem of construction
of a simple one-dimensional Hamiltonian whose spectrum
coincides with the set of primes was considered in
Refs. [8–10]; see also the review in Ref. [11]. It is then
natural to investigate the spacings between prime numbers,
i.e., in physical language, the nearest-neighbor-spacing
distribution (NNSD). Several authors have undertaken
a study of this problem in the past; see Refs. [12–14].
Below we will treat prime numbers as the energy levels and
we will apply methods used to describe statistical properties of
discrete spectra. Let the quantum system possess the discrete
spectrum E1,E2, . . . and let N (E) = ∑

n �(E − En) (� is a
unit step function) denote the function counting the number
of energy levels smaller than E. Usually spectral staircase
N (E) can be split into the “smooth” N (E) and fluctuating
(oscillating) Ñ (E) parts. For example, for a large class of
differential operators on a d-dimensional bounded manifold
� ⊂ Rd , Weyl’s law,

N (E) ∼ vol(�)

(2π )d
Ed/2, (1)

holds; see, e.g., Ref. [15] (chap. 1).
Given the spectrum E1,E2, . . . , the statistics of normalized

and dimensionless (“unfolded” spectrum; see, e.g., Ref. [16]
(Sec. 4.7)) gaps between two consecutive energy levels sn =
(En+1 − En)/d(E), where d(E) is the mean distance between
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energy levels up to E, has been extensively studied. For
general systems, En+1 − En are arbitrary real numbers and
a histogram of the level spacings sn can be built. It is well
known that level-spacing distributions of quantum systems
can be grouped into a few universality classes connected
with the symmetry properties of the Hamiltonians: Poisson
distribution (i.e. e−s) for systems with underlying regular
classical dynamics, Gaussian orthogonal ensemble (GOE,
also called the Wigner–Dyson distribution)—Hamiltonians
invariant under time reversal, Gaussian unitary ensemble
(GUE)—not invariant under time reversal and Gaussian
symplectic ensemble (GSE) for half-spin systems with time
reversal symmetry. There are many reviews on these topics,
and we cite here Refs. [16–18].

There is some confusion regarding the proper statistics
of the gaps between consecutive primes: In Ref. [12] it was
claimed that the NNSD of primes follows a GOE distribution,
while in Refs. [13,14] the possibilities of GOE, Poisson,
and exotic Berry-Robnik [19] distribution were investigated.
Liboff and Wong have obtained Wigner distribution and level
repulsion for the NNSD of primes by artificially including
the gaps 0 (no degeneracy—all primes differ) and 1; see
Ref. [12] (p. 3113). Gap 1 appears only once between 2 and
3 and should be skipped in the wake of infinity of primes.
There is a very often reproduced figure showing some typical
spectra (see Refs. [17] (Fig. 12), [18] (Fig. 3), [20] (Fig. I.8),
[21] (front figure), and [22] (p. 32)): random levels with no
correlations (Poisson series), a sequence of prime numbers,
resonance levels of the erbium-166 nucleus, the energies of
a free particle in the Sinai billiard, and nontrivial zeros of the
Riemann ζ function, respectively. In Ref. [17] (p. 10) it is
stated that the “case of prime numbers . . . are far from either
regularly spaced uniform series or the completely random
Poisson series with no correlations.”

It is the purpose of this paper to settle “once and for ever”
that the NSDD of primes follows the Poisson distribution.
Section II is devoted to this problem. In Ref. [23] M. V. Berry
has calculated spectral rigidity �3 for zeros of the Riemann
ζ function and in Sec. III we will study spectral rigidity for
prime numbers.

II. NNSD FOR PRIME NUMBERS

In the case of prime numbers all gaps dn = pn+1 − pn

(except the first pair of primes p1 = 2,p2 = 3) are even
integers 2,4,6, . . . . These spacings are dimensionless and we
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will not perform unfolding for the time being (see the next
section)—the usual (17) unfolding obscures analysis of the
oscillations present in the NNSD between original primes. Let
τd (x) denote a number of pairs of consecutive primes smaller
than a given bound x and separated by d,

τd (x) = �{pn,pn+1 < x, with pn+1 − pn = d}. (2)

For odd d = 2k + 1 we supplement this definition by putting
τ2k+1(x) = 0.

In 1922, G. H. Hardy and J. E. Littlewood, in their famous
paper [24], proposed 15 conjectures. Conjecture B of their
paper states that there are infinitely many primes pairs (p,p′),
where p′ = p + d, for every even d. If πd (x) denotes the
number of prime pairs differing by d and less than x, then

πd (x) ∼ C2

∏
p|d

p − 1

p − 2

x

ln2(x)
. (3)

Here C2 ≡ 2
∏

p>2(1 − 1
(p−1)2 ) = 1.32032 . . . is called the

“twins constant.”
In the middle of 2013, a major step towards the proof of

conjecture B was made: Yitang Zhang submitted a paper to An-
nals of Mathematics in which he proved unconditionally that
lim infn→∞ (pn+1 − pn) < 7 × 107; see, e.g., Ref. [25]. Very
soon this bound was lowered many times by mathematicians
and the present record is lim infn→∞ (pn+1 − pn) � 600 and
was obtained by J. Maynard [26].

Conjecture B of G. H. Hardy and J. E. Littlewood gives
the number of pairs of primes that are not necessarily
successive and we would like to stress that in (2) τd (x)
denotes the number of pairs of consecutive primes pn,pn+1

with difference pn+1 − pn = d. The pairs of primes separated
by d = 2 and d = 4 are special as they always have to be
consecutive primes [with the exception of the pair (3,7),
which contains 5 in the middle]: In the triple of integers
2k + 1,2k + 3,2k + 5 the middle 2k + 3 has to be divisible
by 3 if 2k + 1,2k + 5 are prime (in particular, not divisible
by 3). For d = 6 (and larger d) we have π6(x) > τ6(x),
for example, (5,7,11),(7,11,13),(11,13,17), . . . . From the
conjecture B of G. H. Hardy and J. E. Littlewood [24]
it follows that the number of gaps d = 2 (“twins”) is
approximately equal to the number of gaps d = 4 (“cousins”),
π2(x) ≡ τ2(x) ≈ π4(x) ≡ τ4(x); see also Ref. [6]. For d � 6
in Ref. [27] we have conjectured that

τd (x) ∼ C2
π2(x)

x

∏
p|d,p>2

p − 1

p − 2
e−dπ(x)/x

(4)

for d � 6, τ2(x)(≈τ4(x)) ∼ C2
π2(x)

x
≈ C2

x

ln2(x)
.

Here π (x) = ∑
n �(x − pn) denotes the number of primes

up to x and, by use of the prime number theorem (PNT), is
very well approximated by the logarithmic integral

π (x) ∼ Li(x) ≡
∫ x

2

du

ln(u)
.

Integration by parts gives the asymptotic expansion which
should be cut at the term n0 = 	ln(x)
,

Li(x) = x

ln(x)
+ x

ln2(x)
+ 2!x

ln3(x)
+ 3!x

ln4(x)
+ · · · . (5)

There is a series giving Li(x) for all x > 2 and quickly
convergent which has n! in the denominator and lnn(x) in the
numerator instead of the opposite order in (5) [see Ref. [28]
(Sec. 5.1)],

Li(x) = γ + ln ln(x) +
∞∑

n=1

lnn(x)

n × n!
for x > 1. (6)

Here γ = 0.577216 . . . is the Euler-Mascheroni constant.
Putting π (x) ∼ x/ln(x) into (4), the compact formula

expressing τd (x) by explicitly known functions

τd (x) ∼ C2
x

ln2(x)

∏
p|d,p>2

p − 1

p − 2
e−d/ ln(x) (7)

is obtained. Comparing it with the original Hardy-Littlewood
conjecture (3), we obtain that the number τd (x) of successive
primes (pn+1,pn) smaller than x and of the difference
d(=pn+1 − pn) is diminished by the factor exp (−d/ ln(x)),
in comparison with the number of all pairs of primes (p,p′)
apart in the distance d = p′ − p,

τd (x) ∼ πd (x)e−d/ ln(x) for d � 6. (8)

The expression (7) for τd (x) was proved (in slightly different
form required by the precision of the formulation of the
theorem) under the assumption of the conjecture B of Hardy-
Littlewood by D. A. Goldston and A. H. Ledoan [29] in 2012.

During over a 7-month-long run of the computer program
we have collected the values of τd (x) up to x = 248 ≈
2.8147 × 1014. The data representing the function τd (x) were
stored at values of x forming the geometrical progression
with the ratio 2 at x = 215,216, . . . ,247,248. Such a choice of
the intermediate thresholds as powers of 2 was determined
by the employed computer program in which the primes
were coded as bits. The data are available for downloading
from http://pracownicy.uksw.edu.pl/mwolf/gapstau.zip. The
resulting curves are plotted in Fig. 1. Characteristic oscillating
pattern of points is caused by the product

P (d) ≡
∏

p|d,p>2

p − 1

p − 2
, (9)

which appears in (4); see the inset in Fig. 1. This product
appeared first in the paper of Hardy and Littlewood [24] and
it has local maxima for d equal to the products of consecutive
primes (“primorials,” i.e., factorials over primes 2 × 3 ×
5 . . . × pn ≡ pn�). Clearly visible in Fig. 1 are oscillations
of the period 6 = 2 × 3 with overimposed higher harmonics
30 = 2 × 3 × 5 and 210 = 2 × 3 × 5 × 7, i.e., when P (d) has
local maxima P (6) = 2,P (30) = 8/3 = 2.666 . . . P (210) =
16/5 = 3.2 (local minima are 1 and they correspond to
d = 2m). We have performed the discrete Fourier transform
of P (d), i.e., we calculated numerically

P̃

(
n

2M

)
=

M−1∑
k=0

P (2k)e2πkn/M, (10)

where n = 0,1,2, . . . ,M − 1 and n/2M plays the role of
discrete frequency. Having P̃ (f ), we can calculate the power
spectrum density S(f ) =|P̃ ( n

2M
)|2. The large value of S(f )

at some frequency f means that the dependence of P (d)
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FIG. 1. Plots of τd (x) for x = 224,226, . . . ,246,248. Wider lines represent exponential fits a(x)e−db(x) to τd (x). In the inset the plots of
τd (x)/P (d) are shown.

on d has some harmonic component of the period T = 1/f .
Thus in Fig. 2 we have plotted S(f ) versus 1/f = d to show
the main periods 5,6 = 2 × 3,10 = 2 × 5,14 = 2 × 7,30 =
2 × 3 × 5 . . . of P (d). These oscillations are the reason why
the Poisson distribution was not attributed to the NNSD of
primes in the past, e.g., P (2) = P (4) = 1, while P (6) = 2

FIG. 2. The plot of power spectrum S(f ) calculated from M =
210 = 1024 values of P (d) plotted versus 1/f to show main periods
of P (d). The y axis was broken to make visible peaks at d �= 6. In
the inset the plots of P (d) and the approximation (14) are presented.

and the plot should be made with logarithmic scale on the
y axis to suppress these oscillations.

In Ref. [31] E. Bombieri and H. Davenport have proved that

n∑
k=1

∏
p|k,p>2

p − 1

p − 2
= n∏

p>2

(
1 − 1

(p−1)2

) + O( ln2(n)), (11)

i.e., in the limit n → ∞ the number 2/C2 is the arithmetical
average of the product

∏
p|k

p−1
p−2 . The main period of oscilla-

tions is 6; hence, we can write the following:

P (d) =
∏

p|d,p>2

p − 1

p − 2
≈ α + β cos

(
2πd

6

)
. (12)

The numerical value of α is equal to 2/C2 to reproduce the
average value of P (d) in (11). It can be explained by taking into
account that cos(2π2k/6) = 1 while cos (2π (2k + 2)/6) =
cos (2π (2k + 4)/6) = − 1

2 and, hence, by the equation

lim
n→∞

1

n

n∑
k=1

(
α + β cos

(
2π2k

6

))
= α, (13)

where the value of parameter β does not contribute to the
average of the right-hand side of (12). Thus from (11) we have
α = 2/C2 ≈ 1.514 780 128 1. Requiring that the combination
α + β cos(2πd/6) for d = 6 takes a value 2 times larger
than that for d = 2 and d = 4, α + β = 2(α − β/2) gives
β = α/2 ≈ 0.75739. Fitting of the parameters α and β can
be done also numerically by use of standard general linear
least squares; see, e.g., Ref. [32]. We have used the procedure
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lfit from Ref. [32] with 2 500 000 numbers of points: For
d = 2,4,6, . . . ,5 000 000. The output of the computer run
was as follows: α = 1.51478 ≈ 2/C2,β = 0.75471 ≈ 1/C2.
Hence, we propose the compact formula (see inset in Fig. 2)
as follows:

P (d) =
∏

p|d,p>2

p − 1

p − 2
≈ 1

C2

(
2 + cos

(
2πd

6

))
, (14)

which allows us to substitute for P (d) an expression more
amenable for algebraic manipulations. Such an approximation
may be relevant for calculations of correlations functions for
zeros of the Riemann ζ function, where sums involving product
P (d) appear very often [33]. It turns out that cos(2πd/6) takes
for even d only two values: −1/2 for d = 6k + 2 and 6k + 4
and 1 for d = 6k. Because d and d2 have the same prime
divisors it follows that P (d2) = P (d). The same relation is
also obeyed by the approximation (14) because (6k + 2)2 =
6k′ + 4 and (6k + 4)2 = 6k′′ + 4 and the square of the d = 6k

is obviously again a number of the same form.
The smallest gap between adjacent primes is 2 (twin

primes), while the maximal gap G(x) = maxpn<x(pn − pn−1)
grows with x. We can obtain the formula for G(x) from (4)
assuming that the largest gap up to x between two consecutive
“levels” pn+1 − pn appears only once: τG(x)(x) = 1. Skipping
the oscillating term P (d), which is very often close to 1, we get
for G(x) the following estimation expressed directly by π (x):

G(x) ∼ x

π (x)
(2 ln (π (x)) − ln(x) + c), (15)

where c = ln(C2) = 0.277 876 9 . . . . Substituting here
the PNT in the form π (x) ∼ x/ ln(x) gives the Cramer’s
conjecture [34] G(x) ∼ ln2(x) in the limit of large x.
The maximal gaps G(x) are scattered chaotically; the
largest currently known gap of 1476 follows the prime
1 425 172 824 437 699 411; see Ref. [30]. The comparison of
the above formula with real data is presented in Fig. 3.

We finish this section recalling the result of P. Gallagher
[35]. He proved, assuming the special generalization of the
n-tuple conjecture of Hardy-Littlewood (3), that the fraction
of intervals which contain exactly k primes follows a Poisson
distribution. More precisely he proved that the number
Pk(h,N ) of such n < N that the interval (n,n + h] contains
exactly k primes is asymptotically for N → ∞ given by

Pk(h,N ) ∼ N
λke−λ

k!
,

where λ ∼ h/ ln(N ) is a parameter of the Poisson distribution.
In Ref. [36] E. Kowalski has generalized the Gallagher theorem
to other families of primes. In particular, the numbers of
twins, primes of the form m2 + 1, or Sophie Germain primes
(i.e., primes p with 2p + 1 also prime) in short intervals are
asymptotically Poisson distributed.

III. UNFOLDED PRIMES

For energy spectrum E1,E2, . . . one usually performs
unfolding to focus on fluctuations around the smooth part
of staircase and simultaneously to pass to the dimensionless

FIG. 3. (Color online) The comparison of G(x) (black solid line)
obtained from the computer search (up to x = 248 we have used our
own data, and for larger x we took data from the Web pages [30]).
For the plot of (15) [red (dark gray) dashed line] we have used the
tabulated values of π (x) available at Ref. [30]. The plot of the Cramer
conjecture is also presented [blue (light gray) dash-dotted line].

variables e1,e2, . . . via the following definition:

en = N (En). (16)

Then the average spacing between two consecutive en,en+1 is
equal to 1 and this procedure removes the individual properties
of a system. Although primes are dimensionless we can
perform the unfolding using the definition

rn = Li(pn). (17)

Then the unfolded spacings are Dn = rn+1 − rn, and writing
pn+1 = pn + dn (dn are “pure” spacings, not unfolded) and
using Li(x) ∼ x/ ln(x) we obtain

Dn ≈ dn

ln(pn) + dn/pn

(18)

and for large pn it goes into Dn = dn/ ln(pn). In other words,
we can say that the unfolded gaps (level spacings) between
very large consecutive primes are Dn = (pn+1 − pn)/ ln(pn).
Because the average distance between primes (pn−1,pn) is
ln(pn) we have from (18) for large pn that the average spacing
between two consecutive (rn,rn+1) is equal to 1, as it should
be for unfolded variables. The values of Dn are arbitrary real
numbers, while dn assume only even values. For example, for
twin primes pn+1 = pn + 2 the gap d = 2 will be mapped
into Dn ≈ 2/ ln(pn) with explicit dependence on pn and it
goes to zero with increasing pn (if there are infinity of twins,
as it is widely believed). On the other side, the maximal
value of D will correspond to maximal gaps: From (15)
we have that roughly G(pn) = ln2(pn) and thus the interval
of values of D will span up to approximately ln(pn): the
values d = 2, 4, 6 . . . , G(x) will be mapped onto the interval
[2/ ln(x), ln(x)]. To make the histogram of unfolded spacings
Dn the (arbitrary) size of bin should be chosen. In this approach
the oscillations seen in Fig. 1 are “smeared out” between differ-
ent bins and there is no possibility to extract them easily from
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FIG. 4. (Color online) The plot of histograms of unfolded spac-
ings Dn = rn+1 − rn where rn = Li(pn) for primes up to 234 =
1.72 . . . × 1010. Three widths of bins are used: �D = 0.1 [green
(light gray)], �D = 0.001 [blue (medium gray)], and �D =
16.54/28 000 [red (dark gray)]. In black (below the legend) is shown
the plot for the unfolding defined by Eq. (19).

the histogram of unfolded gaps Dn. The behavior caused by the
product P (d) is obscured after the change of variables dn →
Dn; note the oscillations with large amplitude on the red and
blue plots in Fig. 4, whereby Dn depends explicitly on the value
of pn and is a continuous variable. In other words, the same
bin will contain contributions from different dn and different
pn, giving the same value of Dn and there is no possibility to
untangle for unfolded quantities the influence of the oscilla-
tions caused by the product (9). We present the results of this
procedure for all primes up to 234 = 1.718 . . . × 1010 in Fig. 4
for three choices of the bin size. The popular choice, used, e.g.,
in EXCEL, is to set the number of bins equal to the square root of
the number of values of binned variable. In our case, π (234) =
762 939 111, thus the number of bins should be approximately
28 000. Because the maximal gap up to 234 is G(234) = 382
and it appears at p486 570 087 = 10 726 904 659, we get that the
maximal value of D is 382/ ln(10 726 904 659) = 16.54 . . .

and the size of bin should be 16.54/28 000 ≈ 0.000 59. In
Fig. 4 the red (dark gray) line presents the plot for this choice of
the bin size, the blue (light gray) line is for the roughly 10 times
larger division �D = 0.005, while the green (medium gray)
plot presents the histogram of prime pairs with D divided into
bins of the size �D = 10−1. These plots can be normalized
by dividing all values by the maximal value present in the
histogram for a given bin size.

The explicit form of Eq. (4) allows us to define the unfolding
in the following way. Let us define the rescaled quantities as
follows:

Td (x) = xτd (x)

C2P (d)π2(x)
, D(x,d) = dπ (x)

x
. (19)

FIG. 5. (Color online) Plots of (D(x,d),Td (x)),(d = 2,4, . . .) for
x = 228 (the bottom, shortest, plot), 238,248 and in red (the longest) the
plot of e−u (the order of plots corresponds to the order of descriptions
in the legend). Only the points with τd (x) > 1000 were plotted to
avoid fluctuations at large D(x,d) due to small values of τd (x) for
large d .

The product P (d) in the denominator of the first formula
removes the oscillations and gives the analog of the histogram
free of size bin ambiguity. The second equation defines
the proper unfolding for prime numbers. Because x/π (x) ≈
ln(x) is the mean distance between two consecutive primes
d ≈ ln(x) up to x, we see that D(x,d) corresponds to the
distances between “unfolded” primes. Normalized spacing
between two consecutive primes is D(x,d) ≈ d/ ln(x) and,
hence, the mean value of D(x,d) is simply 1. For large
x the quantity D(x,d) agrees with expression (18) for
large pn: D(pn,dn) ≈ dn/ ln(pn) = Dn and, hence, values of
D(x,d) ∈ [2/ ln(x), ln(x)]. From conjecture (4) we expect
that for each x the points (D(x,d),Td (x)), d = 2,4, . . . ,G(x)
should coincide—the function τd (x) displays scaling in the
physical terminology. In Fig. 5 we have plotted the points
(D(x,d),Td (x)) for x = 228,238,248 and, indeed, we affirm the
tendency of all these curves to collapse into the universal
one. To make this plot we have used exact values of π (x),
not any of the approximate formulas like Li(x). From the
definition of τd (x) it follows that π (x) = ∑

d τd (x) + 1 and
it allowes us to calculate from τd (x) precise values of π (x)
for x = 228,238,248. If we denote u = D(x,d), then all these
scaled functions should exhibit the pure exponential decrease
e−u: the Poisson distribution shown in red (dark gray) in Fig. 5.
We have determined by use of the least-squares method slope
s(x) and prefactor a(x) of the fits a(x)e−s(x)u to the linear parts
of plots of (D(x,d), ln(Td (x))). The results are presented in
Fig. 6. The slope very slowly tends to 1: For over 6 orders of
x s(x) changes from 1.187 to 1.136 while the prefactor a(x)
drops from 1.512 . . . to 1.273 . . . .
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FIG. 6. Plot of slopes s(x) and prefactors a(x) in the depen-
dence a(x)e−s(x) obtained from fitting it to (D(d,x), ln(Td (x))) for
x = 228,229, . . . ,248.

Finally, let us remark that there is no repulsion of small
gaps between primes: usually for GOE or GUE there is a
prohibition of small gaps between energy levels (in fact, the
number of gaps with s = 0 is equal to zero), but for our case
the smallest gap corresponds to twins and it is believed that
there is infinity of them. From (4) it follows that the number
of twins and cousins is roughly half of the number of primes
separated by d = 6. In fact, for all plots of τd (x) in Fig. 1
d = 6 is the highest point, i.e., it is the most often occurring
gap. However, in Fig. 1, local spikes appear at multiplicities of
30 = 2 × 3 × 5 and at d = 210 = 2 × 3 × 5 × 7, where the
product P (d) has local maxima. As x increases, the slopes of
plots of τd (x) decrease and at some value around x ≈ 1036

the peak at d = 30 will be greater than that at d = 6. At much
larger x ≈ 10428 the spike at 210 will take over d = 30. It leads
to the so-called problem of champions, i.e., the most occurring
gap between consecutive primes; see Ref. [37]. Thus primes
are repelled in a very special way: The most often occurring
gaps are products of consecutive primes, but they become the
“champions” at extremely large values of x. For the unfolded
according to Eq. (18) gaps Dn [or Eq. (19) and quantities D
as well] there is no repelling: The most common value of
Dn is 2π (x)/x ≈ 2/ ln(x) and it tends to zero with increasing
x—behavior typical for the Poisson distribution.

A similar unfolding procedure has been used in dynamical
systems, e.g., in the stadium billiard were the existence
of strong oscillations due to bouncing ball orbits strongly
influence the spectral statistics �3 and, to get a good
agreement with the Gaussian orthogonal ensemble (GOE)
predictions, one has to perform unfolding, which includes
explicitly the contribution of the bouncing ball periodic orbits
(see Ref. [38]).

It is a common belief that the Poisson NNSD of the quantum
energy levels is linked with integrable systems with more than
one degree of freedom. In Ref. [39] P. Crehan has shown
that for any sequence of energy levels obeying a certain
growth law (|En| < ean+b, for some a ∈ R+, b ∈ R), there
are infinitely many classically integrable Hamiltonians for
which the corresponding quantum spectrum coincides with
this sequence. Because from PNT it follows that the n-th
prime pn grows like pn ∼ n ln(n), the results of Crehan’s
paper can be applied and there exist classically integrable
Hamiltonians whose spectrum coincides with prime numbers;
see also Ref. [11].

IV. SPECTRAL RIGIDITY OF PRIME NUMBERS

In Ref. [40] several statistical measures to describe fluc-
tuations in the energy levels {En} of complex systems were
introduced. One which attracted much attention is the spectral
rigidity �3. The spectral rigidity for arbitrary system with
spectral staircase N (E) is defined as the averaged mean-square
deviation of the best local fit straight line aε + b to the N (E)
on the interval (x,x + L),

�3(x; L) = 1

L

〈
min
a,b

∫ L

0
(N (x + ε) − aε − b)2dε

〉
. (20)

The averaging procedure 〈·〉 depends on the specific problem,
e.g., for random matrices it is the mean value from an ensemble
of generated matrices or average over a set of atomic nuclei in
real experiments (see, e.g., Ref. [41]); sometimes the average
over the initial point x is applied. There are, in general, two
ways of performing the operation mina,b; see the discussion
in Ref. [40]. One can calculate partial derivatives of right-
hand side of (20) with respect to a and b, equate them to
zero, solve for a and b, and substitute solutions back to the
right-hand side, which leads to the double integrals; see, e.g.,
Ref. [42] (Appendix II). We will present here the procedure for
calculating �3 in this way, which was devised by O. Bohigas
and M.-J. Giannoni in Refs. [43] and [20]. First, the energies
are unfolded EN → en using the smooth part N (En) of the
staircase function; see Eq. (16). If the sequence of unfolded
levels e1,e2, . . . ,en falls in the interval (x,x + L), then the
following explicit formula for �3(x; L) is obtained:

�3(x; L) = n2

16
− 1

L

(
n∑

k=1

ẽk

)2

+ 3n

2L2

n∑
k=1

ẽk
2

− 3

L4

(
n∑

k=1

ẽk
2

)2

+ 1

L

n∑
k=1

(n − 2k + 1)ẽk, (21)

where ẽk = ek − (x + L/2). In the second approach the
parameters a and b are obtained by fitting the straight line
ax + b to the set of points (x1,y1),(x2,y2), . . . ,(xn,yn) by
use of the least-squares method, i.e., the partial derivatives
of

∑n
k=1(yk − axk − b)2 with respect to a and b are calculated

and put equal to zero, which gives the following very
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well-known expressions:

a = n
∑n

k=1 xkyk − ∑n
k=1 xk

∑n
k=1 yk

n
∑n

k=1 x2
k − ( ∑n

k=1 xk

)2

b = 1

n

n∑
k=1

(yk − axk).

In the case of �3(x; L) we have xk = Ek,yk = N (Ek).
In the spectral rigidity obtained in this second way we will
distinguish from (21) by use of an apostrophe, �′

3(x; L). The
formula for �′

3(x; L) in this approach and adjusted for our
problem will be given below; see (27).

We define spectral rigidity for primes by (20) with π (x)
instead of N (x). To use the formula (21) the exact values of all
primes are needed and we have used primes pn sufficient for
calculation of �3(x; L) for x = 108,109, and 1010. To perform
the unfolding pn → rn one can use in principle any analytical
formula giving the number π (x) of primes smaller than x,
e.g., the one due to Gauss π (x) ∼ x/ ln(x) or another one
given by the prime number theorem (5): rn = Li(pn). The
choice x/ ln(x) is not a good one because π (x) − x/ ln(x)
never changes the sign (see, e.g., Ref. [44] [Eq. (3.5)]) so there
are no oscillations of this difference. Although J. E. Littlewood
proved in 1914 [45] that π (x) − Li(x) infinitely often changes
the sign, the lowest present-day known estimate for the first
sign change of π (x) − Li(x) is around 10316 (see Refs. [46]
and [47]), hence, in the available for computers range there
are no fluctuation of π (x) − Li(x) around zero but a steady
growth of the function Li(x) − π (x). In the famous paper [48]
B. Riemann has given the exact formula for π (x) as follows:

π (x) =
∞∑

k=1

μ(k)

k

(
Li(x

1
k ) −

∑
ρ

Li(x
ρ

k )

+
∫ ∞

x1/k

1

u(u2 − 1) ln(u)
du

)
, (22)

where μ(n) is the Möbius function as follows:

μ(n) =

⎧⎪⎨⎪⎩
1 for n = 1

0 when p2|n
(−1)r when n = p1p2 . . . pr .

The sum over ρ runs over nontrivial zeros of the Riemann ζ (s)
function ζ (ρ) = 0 and the last integral contains contribution
from trivial zeros −2m of ζ : ζ (−2m) = 0,m = 1,2,3, . . . . If
the Riemann hypothesis is true, then for all nontrivial zeros
Re(ρ) = 1

2 and the contribution to the sum over k in (22)
is dominated by the first term, which leads to the following
approximation to π (x):

R(x) =
∞∑

k=1

μ(k)

k
Li(x

1
k ). (23)

The difference π (x) − R(x) changes the sign already at x as
low as x ∈ [2,100] (see, e.g., the tables obtained by T. R.
Nicely in Ref. [30]) and up to 1014 there are over 50 million
sign changes of π (x) − R(x) [49]; however, on average, the
behavior of both differences π (x) − Li(x) and π (x) − R(x)
seems to be the same [50]. The above function R(x) can

be obtained without the need to calculate the logarithmical
integral Li(x) from the series obtained by J. P. Gram [see, e.g.,
Ref. [51] (p. 51)]:

R(x) = 1 +
∞∑

m=1

lnm(x)

mm!ζ (m + 1)
. (24)

Hence, we have made the unfolding of primes according to the
rule

rn = R(pn). (25)

At this point let us remark that from (6) and (24) we see that,
because ζ (m) → 1 for m → ∞, very quickly [e.g., ζ (4) =
π4/90 = 1.082 323 . . . ,ζ (6) = π6/945 = 1.017 343 . . .] for
large x the functions Li(x) and R(x) should differ by roughly
ln ln(x), and this quantity can be discarded in comparison
with values of series involving powers of ln(x) present in
(6) and (24). Indeed, from (23) it follows using the first
term from asymptotic expansion (5) that for large x the
approximate relation R(x)/Li(x) = 1 − 1/

√
x holds. Thus for

large x the particular form of unfolding (17) or (25) should be
irrelevant, despite the fact that π (x) − Li(x) changes the sign
for the first time somewhere in the vicinity of x = 10316 while
π (x) − R(x) changes the sign already for x between 10 and
20 (see the tables in Nicely [30]).

We will present the plots of �3(x; L) for three values of x:
108,109, and 1010. The values of primes for which the unfolded
variables begin to fall into the intervals (108,108 + L),
(109,109 + L), and (1010,1010 + L) are, accordingly,
2 038 076 627, 22 801 797 631, and 252 097 715 777:
R(2 038 076 627) = 108 + 1.8496 . . . ,R (22 801 797 631) =
109 + 2.3178 . . . ,R (252 097 715 777) = 1010 + 0.0024 . . . .

As there seems to be no clear relation between the values
of L in comparison with chosen x we have used the wide
range of values of L: We have calculated from (21) spectral
rigidity for values L = 27 = 128, . . . ,226 = 67 108 864. The
results are presented in Fig. 7. It is well known that for
the stationary Poisson ensemble �3(x; L) = L

15 (see, e.g.,
Ref. [40] [Eq. (61)] or Ref. [42] (Appendix II)) and in the
Fig. 7 this theoretical prediction is plotted in red (straight
line). The obtained plots of �3(x; L) seem to tend to the
line L/15 with increasing x. For primes there is no natural
averaging procedure present in the definition (20) and in Fig. 7
prominent fluctuations are seen. To simulate the averaging
we have performed the following “Monte Carlo” experiment
for x = 1010. From the PNT in the form π (k) ∼ k/ ln(k)
it follows that the chance that the randomly chosen large
integer k should be a prime is 1/ ln(k). Such a probabilistic
model for primes was created by H. Cramer in the 1930s
[34]. We have started to test if a given natural k number
is the probabilistic “artificial” prime from the first k0 for
which R(k0) > 1010, i.e., for k0 = 252 097 715 777, for which
R(k0) = 1010 + 0.002 41 . . . . The natural number k > k0

[even the even numbers were allowed—when even numbers
are skipped the probability of odd number k to be a “prime”
should be 2/ ln(k)] was accepted to be a “probabilistic” prime
if 1/ ln(k) was larger than that uniformly generated from the
interval (0,1) random number random: random <1/ ln(k).
For such a “prime” k the unfolding was performed using the
equation r ′

k = R(k). The random drawing of “primes” was
continued until the unfolded “prime” was larger than x + L

022922-7



MAREK WOLF PHYSICAL REVIEW E 89, 022922 (2014)

FIG. 7. (Color online) Plots of �3(x; L) obtained from (21) for
x = 108 (triangles), x = 109 (circles), and x = 1010 (squares) and
L = 27 = 128, . . . ,226 = 67 108 864.

for L = 128, . . . ,226. For the set of such generated unfolded
quantities in the intervals (x,x + L) the “artificial” spectral
rigidity �

(p)
3 (x; L) was calculated using (21). The result of

this procedure is plotted in green (squares) in Fig. 8 and there
are fluctuations seen resembling those present in Fig. 7 for
“true” primes. But now we can generate many independent
sets of the artificial probabilistic primes. We have repeated
this procedure 100 times and the averaged over all these
samples spectral rigidity �

(p)
3 (x; L) is presented in Fig. 8 in

black (circles). Now the fluctuations have disappeared and
the obtained plot follows perfectly the predicted dependence
L/15. This allows us to claim that the spectral rigidity
for prime numbers unfolded via the Riemann function R(x)
is the same as that for Poisson statistics [we have checked
that the same result is obtained for unfolding with Li(x) as
in Eq. (17)]. Let us mention that usually saturation of �3 is
observed in physical systems, i.e., after the initial dependence
resembling L/15 spectral rigidity stops to increase and
is constant for large L (see, e.g., Ref. [23] or Ref. [52]).
However, our system is infinite and there is no departure from
the straight line L/15.

Next we will present spectral rigidity for the second method
of minimizing the right-hand side of (20) over a,b, namely
determination of a,b by use of the least-squares method. In the
case of prime numbers, for large x, the smooth part of staircase
π (x) given by x/ ln(x) is almost linear in the interval (x,x + L)
as the denominator changes from ln(x) to ln(x + L) = ln(x) +
L/x + · · · , which for x � L � 1 again is ln(x). There are
a few Web sites [30] offering the tables of values of π (x) (as
well as other number-theoretic functions). In these data files
the values of π (x) are tabulated with different step sizes of
x; the best resolution is at A. V. Kulsha’s page: the file pi.txt
(421 MB) contains counts of π (x) with a step of 109 from

FIG. 8. (Color online) The plot of �
(p)
3 (L) for probabilistic

primes for one particular realization of the “artificial primes” in green
(boxes) and averaged over 100 samples in black (circles). The last plot
perfectly coincides with the red (dark gray) line representing L/15.
In blue (light gray) is the fit 0.061L to circles plotted (practically
indistinguishable from straight line L/15 = 0.066 . . . × L).

x = 109 to x = 2.5 × 1016. Now we will give the formula for
calculating the integral appearing in the definition of �′

3(x; L)
as follows:

I(x; L) =
∫ L

0
(π (x + ε) − aε − b)2dε, (26)

which is appropriate for our data. Let us assume that the values
of π (x) in the integral (26) are known with the resolution
h: yk = π (x + kh). Hence, we assume that π (x) is constant
on the intervals (kh,(k + 1)h) [in fact, π (x) is constant only
between two consecutive primes]. We regard this sampling
of π (x) with different steps h as the averaging procedure
hidden in the angle bracket in (20)—taking values of π (x)
at all consecutive primes would introduce fluctuations. The
combination π (x + ε) − aε − b is the linear function on the
intervals (kh,(k + 1)h) and we can write (we assume here that
L is the integer multiple of h) the following:

I(x; L) =
∫ L

0
(π (x + ε) − aε − b)2dε

=
L/h−1∑
k=0

∫ (k+1)h

kh

(yk − aε − b)2dε.

Performing elementary integration we obtain the following:

�′
3(x; L) = b2 + abL + a2L2

3
+ 1

L

L/h−1∑
k=0

yk(yk − 2b)h

− ayk(2k + 1)h2. (27)
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It should be noted that parameters a and b in Eq. (27) obtained
from fitting aε + b to points π (x + ε),0 � ε � L by use
of the least-squares method are functions of L and x; see
below (29).

The value of �′
3(x; L) given by (27) should not de-

pend on h. To test this presumption we have calculated
�′

3(x; L) for x1 = 1013 and x2 = 1016 and for h1 = 109, h2 =
2 × 109, and h3 = 4 × 109. We have chosen the following
sequence of values of the length of intervals L = 16h1 =
1.6 × 1010, 32h1 = 3.2 × 1010, . . . 223h1 = 8.388 608 × 1015

for both x1,x2 and, additionally, L = 1.5 × 1016 for x2 = 1016.
It means that the number of terms in the sum in (27)
was, appropriately, 23,24, . . . ,222 = 4194304 for h2 and
22,24, . . . ,221 = 209 715 2 for h3. For each L the parameters
a and b were fitted by use of the least-squares method to the
points [xk = x + kh,yk = π (x + kh)],k = 0,1, . . . ,L/h − 1.
In Figs. 9 and 10 we present the results. Two types of behaviors
are seen in these figures: the constant in L values of �′

3
depending on h and the collapse of plots of �′

3 for all h

when the increase of �′
3 with L begins. It seems that to get

rid of dependence on h the sufficiently large number L/h of
terms in the formula (27) has to be summed up. Inspection of
the data shows that, to have the independence of �′

3 on h, a
few thousand terms in the sum in (27) are sufficient (for the
largest L there are millions of terms in this sum; see the plots
in red in Figs. 9 and 10). It is possible to find heuristically
the values of the constant in L parts of �′

3. To find the
analytical expressions for a and b we consider the smooth part
of π (x) given by (x + ε)/ ln(x + ε) and the straight line aε + b

obtained by best fitting to the values of (x + kh)/ ln(x + kh).

FIG. 9. (Color online) Plots of �′
3(x1; L; h) for x1 = 1013

and L = 16h1 = 1.6 × 1010,32h1 = 3.2 × 1010, . . . 223h1 =
8.388 608 × 1015 and three values of h1 = 109 (black triangles),
h2 = 2h1 (blue circles) and h3 = 4h1 (red squares). On the right
in purple (no symbol) are plotted values of the number of terms
L/hi − 1 in the sum (27) and the right y axis also in purple (no
symbol) is for these numbers. The dashed lines represent values of
(31). The coincidence of �′

3(x1; L)’s for all hi starts at approximately
L = 214h1 = 1.6384 × 1013.

FIG. 10. (Color online) Plots of �′
3(x2; L; h) for x1 = 1016

and L = 16h1 = 1.6 × 1010,32h1 = 3.2 × 1010, . . . 223h1 =
8.388 608 × 1015 and additionally for L = 1.5 × 1016 and three
values of h1 = 109 (black triangles), h2 = 2h1 (blue circles), and
h3 = 4h1 (red squares). On the right in purple (medium gray) are
the plotted values of the number of terms L/hi − 1 in the sum
(27) and the right y axis, also in purple, is for these numbers. The
dashed lines represent values of (31). The coincidence of �′

3(x2; L)’s
for all hi starts at approximately L = 218h1 = 2.621 44 × 1014

and follows practically powerlike increase given by equation
2.569 5 × 10−37L3.685. The green (light gray) line presents this
equation multiplied by 100; however, we expect bending of
�′

3(x2; L; h) for L > x2 similar to the one seen in Fig. 9.

The experiments show that the fits cross (x + ε)/ ln(x + ε) on
the interval ε ∈ (0,L) roughly at ε = L/4 and ε = 3L/4 (see
Fig. 11), thus from (x + L/4)/ ln(x + L/4) = aL/4 + b and
(x + 3L/4)/ ln(x + 3L/4) = a3L/4 + b we get

a = 2

L

[
x + 3L/4

ln(x + 3L/4)
− x + L/4

ln(x + L/4)

]
= 1

ln(x)
− L

2x ln2(x)
+ O(1/x2), (28)

b = x + L/4

ln(x + L/4)
− aL/4 = x

ln(x)
− L

4 ln2(x)
+ O(1/x).

(29)

Using yk = (x+kh)/ ln(x+kh) ≈ (x+kh)/ ln(x)−(kh)2/

2x ln2(x) we obtain in (27) sums over k which can be calculated
exactly, and retaining the leading terms gives the following:

�′
3(x; L) = h2

3 ln2(x)
− hL

4 ln3(x)
+ O(1/x). (30)

Because �′
3(x; L) > 0 we have from above h2/3 ln2(x) >

hL/4 ln3(x), i.e., L < 4h ln(x)/3, which for x = 1013 gives
L < 40h. Surprisingly, the first term in (30), not depending on
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FIG. 11. The illustration of the experimental fact that the straight
line best fitting (x + ε)/ ln(x + ε) on the interval ε ∈ (0,L) crosses it
at ε = L/4 and ε = 3L/4.

L but being the function of x, gives the expression

�′
3(x; L; h) = h2

3 ln2(x)
+ · · · , (31)

which works very well, even for L = 1024h for x1 = 1013

and L = 8192h for x2 = 1016, as shown in Figs. 9 and 10,
where the predicted values h2/3 ln2(x) are plotted by dashed
lines together with the plots of �′

3(x; L; h) obtained from (27).
In fact, this agreement is astonishing: e.g., all �′

3(1016; L; h1)
for the initial 11 values of L have the same first three digits:
2.455 . . . × 1014, while (31) predicts 2.455 88 . . . × 1014. In
Fig. 9 we were able to make the plot for L up to almost 103x1,
while in Fig. 10 the largest L is smaller than x2; thus we expect
bending of �′

3(x2; L; h) for larger L, similar to the behavior of
�′

3(x1; L; h) in Fig. 9. In the plots of �′
3 we see the crossover at

value L∗, above which the steeper increase of spectral rigidities
begins and this dependence is Lγ , with γ ≈ 3.1. Heuristically,
the existence of this crossover can be justified by the following
reasoning: For moderate values of L the straight line aε + b

approximates π (x + ε) quite well, leading to the small values
of the integral

∫ x+L

x
[π (x + ε) − aε − b]2dε, while for larger

L the discrepancy between π (x + ε) and the straight line
increases, leading to larger values of �3. The spectral rigidity
calculated in the second way displays behavior that differs
from �3(x; L) obtained in the first manner. Let us remark at
this point that the proof of �3(x; L) = L/15 for the Poisson
ensemble was obtained in Ref. [42] (Appendix 42) only for
the first method of minimalization over a and b in (20).

V. CONCLUSIONS

In this paper we have treated prime numbers as energy
levels and we applied the physical methods used to study
spectra of quantum systems to the description of distribution
of prime numbers. We presented large numerical data (up to
x = 2.814 . . . × 1014) in support of the formula (4) for the
NNSD between consecutive primes. It was also possible to
obtain the analytical formula (15) for the maximal difference
between two adjacent primes smaller than x. The case of prime
numbers gives us the rare opportunity to calculate spectral
rigidity �3(x; L) for the wide range of x and L: For real
physical systems usually only hundreds (nuclei), thousands, or
hundreds of thousands of (e.g., billiards) energies are known.
As the main result of this paper, we regard the scaling relations
(19) and attempt to calculate spectral rigidity �3(x; L) for
prime numbers. We have proposed a method to average
the spectral rigidity over realizations of probabilistic primes
and, after sampling over 100 sets of “artificial” primes, we
have obtained perfect L/15 dependence. The obtained results
confirm that the primes follow the Poisson distribution. This
averaging shows that the spectral rigidity does not depend on
peculiarities of the primes but on the probability 1/ ln(k) of
the number k to be prime. The entire above analysis can be
repeated for subsets of prime numbers, for example, for the
twin primes (both p and p + 2 are prime), cousin primes (both
p and p + 4 are prime), or the primes of the form 4k2 + 1;
in the latter case, the “energy levels” are the values of k for
which 4k2 + 1 is prime.
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