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Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger
chain in the regime of homogeneous chaos
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We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the
nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved
but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all
modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies
the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D0ρ

2. An explicit
expression for D0 is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then
evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively
discussed.
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I. INTRODUCTION

Disordered classical nonlinear chains are convenient model
systems where the interplay between Anderson localization
and classical nonlinearity can be studied. Indeed, Anderson
localization is especially pronounced in one spatial dimension,
where even an arbitrarily weak disorder localizes all normal
modes of the linear system [1,2]. A nonlinearity couples the
normal modes, which may lead to chaotic dynamics [3,4] and
destroy Anderson localization [5–8], although periodic solu-
tions may be preserved with some probability [9,10]. Viewed
from the nonlinear dynamics side, disordered nonlinear chains
represent a class of dynamical systems with an infinite number
of degrees of freedom, in which chaos may have a local
structure in the real space [11–16], and this structure can be
controlled by the disorder strength.

Here we study the discrete nonlinear Schrödinger equation
with disorder (DNLSE) [see Eq. (2) below]. It describes
several physical systems, such as light propagating in nonlinear
photonic lattices [17] or cold bosonic atoms in optical lattices
in the mean-field approximation [18]. One of the fundamental
problems concerning DNLSE, as well as disordered nonlinear
chains in general, is the evolution of an initially localized wave
packet at very long times (see Ref. [19] for a review). In a linear
system with Anderson localization, the wave packet remains
exponentially localized at all times, due to the superposition
principle. In the presence of a nonlinearity, the wave packet
width was found to increase as a subdiffusive power of time t in
the direct numerical simulations of DNLSE [5–8,20–23]: The
second moment m2 of the wave packet was growing as m2 ∝ tp

with p < 1 while for the usual diffusive spreading, p = 1.
Specifically, two regimes of such subdiffusive spreading have
been identified numerically: at longest observed times and at
low densities, p ≈ 1/3, but an intermediate range of densities
and times has also been found with p ≈ 1/2. These regimes
were called weak and strong chaos, respectively [22,23].

At the same time, rigorous mathematical arguments suggest
that at long times the spreading, if any, should be slower than
any power of t [24,25]. Analysis of perturbation theory in the
nonlinearity suggests that there is a front propagating as ln t

beyond which the wave packet is localized exponentially [26].
These arguments can be reconciled with those of the direct

numerical simulations if one assumes that the numerically ob-
served behavior m2 ∝ t1/3 is still an intermediate asymptotics,
which should eventually break down at very long times. An
indication for a slowing down of the power-law subdiffusion
has been observed in the scaling analysis of numerical results
[27,28] and was related to the scaling of the probability of
chaos with the density [29]. A possible mechanism for the
breakdown of subdiffusion at long times has been suggested
[30]. However, progress in this direction is impeded by the
absence of a satisfactory quantitative theory for the observed
power-law subdiffusion, which would (i) elucidate the main
mechanism responsible for such subdiffusion and (ii) predict
quantitatively when it ceases to work.

The purpose of the present work is to construct such a theory
for the intermediate spreading regime where m2 ∝ t1/2, called
“strong chaos” in Refs. [22,23]. However, the arguments of
the present work are very much analogous to those used in the
derivation of the kinetic equation in the theory of weak wave
turbulence [31]. Thus, to avoid the terms “strong” and “weak,”
which may be confusing, we use the term “homogeneous
chaos” to denote the studied regime. The main element of
the physical picture of transport developed here is the large
localization length of normal modes of the linear problem,
which occurs for a weak-enough disorder. In this case, the
nonlinearity couples each normal mode to many other modes,
and, if it is not too weak, the dynamics of almost all modes is
chaotic. So, the chaos can be considered homogeneous both
in the real space and in the mode space. The same physical
image was proposed in Refs. [22,23] to identify the spreading
regime with m2 ∝ t1/2.

It has already been argued on phenomenological grounds
that macroscopic transport of the conserved density ρ in
DNLSE and other disordered nonlinear chains can be de-
scribed by a nonlinear diffusion equation,

∂ρ

∂t
= ∂

∂x

(
D(ρ)

∂ρ

∂x

)
, (1)

with a ρ-dependent diffusion coefficient D(ρ) [32,33]. Indeed,
for a power-law D(ρ) = D0ρ

a with some a > 0, Eq. (1)
gives m2 ∝ t2/(a+2). Such a power-law dependence was
found numerically in Ref. [34]. An expression interpolating
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between D(ρ) ∝ ρ2 at higher densities and ρ4 at lower
densities has been proposed [35], giving a crossover from
m2 ∝ t1/2 to t1/3 at longer times. But, again, a recent
matematical work suggests that at lowest densities, D(ρ)
should vanish faster than any power of ρ [36]. An explicit
expression satisfying this condition has been given for the
DNLSE in the limit of strong disorder and very low density,
based on the picture of chaos which is very inhomogeneous
in space [12]. Detailed quantitative understanding of the
mechanisms leading to Eq. (1) with a power-law D(ρ) is
still lacking.

In the present paper, starting from the DNLSE with
weak disorder, the nonlinear diffusion equation, Eq. (1) with
D(ρ) = D0ρ

2, is derived. An explicit expression [Eq. (60)]
for D0 is given in terms of a certain average of eigenfunctions
and eigenvalues of the linear part of the DNLSE, which
is then evaluated numerically. The resulting value of D0 is
in reasonable agreement with that extracted from the direct
numerical simulation of Ref. [22]. The conditions of validity
of the present approach are thoroughly discussed, and the
corresponding interval of densities is identified (Fig. 5). Its
lower boundary agrees with the value at which the crossover
between m2 ∝ t1/2 and t1/3 behavior is observed in Ref. [22].

A specific property of the DNLSE is the presence of two
conserved quantities: the total norm and the total energy. Its
consequence for the thermodynamics of the system is the
existence of the so-called nonthermal states which can be
described in the microcanonical ensemble but not in the grand
canonical one [37]. The consequence for the transport is that
Eq. (1) for the norm density ρ is not complete; the complete
macroscopic description should involve two coupled equations
for the norm and energy. Such coupled transport has received
relatively little attention so far: A numerical study for the
DNLSE without disorder is available [38], and in the limit
of strong disorder, low density, and high temperature, the
off-diagonal transport coefficients were estimated to be small
[12]. Here, the full 2 × 2 matrix of the transport coefficients
is calculated for weak disorder, intermediate density, and high
temperature. The analysis of the full coupled equations shows
that in the considered regime the effect of energy transport on
the norm transport is small, so Eq. (1) for ρ only is consistent.

The paper is organized as follows. After introducing the
model in Sec. II, in Sec. III we derive a Fokker-Planck-type
master equation describing diffusive dynamics of the normal
mode intensities. Conditions for its validity and its relation
to chaos are discussed in Sec. IV. In Sec. V, the macroscopic
Eq. (1) is derived from the microscopic master equation, via a
Boltzmann-type kinetic equation for average intensities under
the assumption of local thermal equilibrium. In Sec. VI, the
role of the second conserved quantity (energy) is discussed,
and the coupled macroscopic equations are analyzed. Finally,
in Sec. VII, the formal expressions for the transport coefficients
derived in Secs. V and VI are evaluated for different disorder
strength and compared to the numerics of Ref. [22].

II. MODEL AND ASSUMPTIONS

The DNLSE reads as

i
dψn

dt
= −� (ψn+1 + ψn−1) + εnψn + g|ψn|2ψn, (2)

Here n = 1, . . . ,L labels sites of a one-dimensional lattice (the
limit L → ∞ will be eventually taken). To each site n a pair of
complex conjugate variables ψn,ψ

∗
n is associated. The on-site

frequencies εn are assumed to be random and uncorrelated
and to have the flat box distribution εn ∈ [−W/2,W/2]
whose width W characterizes the disorder strength. � and
g measure the intersite coupling and the strength of the
nonlinearity. The sign of g is not important, as Eq. (2) is
invariant under the change g → −g, ψn → (−1)nψ∗

n , εn →
−εn (for the latter it is important that the distribution of εn is
symmetric).

Equation (2) together with its complex conjugate represent
the Hamilton equations for the classical Hamiltonian

H =
∑

n

[
εn|ψn|2 − �(ψ∗

nψn+1 + ψ∗
n+1ψn) + g

2
|ψn|4

]
(3)

if iψ∗
n is treated as the canonical momentum conjugate to the

coordinate ψn. One could measure time, frequency, action, and
energy in the units of 1/�, �, �/g, and �2/g, respectively,
thus setting � = 1, g = 1 in Eq. (2) without loss of generality.
However, formal expressions are sometimes more transparent
physically when written in the dimensional form, so we
assume � and ψn to have the dimensionality of frequency
and (action)1/2, respectively.

The linear part of the Hamiltonian can be diagonalized by
an orthogonal transformation

ψn(t) =
L∑

α=1

cα(t) φαn, (4)

where φαn is the αth eigenfunction of the linear problem

ωαφαn = εnφαn − �(φα,n+1 + φα,n−1), (5)

corresponding to the eigenvalue ωα , and cα is the complex am-
plitude of the αth normal mode. The normal mode amplitudes
satisfy the following equations of motion:

i
dcα

dt
= ωαcα +

∑
β,γ,δ

Vαβγ δc
∗
βcγ cδ. (6)

Here we introduced the overlap,

Vαβγ δ = g
∑

n

φαnφβnφγnφδn, (7)

which is real and symmetric with respect to any permutations
of the mode indices. It is a random quantity, and its statistics
will play a crucial role in determining the macroscopic
transport properties of the system and their dependence on
the disorder strength.

The normal mode frequencies ωα lie in the interval |ωα| <

2� + W/2. Their distribution in this interval is determined
by the average spectral density per unit length, ν1(ω). All
normal mode wave functions are localized, the localization
length ξ (ω) depending on the mode frequency. The behavior
of ν1(ω) and ξ (ω) for weak disorder is discussed in detail
in Appendix A1. Here we only note that the localization
length is the largest for modes close to the center of the band,

022921-2



KINETIC THEORY OF NONLINEAR DIFFUSION IN A . . . PHYSICAL REVIEW E 89, 022921 (2014)

ξ (ω = 0) ≈ 100 (�/W )2, where ξ (ω) is of the same order
in the most of the band and becomes small near the band
edges. The frequency spacing between the modes which are
on the same localization segment �1(ω) = [ν1(ω) ξ (ω)]−1 is
the smallest at ω = 0.

For the transport mechanism discussed in the present work,
it is crucial that Vαβγ δ , defined in Eq. (7), couples many modes.
This is only possible when their localization lengths are much
larger than the lattice spacing, otherwise Vαβγ δ is exponentially
suppressed. The representative estimate for the localization
length is ξ (ω = 0) ≡ ξ , since the few tightly localized modes
near the band edges contribute little to the transport. Thus,
the main assumption of the present work which determines
the applicability of the whole approach, is ξ 	 1, correspond-
ing to W 
 10 �. Note that omitting the numerical factor
from this condition would result in an unnecessarily severe
restriction; in fact, the wave packet spreading with m2 ∝ t1/2

was observed in Ref. [22] for W/� = 4. At the same time, it
turns out that for several quantities determined by the statistics
of wave functions, the asymptotic behavior corresponding
to weakest disorder is reached at really small W � 0.3 �,
corresponding to ξ � 1000 (see Sec. IV C, Appendix A2, and
Ref. [39]).

The change of variables (4) is useful only if the dynamics
of the normal mode amplitudes, cα , due to the last term on
the right-hand side of Eq. (6), is not too fast. The relevant
time scale at which the dynamics of the system allows us to
resolve the individual modes, is determined by the frequency
spacing on one localization segment. The representative value
is �1(ω = 0) ≡ �1 = 2π�/ξ , so the dynamics of cα should
be slow on the time scale 1/�1. Since the nonlinear dynamics
is faster for larger amplitudes, this condition imposes an
upper limit on the typical norm density, |ψn|2 ∼ |cα|2 ∼
ρ 
 ρmax, where the value of ρmax depends on the disorder
strength, and is discussed in Sec. IV C. When the nonlinear
dynamics is too fast, the localized normal modes are not
a good starting point, so one should start from the freely
propagating waves and treat the disorder as a perturbation (in
dimensions higher than 1, one starts from the diffusive linear
dynamics [40]).

On the other hand, the kinetic approach developed below
works if the mode dynamics is sufficiently chaotic. For this, the
nonlinearity should be strong enough, so the density should not
be too low, ρ 	 ρmin. This condition is put into a quantitative
form in Sec. IV A. It will be seen that the two restrictions
ρ 
 ρmax and ρ 	 ρmin are not in conflict with each other
when the condition ξ 	 1 is satisfied.

Finally, the temperature T is assumed to be sufficiently
high, T 	 �ρ. This implies that there is no correlation
between the intensities |cα|2 and the frequencies ωα in the
initial condition for Eq. (2). It is this situation that was studied
in the numerical works [5–8,20–23]. In the opposite case (low
T ), one should minimize Hamiltonian (3) first and then study
the dynamics of the low-energy excitations. The ground state
of this classical Hamiltonian at fixed extensive total norm is
the Bose condensate, which is spatially nonuniform due to
the disorder. The normal modes of Eq. (2), linearized around
such a nonuniform condensate (the Bogolyubov modes), differ
strongly from the solutions of the eigenvalue problem (5)
[41,42]. The assumption of high temperature enables one to

disregard the condensate and focus on the normal modes of
the linear problem (5).

III. MICROSCOPIC MASTER EQUATION

A. Nonlinear frequency shifts

In the absence of the nonlinear coupling, the solution for
the normal mode amplitudes is

cα =
√

Iα e−iθ0
α−iωαt , (8)

where Iα and θ0
α are the intensity and the initial phase of the

mode α, respectively. With the nonlinearity included, among
the L3 terms contributing to the sum on the right-hand side of
Eq. (6), there are 2L − 1 terms oscillating at the frequency ωα

(those for which either δ = α, γ = β or γ = α, δ = β). These,
the so-called secular terms, are responsible for the nonlinear
shift of the αth frequency,

ω̃α = ωα + 2
∑

β

VαββαIβ. (9)

This can be seen by splitting the full Hamiltonian, correspond-
ing to Eq. (6),

H =
∑

α

ωαc∗
αcα + 1

2

∑
α,β,γ,δ

Vαβγ δc
∗
αc∗

βcγ cδ (10)

into

H0 =
∑

α

ωα|cα|2 +
∑
αβ

Vαββα|cα|2|cβ |2, (11)

which is integrable, and all the remaining terms, which
represent an integrability-breaking perturbation. The solution
of the equations of motion for the Hamiltonian H0 is given by
the same Eq. (8) but with the modified frequencies, Eq. (9),
which are nothing but ω̃α = ∂H0/∂(|cα|2). Since the sum over
β in Eq. (9) effectively contains a large number of terms, of the
order of ξ 	 1, Iβ can be effectively replaced by its average,
〈Iβ〉 ≡ ρ. Then, using the orthogonality of the eigenmode
wave functions φβn, we obtain

ω̃α ≈ ωα + 2gρ. (12)

The precision of this approximation can be quantified by
calculating the average relative fluctuation σ 2 of the nonlinear
frequency shift,

〈(ω̃α − ωα − 2gρ)2〉 = 4ρ2

〈∑
β

V 2
αββα

〉
≡ 4g2ρ2σ 2, (13)

where averaging of the quantities that depend on Vαββα

is performed over the disorder realizations, and of those
which depend on Iβ is over the thermal distribution∏

β ρ−1e−Iβ/ρ (see Sec. III D below for details). In particu-
lar, for this distribution, 〈IβIγ 〉 = (1 + δβγ )ρ2, which gives
Eq. (13).

Since the typical number of terms contributing to the sum
over β is ∼ξ (at larger distances Vαββα decays exponentially),
it is natural to expect the relative fluctuation σ 2 ∼ 1/ξ 

1. The same result is obtained by considering the exact
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expression∑
β

V 2
αββα = g2

∑
β

∑
n,n′

φ2
αnφ

2
αn′φ

2
βnφ

2
βn′ , (14)

estimating φ2
αn ∼ 1/ξ and assuming each summation to give

a factor ∼ξ . The numerical test of this argument is performed
in Appendix A2.

B. Diffusion in normal mode intensities

The nonsecular terms in the sum on the right-hand side
of Eq. (6) (i.e., those contained in H − H0) lead to exchange
of energy between the normal modes, so the intensities Iα

change with time. Effectively, only those β,γ,δ contribute to
the sum, which correspond to the modes separated from the
mode α by a distance ∼ξ (for other modes, the overlap Vαβγ δ

is exponentially small). Among those, there are O(ξ 3) terms
for which all four indices α, β, γ , and δ differ and O(ξ 2) terms
for which at least two indices coincide. For ξ 	 1, these latter
terms can be ignored, as their role is analogous to those with
differing α, β, γ , and δ, while their number is parametrically
smaller.

Let us now consider just one term with different indices,
that is, four oscillators described by the Hamiltonian

H ({cα}) =
4∑

α=1

ωα|cα|2 + 2V1234(c∗
1c

∗
2c3c4 + c1c2c

∗
3c

∗
4). (15)

In principle, there are two other terms coupling the same four
oscillators, c∗

1c
∗
3c2c4 and c∗

1c
∗
4c2c3 (with their complex conju-

gates), but we do not consider them for the moment. We have
also neglected the nonlinear frequency shifts for simplicity.
The first-order (in V1234) correction to the unperturbed solution
(8) for c1 is given by

�c1 = e−iθ0
1 −iω1t 2V1234

√
I2I3I4 eiϑ1234

e1−i�1234t

�1234
,

�1234 ≡ ω1 + ω2 − ω3 − ω4, (16)

ϑ1234 ≡ θ0
1 − θ0

2 − θ0
3 + θ0

4 .

The solutions for the other three oscillators are obtained by
appropriate permutations. The change in the intensities of the
oscillators, �Iα = c∗

α �cα + cα �c∗
α , is given by

�I1 = 2V1234

√
I1I2I3I42 Re

(
e−iϑ1234

1 − ei�1234t

�1234

)
, (17a)

�I2 = −�I3 = −�I4 = �I1. (17b)

The increment �I1 can be positive or negative, depending on
the phases θ0

α .
Let us now consider coupling of the mode α = 1 to all

other modes. The increment �Iα will be a sum of many terms
with random signs, so the dynamics of Iα is diffusive. To
quantify this dynamics, let us calculate the phase-averaged
�I 2

α as follows:

〈
�I 2

α

〉
θ

= 1

2

∑
β,γ,δ

′
4V 2

αβγ δIαIβIγ Iδ

2 sin2(�αβγ δt/2)

(�αβγ δ/2)2

≈ 1

2

∑
β,γ,δ

′
4V 2

αβγ δIαIβIγ Iδ 4πt δ(�αβγ δ). (18)

where the prefactor 1/2 prevents double counting which
originates from the symmetry γ ↔ δ, and the prime at the
sum indicates that the secular terms should be excluded. The
key feature of Eq. (18) is that 〈�I 2

α 〉 ∝ t , which is indeed a
signature of the diffusive dynamics.

The δ function in Eq. (18) deserves some discussion.
Formally, the presented derivation is quite analogous to
the derivation of the Fermi golden rule for decay into a
continuous spectrum, familiar from quantum mechanics [43]
(in particular, the short-time limitation of its validity is
determined by the inverse bandwidth, t 	 1/�). However,
the sum in Eq. (18) is discrete, so the δ function cannot be
understood in the strict sense. For any finite �αβγ δ , each
individual term in the sum in the first line of Eq. (18)
represents a growth ∝t2 for t 
 1/|�αβγ δ|, and saturation
(with oscillations) at t 	 1/|�αβγ δ|, so it never grows linearly
in time. However, when considering the whole sum, only the
terms with |�αβγ δ| < 1/t contribute to the t2 growth of �I 2

α .
The number of such terms decreases ∼1/(�� t), where 1/t is
the typical width of the peak in �αβγ δ and �� is the typical
spacing between the values of �αβγ δ effectively contributing
to the sum for various β, γ , and δ (not to be confused with �1,
the spacing between single frequencies ωα , as combinations
of three frequencies are more numerous and dense). Thus,
Eq. (18) only makes sense for times that are not too long,
t 
 1/�� , when the number of terms contributing to the sum
in the first line is large. This large number of terms which
enter with random phases also justifies the phase averaging in
Eq. (18). This condition of large number of terms is crucial for
the validity of the whole approach and will be analyzed in detail
in Sec. IV A. Note that even if the initial phases are not random
(say, all θ0

α = 0), summation over many random frequencies
has the same effect of suppressing the oscillating terms.

C. Master equation

To describe the diffusion of normal mode intensities Iα ,
we introduce the joint distribution function, F({Iα}), which
depends on all intensities. Equation (18) together with the
constraint

�Iα = �Iβ = −�Iγ = −�Iδ, (19)

holding for each coupling term Vαβγ δ [cf. Eq. (17b)], yield a
diffusion equation of the following form:

∂F
∂t

= 1

8

∑
α,β,γ,δ

′
(

∂

∂Iα

+ ∂

∂Iβ

− ∂

∂Iγ

− ∂

∂Iδ

)

× 4V 2
αβγ δIαIβIγ Iδ 2πδ(ω̃α + ω̃β − ω̃γ − ω̃δ)

×
(

∂

∂Iα

+ ∂

∂Iβ

− ∂

∂Iγ

− ∂

∂Iδ

)
F , (20)

where the prefactor 1/8 is introduced to prevent from double
counting which originates from the symmetry α ↔ β, γ ↔
δ, and (α,β) ↔ (γ,δ) (indeed, of 24 permutations of four
different indices α, β, γ , and δ, only three produce distinct
diffusion operators).

In Eq. (20) we have also included the nonlinear frequency
shifts in the δ function: Each frequency ω̃α depends on all
intensities Iβ , as given by Eq. (9). In fact, all reasoning of

022921-4



KINETIC THEORY OF NONLINEAR DIFFUSION IN A . . . PHYSICAL REVIEW E 89, 022921 (2014)

Sec. III B applies also to the case of shifted frequencies.
Indeed, since the perturbative expressions of Sec. III B
are valid only as long as

√〈�I 2
α 〉 
 Iα anyway, in the

derivation of Eq. (18) the frequencies ω̃α can be considered
fixed and determined by the instantaneous values of the
intensities.

D. Equilibrium and relaxation

The master equation (20) conserves the total norm and total
(unperturbed) energy,

d〈N 〉F
dt

= 0, N =
∑

α

Iα , (21a)

d〈E〉F
dt

= 0, E =
∑

α

ωαIα +
∑
α,β

VαββαIαIβ , (21b)

the latter being ensured by the frequency δ function with
the frequencies given by Eq. (9) (the consequences of the
finite width of the δ function are discussed in Sec. VI B, and
for the moment we proceed formally). Here we introduced
the averaging over the distribution function in the following
standard way:

〈· · · 〉F =
∫

(· · · )F({Iα})
∏
α

dIα. (22)

Any distribution function F depending on the intensities
through the combinations N ,E , will be a stationary solution
of the master equation. In particular, this is the case for the
thermal distribution function

Feq ∝ e−(E−μN )/T , (23)

where T is the temperature and μ is the chemical potential.
This distribution is the one that maximizes the entropy
〈ln(e/F)〉F [for which the H -theorem can be straightforwardly
obtained from Eq. (20)], under the constraint of fixed average
norm 〈N 〉F and energy 〈E〉F (provided that the energy does
not exceed a certain critical value [37], see the discussion in
Sec. VI D). We will be interested in the high-temperature limit

T → ∞, μ → −∞,
μ

T
= −λ = const. (24)

Then the average intensity 〈Iα〉Feq or, equivalently, the average
density 〈|ψn|2〉Feq,θ are simply given by ρ = 1/λ (in the first
case, the average is performed over the distribution function,
while in the second one the average over the phases is also
implied).

Let us assume that all modes are in equilibrium, except one,
say, α = 1. This corresponds to the distribution function of the
form

F({Iα}) = f (I1)
∏
α �=1

e−Iα/ρ

ρ
, (25)

where ρ is the equilibrium density, and we have taken the limit
(24). Then f (I1) satisfies the following equation:

1

� 1

∂f

∂t
= ∂

∂I1
I1

(
ρ

∂

∂I1
+ 1

)
f, (26)

where we denoted

�α = 4π

ρ

∑
β,γ,δ

′
V 2

αβγ δ〈δ(ω̃α + ω̃β − ω̃γ − ω̃δ)IβIγ Iδ〉F . (27)

Equation (26) coincides with the Fokker-Planck equation for a
damped oscillator subject to external noise (see Appendix B).
The eigenfunctions of the right-hand side are Ln(I1/ρ) e−I1/ρ ,
where Ln, n = 0,1,2, . . . denote Laguerre polynomials. The
stationary equilibrium solution e−I1/ρ corresponds to n = 0,
while the eigenfunctions with n > 0 are exponentially de-
caying in time with the rate given by the corresponding
eigenvalues, n�1. Thus, 1/�α has the meaning of the typical
relaxation time for the intensity Iα .

When the nonlinear frequency shifts are self-averaging, as
given by Eq. (12), they disappear from the δ function. Also,
since the sum in Eq. (27) is contributed by different β, γ , and
δ, for the distribution function (25) we can split 〈IβIγ Iδ〉F →
〈Iβ〉F 〈Iγ 〉F 〈Iδ〉F (see also Sec. V A and Appendix D). Then
Eq. (27) reduces to

�α = 4πρ2
∑
β,γ,δ

′
V 2

αβγ δ δ(ωα + ωβ − ωγ − ωδ). (28)

E. Numerical evaluation of the relaxation rate

The frequency δ function appearing in Eqs. (27) and (28)
is implemented as a box of a finite width 2w,

δ(� ) → δw(� ) = θ (w − |� |)
2w

, (29)

where θ (x) is the unit step function. This implementation
is more efficient for numerical calculations than a smooth
function. Using this definition, one can evaluate �α for each
mode α using Eq. (28). Two examples of such calculation are
shown in Fig. 1.

Rather than looking at mode-specific quantities, we will be
interested in some average characteristics. As the properties of
an eigenmode are determined by its frequency, it is convenient
to work with frequency-resolved averages, so we define

�ω = lim
L→∞

∑L
α=1 δη(ωα − ω) �(w)

α∑L
α=1 δη(ωα − ω)

, (30)

where η is a sufficiently small interval, and averaging over
a long chain is assumed to be equivalent to averaging over
the disorder realizations. It is important that the limit L → ∞
should be taken prior to η → 0.

It should be emphasized that the result of the calculation
of individual �α depends on the width w. Namely the same
calculation with a larger w produces an analogous picture,
but the points in Fig. 1 are more squeezed towards the solid
line, that is, �α becomes more self-averaging. For smaller
w, the points become more scattered. At the same time, the
average �ω is not sensitive to the value of w as long as
w 
 �. However, at sufficiently small w the values of �α

are so scattered that the fluctuations become comparable to
the average, and the latter is no longer representative. This
dependence on w is crucial for the discussion in Sec. IV A
below.
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FIG. 1. (Color online) (a) The relaxation rate in a chain of length
L = 5000 with W/� = 2.82 obtained using Eq. (29) with w = 0.1 �

for individual eigenmodes from Eq. (28) (dots) and averaged over the
modes at a given frequency, Eq. (30) with η = 0.1 � (solid line). (b)
The same for W/� = 1 and w = 0.01 �.

We also check numerically the dependence �α ∝ ρ2 by
evaluating Eq. (27) [again, implementing the δ function as in
Eq. (29) and averaging over the modes at a given frequency
as in Eq. (30)], where the intensities Iα are taken from the
equilibrium distribution, F ∝∏α e−Iα/ρ . As seen from Fig. 2
for two values of the disorder strength, W/� = 1,2, the
average 〈�α〉/ρ2 is practically independent of ρ up to the
values of ρ as large as �/g.

IV. CONDITIONS FOR VALIDITY OF THE APPROACH

A. Lower bounds on the density

The arguments of Sec. III B are based on the perturbative
expression (16), which is valid only as long as the change
in the intensities is small compared to intensities themselves,√〈�I 2

α 〉 
 Iα . This means that Eq. (16) is valid only at times
shorter than the typical intensity relaxation time, t 
 1/�α ,
introduced in Sec. III D, while the dynamics at times t ∼ 1/�α

and longer is accounted for by the master equation. Thus, if at
times t � 1/�α the discreteness of the sum in Eq. (18) is still
not relevant, the arguments of Sec. III B are self-consistent. In
other words, if the effective width of the δ function is taken of
the order of �α itself, the sum in Eq. (18) should be contributed

0 0.2 0.4 0.6 0.8 1

g

0

1

2

3

4

g

FIG. 2. The relaxation rate as a function of the dimensionless
density gρ/� for W/� = 1,2 (filled and open circles, respectively),
evaluated from Eq. (27) by numerically averaging over the equi-
librium distribution and over the modes around ω = 0 (the width
η = 0.1 �), the δ function given by Eq. (29) with w = 0.01 �,
η = 0.1 �.

by many terms. Note that in this sense the sum in Eq. (18)
and that in Eq. (28) are fully analogous. In terms of �� ,
the typical spacing between the values of �αβγ δ effectively
contributing to the sum for various β, γ , and δ, the condition
of consistency is thus simply �� 
 �α , which should hold for
most of the modes α. In the time domain, this condition means
that the characteristic time ∼1/�� needed to decide whether
the last term in Eq. (6) is a quasiperiodic function of time or
random noise, is longer than the relaxation time of the mode
intensities.

The value of �� is determined both by the frequencies
�αβγ δ and by the overlaps Vαβγ δ [but not by the intensities Iα ,
as long as the nonlinear shifts are self-averaging, Eq. (12)].
In particular, only modes β, γ , and δ which are effectively
within the same localization segment as the mode α can give
a significant contribution to the sum, since at large distances
the overlap Vαβγ δ is exponentially suppressed. Thus, if there
were no correlation between the frequencies and the overlaps
Vαβγ δ , we could estimate �� ∼ �3, where �3 ≈ 0.14 �/ξ 3

is the typical spacing between different combinations of three
frequencies, ωδ + ωγ − ωβ (see Appendix A1 for details), for
modes which are within the same localizaton length. Note
that �3 
 �1 = 2π�/ξ for ξ 	 1; indeed, the number of
different combinations of three frequencies is much larger
than the number of frequencies themselves.

However, the correlation between the frequencies and the
overlaps turns out to be quite strong (see Appendix A3 for
details), so it is not obvious how to actually define �� .
This difficulty can be bypassed by noting that when the
sum in Eq. (28) is contributed by many terms, �α should be
effectively self-averaging and its fluctuations should be small
and vice versa. This is directly related to the dependence of the
fluctuations of �α (the vertical spread of the points in Fig. 1)
on the effective δ function width w, discussed in Sec. III E
above. Thus, the criterion �� 
 �α , proposed above, can
be replaced by an equivalent one: The fluctuations of �α ,
evaluated for modes with frequencies ωα ≈ ω at w = �ω,
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should be small compared to the average �ω itself. Basically, it
is the same criterion that was used in Ref. [44] for the validity
of the kinetic equation on the metallic side of the quantum
many-body localization transition.

Specifically, we focus on ω = 0, assuming it to be rep-
resentative of the whole band. Indeed, the results shown in
Fig. 1 suggest that the dependence on ω is weak as long as ω

is away from the band edges (see, however, the discussion in
Sec. IV C). We then define the first and the second moments
as

M1(w) = lim
L→∞

[
L∑

α=1

δη(ωα)

]−1 L∑
α=1

δη(ωα)

× 2�

g2

∑
β,γ,δ

′
V 2

αβγ δ δw(�αβγ δ), (31a)

M2(w) = lim
L→∞

[
L∑

α=1

δη(ωα)

]−1 L∑
α=1

δη(ωα)

×
⎡
⎣2�

g2

∑
β,γ,δ

′
V 2

αβγ δ δw(�αβγ δ)

⎤
⎦

2

, (31b)

As mentioned in Sec. III E above, when the limit L → ∞
is taken, M1(w) does not depend on w at w 
 �, so we
can denote M1 ≡ M1(0), and �ω=0 = 2π (g2ρ2/�)M1. The
fluctuations M2(w) − M2

1 still depend on w, and we denote by
wmin the value of w at which the fluctuations are equal to the
average,

M2(wmin) − M2
1 = M2

1 . (32)

The dimensionless quantities M1 and wmin/� depend only
on the dimensionless disorder strength W/�. We can now
define the minimal density ρmin as the one for which
2π (g2ρ2

min/�)M1 = wmin. Thus, the low-density limit of the
validity of the master equation (20) is

gρ

�
	
√

wmin

2π�M1
≡ gρmin

�
. (33)

We have determined M1 and wmin/� numerically for
several values of the dimensionless disorder strength W/�

in the interval 0.5 � W/� � 8, corresponding to 1.5 � ξ �
400. The value of η = 0.1 � was checked to be sufficiently
small, and the chain length L = 16 000 was checked to be
sufficiently long to not affect the results (the value of wmin

could be reliably determined only for W/� � 1, due to
computational limitations). The results are shown in Fig. 3.
On the weak-disorder side, they can be fitted by

M1 = 0.6 ± 0.05

(W/�)0.8±0.1
, (34a)

wmin

�
= (2.3 ± 0.3) × 10−6

(
W

�

)6.2±0.2

. (34b)
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FIG. 3. (Color online) The dots show the values of (a) M1 and
(b) wmin/�, calculated numerically. The lines show the dependencies
(a) M1 = 0.6 (�/W )0.8 and (b) wmin/� = 2.3 × 10−6 (W/�)6.2,
which represent the best fits to the calculated values at low W .

The resulting dependence of gρmin/� on W/� is shown in
Fig. 5 and can be fitted by

gρmin

�
= (0.8 ± 0.1) × 10−3

(
W

�

)3.5±0.2

. (35)

B. Relation to chaos

Along with ρmin, defined above by Eq. (33), we also plot
the value ρ1/2, defined as the density at which half of the
modes of the chain are chaotic and half are not. Even though
only the motion of the whole coupled chain can be, strictly
speaking, characterized as chaotic or not (in the sense of
positive Lyapunov exponent), for given initial conditions one
can focus on the dynamics of a single mode assuming the
intensities and phases of all other modes to be frozen, so they
represent an external (quasiperiodic) force acting on the chosen
mode. For the problem of a single nonlinear oscillator under the
action of an external force, one can clearly define chaotic and
regular motion. Then, for the whole chain with given initial
conditions, one can calculate the fraction of modes whose
motion is chaotic in the above sense (see Appendix C for the
details of numerical implementation). This fraction depends on
the density: it vanishes when ρ → 0 (since for a linear system
no modes are chaotic) as ∝ρ2 [12,13,15] and approaches

022921-7



D. M. BASKO PHYSICAL REVIEW E 89, 022921 (2014)

0 0.0005 0.001 0.0015 0.002

g

0

0.2

0.4

0.6

0.8

1

ch
ao

ti
c 

fr
ac

ti
on

FIG. 4. The fraction of chaotic modes for W/� = 2 as a function
of the dimensionless density gρ/�. The open and filled circles
correspond to L = 2000 and L = 4000, respectively.

unity for sufficiently large density, as shown in Fig. 4 for
W/� = 2.

Let ρ1/2 be the value of ρ when the fraction is 1/2. In Fig. 5,
we plot the dimensionless quantity gρ1/2/� versus disorder
strength. The extracted dependence,

gρ1/2

�
= (4 ± 0.5) × 10−5

(
W

�

)3.5±0.2

, (36)

has the same power law as that for ρmin and differs only in
the prefactor. This strongly suggests that the two seemingly
unrelated criteria (namely ρ 	 ρmin, responsible for the self-
consistency of the Fermi golden rule where chaos simply did
not enter the discussion at all, and ρ 	 ρ1/2, ensuring that
most modes are chaotic) are, in fact, closely connected. Thus,
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FIG. 5. (Color online) The limits of validity of the master equa-
tion approach. The filled upward triangles and the solid line
passing through them, which corresponds to gρmin/� = 0.8 ×
10−3 (W/�)3.5, represent the low-density limitation expressed by
Eq. (33). The open upward triangles and the dotted line passing
through them, which correspond to gρ1/2/� = 4 × 105 (W/�)3.5,
represent the density at which half of the modes of the chain are
chaotic. The filled downward triangles and the solid line passing
through them, which correspond to gρmax/� = 0.13 (W/�)1.5, rep-
resent the high-density limitation expressed by Eq. (37).

the situation analyzed in the present work corresponds to the
regime when most of the modes are chaotic. This condition
was used in Ref. [22] to define the regime of strong chaos,
where the ρ2 dependence of the diffusion coefficient was
observed.

C. Upper bounds on the density

The condition for the validity of the master equation (20)
from the high-density side is that the localized normal modes
of the linear problem should be well defined on the relaxation
time scale 1/�, i.e., this time should be longer than the inverse
spacing between mode frequencies on the same localization
segment, 1/�1 = ξ/(2π�). In the opposite case, the discrete
localized normal modes are not well resolved and do not
represent a good starting basis. Using � = 2π (g2ρ2/�)M1,
we can write the condition � 
 �1 as

gρ 

√

��1

2πM1
≡ gρmax. (37)

The dependence of gρmax/� on the disorder strength, obtained
from the numerical results for M1 and �1, is shown in Fig. 5.
It can be fitted by the expression

gρmax

�
= (0.13 ± 0.02)

(
W

�

)1.5±0.1

. (38)

It is instructive to approach the same condition from the
clean side, treating the disorder as a perturbation. Without
disorder, the normal mode wave functions and frequencies are
given by

φαn =
√

2

L + 1
sin

παn

L + 1
, ωα = −2� cos

πα

L + 1
, (39)

and for L 	 1 it is convenient to introduce the wave vector
k = πα/(L + 1) and velocity vk = 2� sin k. It is well known
that perturbative treatment of the disorder gives the elastic
backscattering rate �

(bs)
k = 2vk/ξ (ωk). In other words, the

backscattering mean free path vk/�
(bs)
k is twice shorter than

the localization length ξ (ωk) at the same frequency ωk =
−2� cos k [45]. At the same time, the wave functions (39) of
the clean chain can be used to evaluate the mode relaxation rate
�

(nl)
k due to the nonlinearity from Eq. (28), whose derivation

did not assume any specific form of the wave functions.
If �

(nl)
k 	 �

(bs)
k , the elastic scattering on the disorder and

Anderson localization are not important. Noting that the mean
mode spacing on the localization length �1 = (π/2)�(bs)

k ,
we conclude that the conditions � 
 �1 mentioned above
and �

(nl)
k 
 �

(bs)
k are equivalent, provided that the relaxation

rates (28), evaluated on clean and localized wave functions,
match.

Equation (28) with the wave functions (39) gives

�
(nl)
k = (gρ)2

2π�

∫ π

−π

dk′

|sin k′ − sin k| ≈ 2(gρ)2

π�|cos k| ln
|cos k|
�k

,

(40)

where �k is a small uncertainty in the wave vector, needed to
cut off the divergence at k′ → k. For consistency, it should be
taken of the order of the inverse mean free path, �k ∼ �

(nl)
k /vk .
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FIG. 6. (Color online) The relaxation rates of individual normal
modes in a chain of L = 5000 sites. Different sets of points
correspond to different disorder strengths: W/� = 1 (a), W/� =
0.5 (b), W/� = 0.25 (c), and W = 0 [(d) and (e)]. The spikes on the
sets (d) and (e) result from the k = π/2 singularity being cut off by
the finite width of the δ function. This width is w = 10−3 for sets (a),
(b), (c), and (e) and w = 3.16 × 10−3 for set (d).

Then, for most of the band, one can write with logarithmic
precision

�
(nl)
k ≈ 4(gρ)2

π�|cos k| ln
�

gρ
. (41)

However, at k → π/2, expression (40) is divergent. This
divergence should be smeared on the scale |k − π/2| ∼ �k,
so one can estimate (up to a numerical coefficient)

�
(nl)
k ∼ gρ, |k − π/2| � gρ

�
. (42)

These results are confirmed by the direct numerical evaluation
of Eq. (28) for different values of disorder, including the
disorder-free case, as shown in Fig. 6. For the disorder-free
case the cutoff scale �k in the numerical calculation is
effectively provided by the δ function width, �k ∼ w/vk , as
seen by comparing curves (d) and (e) which differ by the value
of w used in the calculation.

Thus, upon increasing the disorder at fixed ρ 
 �/g, when
1/ξ � (gρ/�)2 (up to numerical and logarithmic factors),
the localization condition �

(nl)
k ∼ �

(bs)
k becomes fulfilled for

most of the normal modes, except for those in a relatively
narrow frequency range |ω| � (gρ)2/(�ξ ); this range shrinks
completely at a stronger disorder such that 1/ξ ∼ gρ/�.
These two conditions correspond to gρmax/� ∼ ξ−1/2 and
gρmax/� ∼ ξ−1, respectively, which should be contrasted to
gρmax/� ∼ ξ−0.75 following from Eq. (38). This strongly
suggests that Eqs. (34a), (34b), (36), and (38) [as well as
Eq. (88) below] do not represent the scaling at lowest disorder
strengths but rather intermediate asymptotics. The results
shown in Fig. 6 suggest that the behaviour of relaxation rates
in the disordered system starts to resemble that of the clean
one at W/� > 0.25, corresponding to extremely large local-
ization lengths ξ > 1000. The detailed investigation of this
issue requires significant computational effort and is beyond
the scope of the present work. We only note that similarly large
localization lengths were found to be necessary to reach the

weak-deisorder asymptotics in the statistics of a single normal
mode wave function [39].

V. MACROSCOPIC DIFFUSION EQUATION

The main task of the present section is to pass from
the master equation (20), which is still microscopic as it
includes the dynamics of each individual normal mode, to
the macroscopic description in terms of the density. In this
section, we neglect the nonlinear frequency shifts in Eq. (20).
As discussed in Secs. III A and III E, they produce just small
corrections, ∼gρ/�, to the main result.

A. Classical Boltzmann equation

Multiplying Eq. (20) by Iα and integrating over all intensi-
ties, we obtain an equation for the average as follows:

∂〈Iα〉F
∂t

=
∑
β,γ,δ

′
Rαβγ δ〈IβIγ Iδ + IαIγ Iδ − IαIβIδ − IαIβIγ 〉F ,

(43a)

Rαβγ δ = 4πV 2
αβγ δ δ(ωα + ωβ − ωγ − ωδ). (43b)

Next we note that the intensity of each mode is changed due to
random resonant interactions with many other modes, so any
two modes effectively see mostly different resonances. Thus,
one can neglect the correlations between different intensities
and decouple 〈IβIγ Iδ〉F → 〈Iβ〉F 〈Iγ 〉F 〈Iδ〉F , and so on. This
can be done when the number of terms contributing to the sum
over modes is large (see Appendix D). The latter condition
was discussed in detail in Sec. IV A.

As a result, we obtain a closed kinetic equation for the
averages 〈Iβ〉F ≡ Īα (the new notation is introduced for
compactness) as follows:

dĪα

dt
=
∑
β,γ,δ

′
Rαβγ δ[(Īα + Īβ)Īγ Īδ − Īα Īβ(Īγ + Īδ)]. (44)

This kinetic equation conserves the total norm
∑

α Īα and
the total energy

∑
α ωαĪα (due to the frequency δ function

in Rαβγ δ). The equilibrium state, which nullifies the collision
integral in the right-hand side, is given by the Rayleigh-Jeans
distribution,

Ī eq
α = T

ωα − μ
, (45)

or simply Ī
eq
α = 1/λ in the limit (24). Equation (45) cor-

rectly reproduces the thermodynamics of the chain with the
required precision, as discussed in Appendix E. If one sets
all Īα = 1/λ except one, α = 1, then Eq. (44) will describe
exponential relaxation of Ī1 to its equilibrium value, Ī1(t) =
1/λ + [Ī1(0) − 1/λ]e−�1t , as �α = (1/λ2)

∑′
β,γ,δ Rαβγ δ .

As Eq. (44) is nonlinear in the intensities, it is not
possible to interpret pα = Īα(

∑
β Īβ)−1 as a probability, even

though
∑

α pα = 1 and pα � 0 at all times. This invalidates
the continuous-time random walk approach to this problem,
introduced in Ref. [46] without justification. Reference [46]
also ignores the fact that the intensity can leak out of a mode
α through many parallel channels, and the corresponding rates
add up, as expressed by the sum in Eq. (27).
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It is worth noting that Eq. (45) represents the classical
limit � → 0 of the Bose-Einstein distribution Nα = 1/

[e−�(ωα−μ)/T − 1], and Eq. (44) has the same form as the
quantum Boltzmann equation for bosonic occupation numbers
Nα = Īα/� changing due to pair collisions in the limit Nα 	 1.
Indeed, in this limit, the bosonic combination (Nα + 1)(Nβ +
1)Nγ Nδ − NαNβ(Nγ + 1)(Nδ + 1) reduces to the one in
Eq. (44), while Rαβγ δ is the rate of a pair collision, as obtained
from the Fermi golden rule for quantum Hamiltonian (3) with
ψn,ψ

∗
n treated as bosonic field operators. Such a quantum

Boltzmann equation can be applied to describe the dynamics
of disordered bosons on the metallic side of the many-body
localization transition [47] in the regime, analogous to the
interaction-induced nearest-neighbor hopping considered ear-
lier for fermions, with the power-law temperature dependence
of the dc conductivity [44,48] (not to be confused with the
phonon-induced nearest-neighbor hopping [49,50]). Also, Eq.
(44) has a form similar to the kinetic equation used in the
theory of weak wave turbulence [31], but with the momenum
conservation condition relaxed due to the presence of
disorder.

B. Macroscopic density and current

Generally, the diffusion equation (1) is obtained from the
continuity equation,

∂ρ

∂t
= −∂J

∂x
, (46a)

supplemented by the Fick’s law,

J = −D(ρ)
∂ρ

∂x
. (46b)

Equation (46a) expresses the conservation of the total norm
N = ∫ ρ dx, and Eq. (46b) represents the first term of
the gradient expansion of the current in local equilibrium,
characterized by a spatially dependent density (in the global
equilibrium, where the density is constant along the chain, the
current must vanish).

The continuous functions ρ(x,t) and J (x,t) entering
Eqs. (46a) and (46b) are the macroscopic density and current,
whose dependence on the coordinate x and time t is smooth
enough compared to some microscopic scales. The micro-
scopic expression for the norm density following directly from
Eq. (2), |ψn(t)|2, strongly varies from site to site (as the random
eigenmode wave functions φαn do) and randomly oscillates
in time (on the scale 1/�). If one is not interested in the
details of these short-scale oscillations but rather in the slow
dynamics of the smooth envelope density, the microscopic
density |ψn(t)|2 should be coarse grained in space and time
on some sufficiently large scales. As we are studying the
dynamics of energy and norm exchange between different
normal modes, the corresponding length scale is the mode
localization length ξ . We are interested in the case when
local equilibrium is reached, so the relevant time scale is
the inverse of the relaxation rate �, introduced in Sec. III D
(assumed to be longer that the frequency spacing between the
normal modes, 1/�1, as discussed in Sec. IV C). Formally, we

define

ρ(x,t) =
∫

dt ′ T (t − t ′)
∑

n

S(x − n)〈|ψn(t ′)|2〉F

=
∫

dt ′ T (t − t ′)
∑

α

S(x − Xα) Īα(t ′) + O(ξ 2/�2),

(47)

where the “center of mass” of the mode α is defined as

Xα =
∑

n

nφ2
αn, (48)

and the spatial and temporal smoothing functions S(x) and
T (t) can be taken, e.g., as Gaussian,

S(x) = e−x2/(2�2)

√
2π�2

, T (t) = e−t2/(2τ 2)

√
2πτ 2

. (49)

Here the smoothing length and time scales � 	 ξ and τ 	
1/�, as discussed above; the diffusion equation is then valid
at length scales x � � and t � τ . The relation between the first
and the second expression in Eq. (47) is discussed in detail in
Appendix F.

The macroscopic current is defined in order to identically
satisfy the continuity equation,

J (x,t) =
∫

dt ′ T (t − t ′)
∑

α

S̃(x − Xα)
dĪα(t ′)

dt ′
+ O(ξ 2/�2),

(50)

where

S̃(x) ≡ −
∫ x

0
S(x ′) dx ′. (51)

Substituting dĪα/dt from Eq. (44) and symmetrizing with
respect to α ↔ β, αβ ↔ γ δ, one obtains

J (x,t) =
∫

dt ′ T (t − t ′)
∑

α,β,γ,δ

′ Rαβγ δ

4

× [(Īα + Īβ)Īγ Īδ − Īα Īβ(Īγ + Īδ)]

× [S̃(x − Xα) + S̃(x − Xβ)

− S̃(x − Xγ ) − S̃(x − Xδ)]. (52)

For each term in the sum, it is convenient to introduce the
short-hand notations for the “center-of-mass” coordinate and
the “displacement,”

Xαβγ δ ≡ Xα + Xβ + Xγ + Xδ

4
, (53a)

dαβγ δ = Xα + Xβ − Xγ − Xδ. (53b)

As a final step, we expand each S̃(x − Xα) to the first order
around x − Xαβγ δ , which gives

J (x,t) =
∫

dt ′ T (t − t ′)
∑

α,β,γ,δ

′
S(x − Xαβγ δ)

Rαβγ δ

4

× dαβγ δ[(Īα + Īβ)Īγ Īδ − Īα Īβ(Īγ + Īδ)]. (54)

In this expression, the time argument t ′ is implied for all
intensities; it has been omitted for the sake of compactness.
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To illustrate how this formalism works for a very simple toy
model, in Appendix G it is used to calculate the conductivity
of a disordered electric RC cirquit.

C. Diffusion coefficient

The diffusion coefficient D(ρ) should be found by calcu-
lating the linear response of the current J to an infinitesimal
gradient of the density, ∂ρ/∂x = −κ . For this, one should look
for a stationary solution of Eq. (44) in the form

Īα = ρ − κXα + rα (55)

to the linear order order in κ , where rα is such that∑
α

S(x − Xα) rα = O(κξ 2/�2) (56)

and does not grow with x. Indeed,∑
α

dS(x − Xα)

dx
= O(ξ 2/�2), (57a)

∑
α

dS(x − Xα)

dx
Xα = 1 + O(ξ 2/�2), (57b)

as discussed in Appendix F.
With the substitution (55), the linearized stationary Eq. (44)

becomes a system of linear equations for rα , which can be
written as∑

β,γ,δ

′
Rαβγ δ(rα + rβ − rγ − rδ) = κ

∑
β,γ,δ

′
Rαβγ δdαβγ δ. (58)

The typical value of dαβγ δ is dαβγ δ ∼ ξ , since otherwise the
overlap Vαβγ δ is exponentially suppressed. Moreover, because
of the large number of terms contributing to the sum on
the right-hand side, the effective self-averaging occurs, so the
typical value of sum should be close to its statistical average
over the disorder realizations. But the latter is zero because, on
the average, the chain is symmetric with respect to translations
and spatial inversion; in other words, there are as many terms
with dαβγ δ > 0 as with dαβγ δ < 0. As a result, the typical value
of rα + rβ − rγ − rδ is much smaller than κdαβγ δ .

For the solution given by Eq. (55), the current becomes

J (x) = ρ2
∑

α,β,γ,δ

′
S(x − Xαβγ δ)

Rαβγ δ

4

× dαβγ δ[κdαβγ δ − (rα + rβ − rγ − rδ)]. (59)

As discussed above, rα + rβ − rγ − rδ can be neglected with
respect to κdαβγ δ . Finally, as S(x) is a slowly varying function
with unit integral, the convolution is equivalent to spatial
averaging, so the current is J = κD0ρ

2, with D0 given by

D0 = π

L

∑
α,β,γ,δ

′
d2

αβγ δV
2
αβγ δ δ(ωα + ωβ − ωγ − ωδ). (60)

In combination with the continuity equation, Eq. (46a), this
immediately gives Eq. (1).

VI. ENERGY TRANSPORT

A. General remarks

In Sec. V, the macroscopic nonlinear diffusion equation
for the norm density was derived. However, the original
nonlinear Schrödinger equation (2), as well as the master
equation (20) and the Boltzmann equation (44), have two
conserved quantities: norm and energy. The transport of energy
was ignored in Sec. V for simplicity. The purpose of the present
section is to derive and study the full system of the macroscopic
transport equations for the two conserved quantities.

Very generally, the macroscopic norm and energy currents,
J and Q, vanish in the state of global thermal equilibrium,
characterized by the values of the temperature T and the
chemical potential μ, which are constant along the chain.
Under the assumption of local equilibrium, when μ and T

are slowly changing with the position, the currents can be
evaluated by performing the expansion in the spatial gradients
of μ and T . Restricting the expansion to the first term, one
obtains (

J

Q

)
= L̂(μ,T )

∂

∂x

(−μ/T

1/T

)
, (61)

where L̂ is a 2 × 2 matrix which depends on the local values
of μ and T . It is symmetric by virtue of the Onsager relations.

Upon substitution of these currents to the corresponding
continuity equations, the equations for the macroscopic norm
and energy densities, ρ(x,t) and ε(x,t), are obtained as
follows:

∂

∂t

(
ρ

ε

)
= ∂

∂x
L̂(μ,T )

∂

∂x

(−μ/T

1/T

)
. (62)

To close the equations, the local equilibrium relations between
ρ,ε and μ,T should be supplied. For weak disorder they are
approximately the same as for the clean case; the latter is
analyzed in Ref. [37]. The explicit expressions in the high-
temperature limit are given in Appendix E.

B. Neglecting the nonlinear frequency shifts

Let us first neglect the nonlinear frequency shifts and study
Eq. (44), which conserves the total energy,

E =
∑

α

ωαĪα =
∑

n

〈hn〉F , (63)

where the on-site energy is defined as

hn = εn|ψn|2 − �

2
(ψ∗

nψn−1 + ψ∗
n−1ψn)

− �

2
(ψ∗

nψn+1 + ψ∗
n+1ψn). (64)

The expression for the macroscopic energy density is obtained
analogously to Eq. (47):

ε(x,t) =
∫

dt ′ T (t − t ′)
∑

n

S(x − n)〈hn(t ′)〉F

=
∫

dt ′T (t − t ′)
∑

α

S(x − Xα) ωαĪα(t ′) + O(ξ 2/�2),

(65)
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where we have used the fact that∑
n

nφαn[εnφαn − �(φα,n−1 + φα,n+1)] = ωαXα. (66)

The energy current is defined analogously to Eq. (52) as
follows:

Q(x,t) =
∫

dt ′ T (t − t ′)
∑

α,β,γ,δ

′
S(x − Xαβγ δ)

Rαβγ δ

4

× vαβγ δ[(Īα + Īβ)Īγ Īδ − Īα Īβ(Īγ + Īδ)], (67)

where the time argument t ′ of the intensities has been omitted
for compactness, and we have denoted

vαβγ δ = ωαXα + ωβXβ − ωγ Xγ − ωδXδ. (68)

The matrix elements of L̂ are obtained by calculating the re-
sponse of the two currents to the gradients χ1 = ∂(−μ/T )/∂x

and χ2 = ∂(1/T )/∂x. If one seeks the solution of the station-
ary Boltzmann equation in the form

Īα = T

ωα − μ
−
(

T

ωα − μ

)2

(χ1Xα + χ2ωαXα + rα), (69)

where rα again satisfies condition (56) and does not grow with
Xα , the linearized equation becomes

∑
β,γ,δ

′ T 4Rαβγ δ(rα + rβ − rγ − rδ)

(ωα − μ)(ωβ − μ)(ωγ − μ)(ωδ − μ)

= −
∑
β,γ,δ

′ T 4Rαβγ δ(χ1dαβγ δ + χ2vαβγ δ)

(ωα − μ)(ωβ − μ)(ωγ − μ)(ωδ − μ)
, (70)

where dαβγ δ is defined in Eq. (53b).
In full analogy with Sec. V C, we neglect the contribution

of rα to the currents. Also, we take the limit T → ∞, μ/T =
−1/ρ. This limit for L̂ is regular and is given by

L̂ = ρ4

L

∑
α,β,γ,δ

′ Rαβγ δ

4

(
d2

αβγ δ dαβγ δvαβγ δ

vαβγ δdαβγ δ v2
αβγ δ

)
. (71)

Corrections to the T → ∞ limit can be obtained by expanding
T/(ωα − μ) in ωα/μ, and the first correction has a relative
smallness ∼�ρ/T .

The formal construction, presented above, has a caveat.
Suppose we choose a different origin for counting the chain
sites, that is, n → n − n0. Then Xα → Xα − n0 and vαβγ δ →
vαβγ δ − n0(ωα + ωβ − ωγ − ωδ). The unphysical dependence
on the choice of the origin disappears only when �αβγ δ =
ωα + ωβ − ωγ + ωδ vanishes exactly. If the frequency δ

function entering Rαβγ δ has a small but finite width, vαβγ δ

has a component which depends on the origin and makes the
limit L → ∞ in Eq. (71) ill defined.

Formally, the problem arises because the original dynamical
system, Eq. (2), does not conserve the unperturbed energy∑

α ωαIα but the total one, Eq. (10). However, on physical
grounds, we expect the energy contained in the perturbation
terms to be less important than that in the unperturbed part,
as long as the nonlinearity is small, gρ 
 �, and then
the macroscopic description which neglects the difference
between the total and the unperturbed energy should still be
meaningful. To obtain such a description, one has to redefine

vαβγ δ , introducing a term which would vanish when �αβγ δ = 0
but would eliminate the unphysical dependence on the choice
of the origin at small but finite �αβγ δ . We choose

vαβγ δ = ωαXα + ωβXβ − ωγ Xγ − ωδXδ − �αβγ δXαβγ δ.

(72)

As Xαβγ δ → Xαβγ δ − n0 upon n → n − n0, Eq. (72) remains
invariant. To estimate the the error introduced by the last term,
we note that since L̂ does not depend on the choice of the
origin, one can focus on the region near n ∼ ξ . Then the modes
with |Xα| ∼ ξ are important, so the magnitude of the dropped
term is ∼wξ (determined by the δ-function width), while the
magnitude of the remaining terms is ∼�ξ .

Thus, for the diagonal matrix elements of L̂ we have

L11 = D0ρ
4, L22 = K0ρ

4, (73)

with D0 given by Eq. (60) and K0 by the same expression but
with the substitution dαβγ δ → vαβγ δ ,

K0 = π

L

∑
α,β,γ,δ

′
v2

αβγ δV
2
αβγ δ δ(ωα + ωβ − ωγ − ωδ), (74)

where vαβγ δ is given by Eq. (72).
The off-diagonal elements L12 = L21 involve the product

dαβγ δvαβγ δ and average to zero. This happens because the
statistics is symmetric with respect to ωα → −ωα , and the
off-diagonal matrix elements in Eq. (71) are odd functions of
the frequencies. To obtain a nonzero value, one has to include
the terms subleading in 1/T , which gives

L12 = L21 = −K1
ρ5

T
, (75)

K1 = π

L

∑
α,β,γ,δ

′
(ωα + ωβ + ωγ + ωδ) vαβγ δdαβγ δ

×V 2
αβγ δ δ(ωα + ωβ − ωγ − ωδ). (76)

In addition to this, a contribution which remains finite at
T → ∞ is obtained if nonlinear frequency shifts are included.

C. Including the nonlinear frequency shifts

The arguments of the previous subsection can be quite
straightforwardly generalized to include the nonlinear fre-
quency shifts, Eq. (9). When they are included in the frequency
δ function in Rαβγ δ , Eq. (43b), the resulting Boltzmann
equation, Eq. (44), conserves the total energy

E =
∑

α

ωαĪα +
∑
α,β

VαββαĪαĪβ . (77)

The equilibrium intensities are given by Eq. (45), however,
with shifted frequencies,

Ī eq
α = T

ωα + 2
∑

β VαββαĪ
eq
β − μ

. (78)

Unless the infinite-temperature limit (24) is taken, this is no
longer an explicit expression but a self-consistent equation. Its
solution to the first order in 1/T is given by

Ī eq
α = −T

μ
− 1

T

(
T

μ

)2 (
ωα − 2g

T

μ

)
+ O(1/T 2). (79)
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The energy density, in addition to the expression in Eq. (65),
should include the nonlinear contribution,

εnl(x,t) =
∫

dt ′ T (t − t ′)
∑
αβ

S(x − Xαβ)

×VαββαĪα(t ′) Īβ(t ′), (80a)

Xαβ ≡
(∑

n

φ2
αnφ

2
βn

)−1∑
n

nφ2
αnφ

2
βn. (80b)

The current is given by the same Eq. (67), but instead
of vαβγ δ from Eq. (72), one should use the nonlinear
version,

ṽαβγ δ = ωα(Xα − Xαβγ δ) + 2
∑

η

(Xαη − Xαβγ δ)VαηηαĪη

+ (α ↔ β) − (αβ ↔ γ δ). (81)

Now, to find L21, we seek for the solution in the form Īα =
ρ − ρ2χ1Xα and calculate the energy current. Noting that∑

η

XαηVαηηα = gXα, (82)

we arrive at the final result,

L̂= ρ4

(
D0 −K1ρ/T + 2gρD0

−K1ρ/T + 2gρD0 K0

)
. (83)

D. Analysis of the coupled transport equations

Let us now investigate what the coupled macroscopic
equations for the norm and energy density can give at high
temperatures. The behavior of the system can be viewed
in the (ρ,ε) plane (more precisely, half-plane, as ρ � 0 by
construction), shown in Fig. 7. It is convenient to measure
ρ and ε in the natural units �/g and �2/g. The properties
of the grand-canonical equilibrium mapping (μ,T ) → (ρ,ε)
define three regions in the (ρ,ε) plane [37]. (i) The region
below the T = 0 line is forbidden: for each fixed value of
total norm N =∑n |ψn|2 = Lρ, the Hamiltonian (3) has an
absolute minimum Hmin ≡ Lεmin, so lower energies are not
allowed. This is precisely the T = 0 line. For weak disorder,

0 1 2 3
g

-2

0

2

4

6

8

g

forbidden region

thermal region

non-thermal region

T = 0

T = 8

FIG. 7. Three regions in the (ρ,ε) plane (see text for details). The
solid and dashed line correspond to zero and infinite temperature,
respectively.

W 
 �, the T = 0 line is close to that for the clean case
W = 0, εmin = −2�ρ + gρ2/2, and it is the latter one that
is shown in Fig. 7. (ii) The region between the T = 0 line
and the T = ∞ line (the latter is determined by ε = gρ2

regardless of the disorder) corresponds to the usual thermal
states: For any ρ,ε in this region the corresponding values of
μ and T can be found. (iii) The region above the T = ∞ line
corresponds to the so-called nonthermal states of the system,
which cannot be described by the grand-canonical ensemble
with a non-negative temperature (negative temperatures are
not allowed in the thermodynamic limit L → ∞, since the
upper bound for the Hamiltonian for a fixed total norm is
∝L2). For the disorder-free chain, it has been shown that in
the nonthermal region the “excess energy” ε − gρ2 tends to
condense into localized discrete breathers [37,51–56].

The present work is concerned with the regime

gρ 
 �, |ε| 
 �ρ, ε � gρ2. (84)

In fact, the conditions of validity discussed in Sec. IV imply
even stronger restrictions, but for the discussion of this
subsection inequalities (84) suffice. Namely they ensure that
the thermodynamic relations can be approximated by (see
Appendix E for details)

ρ = 1

λ
− 2g

λ3

1

T
+ O(T −2), ε = g

λ2
− 2�2

λ2

1

T
+ O(T −2),

(85)

where λ ≡ −μ/T . Inequalities (84) imply T 	 �ρ, which
justifies the expansion in the powers of 1/T .

The region of the (ρ,ε) plane defined by inequalities (84) is
the lower vicinity of the T = ∞ line in the left part of Fig. 7.
Neglecting the nonlinear frequency shifts, as in Sec. VI B,
would correspond to approximating the two parabolas T =
0,∞ by the straight tangents at ρ = 0, ε = 0, and studying
the dynamics of ρ on the horizontal tangent to the T = ∞
line, ε = 0. However, to check how important is the coupling
between the norm and the energy transport, one should keep the
gρ2 in the energy and the off-diagonal matrix elements of L̂.
The inequality T 	 �ρ is not sufficient to establish which of
the two contributions to L12,L21 in Eq. (83) is more important:
The first one is proportionl to the small factor �ρ/T and the
second one to gρ/�, and it becomes more important than the
first only at T 	 �2/g. Thus, both contrubutions are kept in
the equations below.

Instead of the temperature, it is convenient to introduce the
excess energy

u ≡ ε − gρ2 ≈ 2�2ρ2

T
. (86)

Then, using Eq. (62), Eq. (83) (which is valid to the order
1/T , other corrections being of the order 1/T 2 due to the
even-odd symmetry in the frequencies), Eq. (85) [which should
be inverted keeping the terms O(1/T )], and the estimate K0 ∼
K1 ∼ �2D0 [a natural guess from Eqs. (60), (74), and (76),
which will be verified numerically in Sec. VII], and neglecting
terms which have relative smallness gu/�2 
 1, one arrives
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at the following closed system of equations:

∂ρ

∂t
= ∂

∂x

(
D0ρ

2 ∂ρ

∂x
+ K1

4�2

ρu

�2

∂u

∂x

)
, (87a)

∂u

∂t
= 2gD0

(
ρ

∂ρ

∂x

)2

− ∂

∂x

(
2K0 − K1

2�2
ρu

∂ρ

∂x
− K0

2�2
ρ2 ∂u

∂x

)
. (87b)

Two conclusions can be drawn from these equations. (i) The
second term in ∂ρ/∂t has a relative smallness u2/(�ρ)2 com-
pared to the first. Thus, in the regime defined by inequalities
(84) the use of the nonlinear diffusion equation (1) for the
density alone is justified. The origin of this property can be
traced back to the symmetry of the spectrum with respect
to ωα → −ωα (on the average); when all modes are equally
populated (at T → ∞) it leads to the relative smallness
of L12,L21. If this symmetry is spoiled [e.g., by including
ψn±2 in the original Eq. (2)], the factor K1ρu/�2 would
be replaced by K2ρ

2 with K2 ∼ �D0; this would produce
a term ∼(∂/∂x)(�D0ρ

2∂ρ/∂x) in Eq. (87b), and the initial
assumption about the smallness of u would be violated after
some time. (ii) If one prepares an initial condition with some
profile ρ(x), while u(x) = 0 everywhere, then ∂u/∂t > 0,
so the system is pulled into the nonthermal region. This
fact can be easily understood: if the system tends to an
equilibrium state with ρ(x) = ρeq, ε(x) = εeq, the equilibrium
values must be given by the spatial averages of the initial ρ(x)
and ε(x) = gρ2(x); the convexity of the T = ∞ line ensures
εeq > gρ2

eq.
Interestingly, Eqs. (87a) and (87b) remain mathematically

correct even for u > 0, i.e., in the nonthermal region where
the reasoning of this section, based on the assumption of local
thermal equilibrium, is not supposed to be valid. Formally,
the origin of such behavior can be traced to the fact that
Eq. (78) still determines a stationary solution of the kinetic
equation even for T < 0, −μ/T = λ > 0. This stationary
solution, however, no longer corresponds to the maximum
of the entropy; the latter is reached in a state with one
discrete breather on top of the T = ∞ background [51].
Nevertheless, this true equilibrium state will be reached only
at very long times [52]. This should be especially true in the
regime considered here, when the excess energy u is small.
At times that are not too long, the system may equilibrate
near a transient metastable state with negative temperature.
A straightforward analysis of Eqs. (87a) and (87b), linearized
around a homogeneous solution ρ = 0, u = u0, shows that this
homogeneous solution is stable regardless of the sign of u0.
Such equilibration has been observed numerically [57]. Thus,
in the nonthermal region, Eqs. (87a) and (87b) describe the
system dynamics near such a metastable state.

VII. NUMERICAL RESULTS FOR THE
TRANSPORT COEFFICIENTS

The transport coefficients D0, K0, K1 have been evaluated
numerically from Eqs. (60), (74), and (76). The frequency
δ functions were approximated by boxes of finite width,
as discussed in Sec. III E, and the absence of dependence
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2 ,  
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/(
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FIG. 8. (Color online) Dependence of the dimensionless trans-
port coefficients D0�/g2, K0/(�g2), and K1/(�g2) (circles, squares,
and triangles, respectively) on the dimensionless disorder strength
W/�. The straight line shows the dependence 1.5 × 104 (�/W )4.9.

of the results on w has been checked. The dimensionless
combinations D0�/g2, K0/(�g2), K1/(�g2) depend only on
the dimensionless disorder strength, and the results of their
numerical evaluation are shown in Fig. 8. At weak disorder,
they can be fitted by⎧⎪⎨

⎪⎩
D0

K0/�2

K1/�2

⎫⎪⎬
⎪⎭ = g2

�

(
�

W

)4.9±0.2
⎧⎨
⎩

1.5
1.0
1.3

⎫⎬
⎭× 104. (88)

One feature of these results is that K0 ∼ K1 ∼ D0�
2. This

follows naturally from Eqs. (60), (74), and (76), if the main
contribution comes from modes with frequencies |ω| ∼ �.
Also, comparing Eqs. (88) and (34a), one can see that D0 ∼
�ξ 2/ρ2, which follows from Eqs. (28) and (60), if the main
contribution to D0 and � comes from modes with |dαβγ δ| ∼ ξ .

Does the observed dependence of � or D0 on the disorder
strength have a simple explanation? If one assumes that the
typical value of Vαβγ δ for modes located on the same localiza-
tion segment scales as Vαβγ δ ∼ g(W/�)a with some exponent
a, and the summation over β, γ , and δ in Eq. (28) gives a
factor ∼ξ 3, then � ∝ W 2a−6. Several values for the expo-
nent a, ranging from 2 to 4, have been suggested in the
literature [30,58–62]. In particular, numerical evaluation of the
averages |Vαβγ δ|, V 2

αβγ δ , gave a = 3.3 [60] or a = 3.4 [62].
The result of the present work, � ∝ W−0.8 from Eq. (34a),
is reproduced if one assumes a = 2.6. The discrepancy is
probably due to the fact that in Refs. [60,62] Vαβγ δ for all
eigenmodes were considered, regardless of their frequencies.
At the same time, the sums in Eqs. (28) and (60) are contributed
only by those modes for which the frequency mismatch �αβγ δ

is small, and even within this subset there are correlations
between the overlaps and the mode frequencies, as illustrated
in Appendix A3. Moreover, even though the points on Fig. 8
seem to fall well on a straight line, one cannot exclude that
Eq. (88) still does not represent the true asymptotic behavior
at weak disorder (see the discussion in Sec. IV C).

The value of D0 determined from Eq. (60) can be compared
to the one extracted from the rate of wave packet spreading
obtained by direct numerical integration of Eq. (2) in Ref. [22].
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Equation (1) has a well-known self-similar solution [63,64]
(see also Ref. [65] for a comprehensive review),

ρN (x,t) =
√

N
π

√
D0t

− π x2

4D0t
, |x| < xt ≡

√
4N
π

√
D0t,

(89)

and ρN (x,t) = 0 for |x| > xt . This solution is parametrized by
the total norm N = ∫ ρ(x,t) dx, which is determined by the
initial conditions and remains conserved in time. Equation (89)
also represents the long-time asymptotics of the solution of
Eq. (1) for any positive compact initial condition. The second
moment for the wave packet described by Eq. (89),

m2(N ,t) = 1

N

∫ ∞

−∞
x2 ρN (x,t) dx = N

π

√
D0t, (90)

can be directly compared with the numerical result of Ref. [22]
for log10 m2, averaged over the disorder realizations,

log10 m2 = 0.98 + 0.5 log10(�t),

for W/� = 4 and gN /� = 0.74 × 21 ≈ 15. This gives
D0�/g2 = 4.0. It should be noted, however, that log10 m2 �
log10 m2 as the logarithm is a concave function, so this value
is likely to underestimate D0. At the same time, evaluation
of Eq. (60) for W/� = 4 gives D0�/g2 = 16 ± 1. This can
be considered a reasonable agreement, given the fact that
W/� = 4 is on the borderline of the weak-disorder regime.

Even though the kinetic approach, developed in the present
work, does not have intrinsic long-time limitations, in the
course of wave packet expansion the density decreases with
time, so after some time Eq. (1) with D(ρ) = D0ρ

2 is no
longer valid because the density drops below the low-density
boundary in Fig. 5. From the data of Ref. [22] it is seen
that the wave packet expansion with m2 ∝ t1/2 starts to slow
down at m2 ∼ 104, that is, at the average density in the packet
gρ/� ∼ gN /(4�

√
m2) ≈ 0.04, which also agrees with the

low-density boundary in Fig. 5.

VIII. CONCLUSIONS

In this paper, we have studied the discrete nonlinear
Schrödinger equation in the presence of weak on-site disorder.
The nonlinearity was assumed, on the one hand, to be
sufficiently weak for the eigenmodes of the linear problem to
remain well resolved, but, on the other hand, to be sufficiently
strong, for the dynamics of the eigenmode amplitudes to
chaotic for almost all modes. It was shown that in this
regime the slow dynamics of the eigenmode intensities can
be described by a master equation of the Fokker-Planck type.
Limits of applicability of the master equation approach have
been investigated in detail.

Focusing on the transport of conserved quantities (norm
and energy) on macroscopic length and time scales at high
temperature, from the master equation we have derived explicit
expressions for the macroscopic transport coefficients in terms
of the wave functions and frequencies of the eigenmodes of the
linear problem. Evaluation of these expressions was performed
numerically for different disorder strengths. Analysis of the
coupled macroscopic equations for the norm and energy
densities have shown that in the considered regime (weak

disorder, moderately weak nonlinearity, and high temperature)
the effect of the energy transport on the transport of the
norm can be neglected, so the norm density ρ satisfies a
closed macroscopic equation, which is the nonlinear diffusion
equation with the density-dependent diffusion coefficient
D(ρ) = D0ρ

2. The numerical value of D0, obtained from
the present theory, is in reasonable agreement with the result
of the direct numerical integration of the original nonlinear
Schrödinger equation [22].

The density dependence of the diffusion coefficient D(ρ) =
D0ρ

2, obtained in the present work, translates into the
subdiffusive spreading of an initially localized wave packet
with the second moment m2 growing as m2 ∝ t1/2. It is known
from numerical simulations that at lower densities or longer
times this asymptotics should slow down to m2 ∝ t1/3, which
would mean D(ρ) = D0ρ

4. Construction of a quantitative
theory for this latter regime remains a challenge.
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APPENDIX A: STATISTICS FOR A LINEAR
ONE-DIMENSIONAL CHAIN

In this Appendix, several quantities are calculated for the
linear eigenvalue problem (5) with the flat box distribution for
εn ∈ [−W/2,W/2].

1. Mode spectral density and localization length

The average N -mode spectral density per unit length is
defined as

νN (ω) = lim
L→∞

1

LN

L∑
α1,...,αN =1

δ

(
N∑

i=1

ωαi
− ω

)
, (A1)

where the δ function should be approximated by a peak of finite
width, which should be set to zero after the limit L → ∞ is
taken. The N -mode frequency spacing within one localization
length ξ (ω) is then �N = 1/(νNξN ).

In the weak-disorder limit, for most frequencies ω, the
density of modes can be well approximated by that of the
clean chain. ν1(ω) is straightforwardly calculated,

ν1(ω) =
∫ π

−π

dk

2π
δ(ω − 2� cos k) = 1

2π

1√
�2 − (ω/2)2

,

(A2)

and has square-root type singularities at the band edges,
ω = ±2�. The main effect of weak disorder is to smear
these singularities, as seen from the numerical results shown
in Fig. 9(a). The smearing occurs on the frequency scale
||ω| − 2�| ∼ (W/10)4/3�−1/3.

Given the analytical expression, Eq. (A2), the two-mode
spectral density can also be calculated analytically as follows:

ν2(ω) =
∫ π

−π

dk1

2π

dk2

2π
δ(ω − 2� cos k1 − 2� cos k2)

= (2/π )2

4� + |ω| K
(

(4� − |ω|)2

(4� + |ω|)2

)
, (A3)
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FIG. 9. Single-mode density of states ν1(ω) (a) and the local-
ization length ξ (ω) (b) for the eigenvalue problem (5), evaluated
numerically for W/� = 1 (thick solid line), W/� = 2 (dashed line),
W/� = 4 (dash-dotted line), and W/� = 8 (dotted line). The thin
solid lines correspond to the analytical expressions Eq. (A2) (a) and
Eq. (A5) (b).

expressed in terms of the complete elliptic integral
K(m) = ∫ π/2

0 (1 − m sin2 φ)−1/2dφ. The singularities at
ω = ±2� are logarithmic, i.e., weaker than for ν1(ω), as they
are smeared by the convolution.

The three-mode spectral density,

ν3(ω) =
∫ 2

max{−2�,−4�+|ω|}
dω′ ν1(ω′) ν2(ω − ω′), (A4)

is regular at ω → 0, �ν3(0) = 0.1426 . . ., while at ω = ±2�

it has a cusp, �ν3(2�) = 0.1447 . . .. Thus, in the most relevant
interval |ω| < 2�, ν3(ω) is almost a constant. For 2� < |ω| <

6� it monotonously decreases to zero. In general, νN (ω) have
weaker singularities for larger N , and in the limit N 	 1 the
shape of νN (ω) approaches a Gaussian due to the central limit
theorem.

For the localization length, the following analytical expres-
sion is available in the weak disorder limit [45] as follows:

ξ (ω) = 96
�2

W 2

(
1 − ω2

4�2

)
. (A5)

As seen from Fig. 9(b), for W/� < 2 this expression works
well for most values of ω, except for the band edges and
the band center. The latter behavior is a consequence of the

well-known anomaly [66–71]. Other anomalies at frequencies
corresponding to wave vectors being rational multiples of
π [39,72] are beyond the numerical precision of the present
calculation.

2. Fluctuations of nonlinear frequency shifts

In this subsection, we present the results for the average
relative dispersion of the nonlinear frequency shifts, which
was defined in Eq. (13) as the average over all eigenmodes α,

σ 2 = 1

L

∑
α,β

∑
n,n′

φ2
αnφ

2
βnφ

2
αn′φ

2
βn′ , (A6a)

as well as for

σ 2
ω = 1

Lν1(ω)

∑
α,β

δ(ω − ωα)
∑
n,n′

φ2
αnφ

2
βnφ

2
αn′φ

2
βn′ , (A6b)

which restricts the average to eigenmodes α at a given
frequency ω.

The numerical results for σ 2 are shown in Fig. 10(a). At
weak disorder, the dependence on the disorder strength can be

0.5 1 2 4 8

W/

0.003

0.01

0.03

0.1

0.3
(a)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

2

W/

W/

W/

W/

W/

W/

W/

(b)

W/

W/

FIG. 10. (Color online) (a) The average relative dispersion σ 2 of
the nonlinear frequency shift, Eq. (A6a), as a function of disorder
strength (circles), fitted by the dependence in Eq. (A7) (straight
line). (b) The rescaled frequency-resolved average relative dispersion,
σ 2

ωξ (ω), for different disorder strengths.
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fitted by the expression

σ 2 = 0.011

(
W

�

)1.8

, (A7)

that is, σ 2 ∝ ξ−0.9. This dependence is slightly weaker than
σ 2 ∝ 1/ξ , which is expected from the simple reasoning of
Sec. III A. The reason for this can be understood by looking
at the frequency-resolved fluctuation, Eq. (A6b), scaled by the
localization length at the same frequency, σ 2

ωξ (ω), plotted in
Fig. 10(b). At W/� � 3, the curves clearly show a different
behavior in two distinct frequency intervals, as was also
observed in Ref. [73]. At W/� < 2 the curves show a clear
tendency to collapse on a single universal curve, but the limit
is reached quite slowly. Thus, the asymptotics σ 2 ∝ 1/ξ is
expected to set in at small W/�, corresponding to extremely
large ξ � 1000. Similar behavior in the statistics of values of a
single eigenfunction was observed in Ref. [39]. This is also in
agreement with discussion of the relaxation rates in Sec. IV C.

3. Correlations between frequencies and overlaps

To see how the overlaps Vαβγ δ which contribute to �α are
correlated with the frequencies of the corresponding modes,
we calculate the following quantity:

R(ω,ω′) = 4πρ2

L�ω

∑
α,β,γ,δ

′
V 2

αβγ δδ(ωα + ωβ − ωγ − ωδ)

× δ(ωα − ω)

ν1(ω)

δ(ωf − ω′)
ν1(ω′)

, (A8)

where ωf = ωγ if |ωγ − ωα| < |ωδ − ωα| and ωf = ωδ in
the opposite case (ωf is introduced in order to take care of
the symmetry ωγ ↔ ωδ by choosing the one which is closer
to ωα). Thus defined, R(ω,ω′) represents the relative weight
with which partner modes at some frequency ω′ contribute to
�ω, with the normalization∫

R(ω,ω′) ν1(ω′) dω′ = 1. (A9)

R(ω = 0,ω′) for different disorder strengths is shown in
Fig. 11. At weak disorder, the symbols have a tendency
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FIG. 11. (Color online) The relative weight of modes with fre-
quency ω′ in the decay rate �ω=0 of the modes at ω = for different
disorder strengths.

to collapse on a single curve. At W/� � 3, R(0,ω′) has a
singularity at |ω − ω′| → 0. The present data are not sufficient
to establish its precise character (power-law or logarithmic);
one can only conclude that the singularity is not stronger than
|ω − ω′|−0.5 and is thus integrable. At the same time, in the
disorder-free system, the singularity is |ω − ω′|−1, as was
seen in Sec. IV C. Again, as in Sec. IV C and Appendix A 2,
it appears that the values of disorder corresponding for which
the results are presented in Fig. 11 are still too large to be in
the true weak-disorder limit.

APPENDIX B: DAMPED OSCILLATOR
SUBJECT TO NOISE

Consider a single oscillator, described by the complex
amplitude c which satisfies the equation of motion,

i
dc

dt
= (ω + g|c|2)c, (B1)

where ω is the frequency of linear oscillations and g is the
anharmonicity. The solution of Eq. (B1) is

c(t) =
√

I e−i(ω+gI )t−iθ0
. (B2)

Let the oscillator now be subject to a white noise and friction,

dc

dt
= −i(ω + g|c|2)c − �

2
c + ηx(t) + iηy(t), (B3)

where the noise amplitudes satisfy

〈ηi(t) ηj (t ′)〉 = νδij δ(t − t ′), i,j = x,y, (B4)

where ν measures the strength of the noise and � is the
friction coefficient. Writing c = x + iy, one can introduce
the probability distribution function P (x,y) in the complex
plane of c and write down the Fokker-Planck equation,
corresponding to the Langevin equation (B3),

∂P

∂t
= − ∂

∂x
[ω + g(x2 + y2)]yP + ∂

∂y
[ω + g(x2 + y2)]xP

+ �

2

[
∂

∂x
xP + ∂

∂y
yP

]
+ ν

2

(
∂2

∂x2
+ ∂2

∂y2

)
P.

(B5)

If P (x,y) is interpreted as the density in a cloud of particles,
the first two lines of Eq. (B5) correspond to the clockwise
rotation of the cloud around the origin, the third line to the
uniform squeezing towards the origin, and the last line to the
uniform spread of the cloud. In the action-angle variables,
x + iy = √

I e−iθ , the same equation becomes

∂P

∂t
= −(ω + gI )

∂P

∂θ
+ �ρ

4I

∂2P

∂θ2
+ �

∂

∂I
I

(
ρ

∂

∂I
+ 1

)
P,

(B6)

where we introduced ρ = 2ν/� [which is the equilibrium
average value of I , since the stationary solution of Eq. (B6) is
e−I/ρ] and �ρI plays the role of the action-dependent diffusion
coefficient. Upon averaging over the phase θ , Eq. (B6)
becomes identical to Eq. (26).
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APPENDIX C: NONLINEAR OSCILLATOR
UNDER A QUASIPERIODIC FORCE

Consider a single oscillator, described by the complex
amplitude c which satisfies the equation of motion,

i
dc

dt
= (ω + g|c|2)c +

∑
k

fke
−iωkt−iθk , (C1)

where the real fk,θk are the amplitude and the phase of the
kth external force oscillating at frequency ωk . Without loss of
generality, we assume g > 0, fk > 0. When will the motion
of this oscillator be chaotic?

Let us first analyze the case when only one term is present.
Substituting

c(t) =
√

I (t) e−iωkt−iθk−iθ(t), (C2)

we arrive at equations of motion which have a Hamiltonian
form as follows:

dθ

dt
= ω + gI − ωk + 1√

I
fk cos θ = ∂H

∂I
, (C3a)

dI

dt
= 2

√
I fk sin θ = −∂H

∂θ
, (C3b)

H(I,θ ) = −�kI + gI 2

2
+ 2

√
I fk cos θ, (C3c)

where we denoted �k ≡ ωk − ω. The stationary points are
located at θ = 0 or π , and I can be found from the cubic
equation

(gI − �k)2

f 2
k

= 1

I
. (C4)

At � 3
k < (27/4)gf 2

k , there is only one elliptic stationary point
at θ = π , and the phase portrait of the oscillator motion in the
(Re c, Im c) plane has the same topology as in the absence of
the external force. At � 3

k > (27/4)gf 2
k , two more stationary

points appear at θ = 0, one elliptic and one hyperbolic.
The phase portrait of the oscillator in this case is shown
in Fig. 12(a). It has a separatrix, which corresponds to the
standard case of the nonlinear resonance [3,74].

Let us study this separatrix in more detail. As the stationary
points are at θ = 0,π (corresponding to Im c = 0) it is
convenient to study the Hamiltonian H as a function of the
dimensionless variable x = √

g/�k Re c,

H(x) = 2� 2
k

g

(
x4

4
− x2

2
+ Fx

)
, F ≡

√
gf 2

� 3
k

, (C5)

whose behavior is determined by a single dimensionless
parameter F . Let x1 < x2 < x3 be the stationary points, i.e.,
the roots of the cubic equation H′(x) = 0 (the prime indicates
the derivative). Noting that ∂2H(I,θ )/∂θ2 ∝ − cos θ changes
sign at x = 0, we obtain that the points x1,2 are elliptic, while
the point x3 is hyperbolic.

The points x± at which the separatrix crosses the negative
real semiaxis of c (that is, θ = π ) should be found from the
equation H(x) = H(x3). Since

H(x) − H(x3) = 2� 2
k

g
(x − x3)2

[
(x + x3)2

4
− F

2x3

]
, (C6)
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FIG. 12. (Color online) (a) The phase portrait corresponding to
the Hamiltonian (C3c) (the thick line shows the separatrix, the the
full circles show the stationary points) and (b) the function H(x) for
F = 0.1.

they are given by x± = −x3 ± √
2F/x3. Both solutions are

negative whenH(x2) < 0, which is the case when F <
√

2/27.
An exact analytic expression for x3 (which depends on the

dimensionless parameter F ) is not available. Analyzing the
cubic parabola H′(x), one can see that x1,x2,x3 satisfy

−
√

4/3 < x1 < −1, 0 < x2 <
√

1/3 < x3 < 1, (C7)

where 0,±1 are the roots at F = 0, the points ±1/
√

3 are
the extrema of H′(x), and −√

4/3 is the solution of H′(x) =
H′(1/

√
3). Numerically, x1,x2,x3 can be efficiently found

by use of the Newton’s method starting from −√
4/3,0,1,

respectively. It turns out that x3 is well approximated by

x3 ≈ 1/
√

3 +
√

2
√

3 − 3
√√

4/27 − F, (C8)

whose relative error does not exceed 1.4% in the whole avail-
able range 0 < F <

√
4/27. It is this approximate expression

that is used in the numerical calculation.
Let us now consider several forces acting on the oscillator.

Treating each of them separately, for those of them which have
� 3

k > (27/4)gf 2
k and thus produce a separatrix, we can define

the values I3k (the action corresponding to the hyperbolic
point) and I±,k (the actions corresponding to the points where
the separatrix passes through θ = π ). If the separatrices are
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well separated, that is, the width I−,k − I+,k of the separatrix is
much smaller than the typical distance |I3k − I3k′ | for different
k,k′, the different resonances do not interfere. If the opposite
happens, that is, for some k,k′ the intervals I+,k < I < I−,k

and I+,k′ < I < I−,k′ overlap, the motion becomes chaotic,
and the chaotic region roughly corresponds to the interval
min{I+,k,I+,k′ } < I < max{I−,k,I−,k′ }. This is essentially the
Chirikov’s criterion [3,74,75].

Thus, for each normal mode α, whose intensity Iα is
determined by the initial condition and the anharmonicity is
given by Vαααα = g

∑
n φ4

αn, we determine the forces fαβγ δ =
Vαβγ δ

√
IβIγ Iδ and the corresponding separatrix intervals

I+,βγ δ < I < I−,βγ δ . If among various terms at least two
distinct triples β,γ,δ can be found such that I+,βγ δ < Iα <

I−,βγ δ , the mode α is counted as chaotic.

APPENDIX D: DECOUPLING OF HIGHER MOMENTS

Let us neglect the correlations in zero approximation,
〈IαIβ〉 → 〈Iα〉〈Iβ〉, and check whether in the next approxi-
mation the cumulant 〈IαIβ〉 − 〈Iα〉〈Iβ〉 for α �= β is smaller
than the main average 〈Iα〉〈Iβ〉. The master equation, Eq. (20),
gives

d

dt
(〈IαIβ〉 − 〈Iα〉〈Iβ〉)

= 2
∑
γ,δ

′
(Rαβγ δ − 2Rαγδβ)Īα Īβ Īγ Īδ, (D1)

containing a double sum. At the same time, for the main av-
erage, d(Īα Īβ)/dt , from Eq. (44) one straightforardly obtains
an expression involving a triple sum. Since each summation
involves a large number of terms, the cumulant is smaller then
the main average.

APPENDIX E: THERMODYNAMICS AT HIGH
TEMPERATURES

Let us denote μ/T ≡ −λ for brevity. Then the partition
function,

Z(λ,T ) =
∫

e−Hλ/T
∏
n

d Re ψn d Im ψn

π
, (E1)

for the Hamiltonian

Hλ = −�
∑

n

(ψ∗
nψn+1 + ψ∗

n+1ψn)

+
∑

n

(εn + λT )|ψn|2 + g

2

∑
n

|ψn|4 (E2)

can be straightforwardly calculated in the high-temperature
limit as follows:

ln Z

L
= ln

1

λ
− g

λ2

1

T
+
(

�2 + ε2
n

λ2
+ 5

2

g2

λ4

)
1

T 2
+ O(T −3),

(E3)

where ε2
n = W 2/12 is the second moment of the disorder

potential, L → ∞ is the chain length, and the limit T → ∞ is
taken at constant λ. Differentiating this expression with respect

to λ and 1/T , we obtain the norm and energy densities,

ρ(λ,T ) = 1

λ
− 2g

λ3

1

T
+ O(T −2), (E4a)

ε(λ,T ) = g

λ2
−
(

2
�2 + ε2

n

λ2
+ 5

g2

λ4

)
1

T
+ O(T −2). (E4b)

The T → ∞ limit is reached at the line ε = gρ2. Since the
temperature T > 0 (otherwise the partition function diverges,
as the Hamiltonian is not bounded from above), the states of
the system for which ε > gρ2 are non-Gibbsian; that is, it is
impossible to find λ and T which would produce such ρ and
ε in the grand-canonical ensemble [37]. It is convenient to
introduce the amount of “nonthermal” energy in the system,

u ≡ gρ2 − ε =
(

2
�2 + ε2

n

λ2
+ g2

λ4

)
1

T
+ O(T −2). (E5)

Let us now see what thermodynamic relations are obtained
from Eq. (45), the equilibrium solution of the kinetic equation
(44) which neglects the nonlinear shifts. Expanding in 1/T ,
we obtain

ρ(λ,T ) = 1

L

L∑
α=1

Īα = 1

λ
+ O(T −2), (E6a)

ε(λ,T ) = 1

L

L∑
α=1

ωαĪα = 1

L

L∑
α=1

ω2
α

λ2

1

T
+ O(T −2)

= 2�2 + ε2
n

λ2T
+ O(T −2), (E6b)

where the average of ω2
α is calculated by noting that it is the

trace of the square of the linear operator on the right-hand side
of Eq. (5). Equations (E6a) and (E6b) differ from Eqs. (E4a)
and (E4b) by the absence of the nonlinear terms proportional
to g but also by the coefficients at ε2

n. The origin of this latter
difference can be traced back to nonvanishing correlations,
〈IαIβ〉 �= 〈Iα〉〈Iβ〉, when α = β. Indeed, Eq. (E4b) keeps track
of all correlations, while Eq. (E6b) follows from Eq. (44)
which was obtained by neglecting correlations. Still, the
relative error of Eq. (E6b) with respect to Eq. (E4b) is
ε2
n/�2 ∼ 1/ξ 
 1, which was precisely the justification for

neglecting the correlations in Eq. (44).
If we use the equilibrium solution which includes the

nonlinear frequency shifts, Eq. (79), and calculate the average
action and energy densities, it reproduces Eq. (E4a) for ρ,
while for ε it gives

ε(λ,T ) = g

λ2
−
(

2�2 + ε2
n

λ2
+ 4

g2

λ4

)
1

T
+ O(T −2). (E7)

This expression differs from Eq. (E4b) by the numerical
coefficients at ε2

n/λ
2 (discussed above) and at g2/λ4. The latter

produces a relative error (gρ/�)2 
 1 in the coefficient at
1/T .
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APPENDIX F: SPATIOTEMPORAL SMOOTHING

Let us express |ψn(t)|2 in Eq. (47) in terms of the
normal mode wave functions φαn and amplitudes cα(t) =√

Iα(t) e−iθα (t) as follows:

|ψn(t)|2 =
∑
αβ

φαnφβn

√
Iα(t) Iβ(t) e−iθα (t)+iθβ (t). (F1)

Only terms with α = β survive the convolution withT (t) when
τ 	 1/�1. Then, averaging over F , we obtain

ρ(x,t) =
∫

dt ′ T (t − t ′)
∑
α,n

S(x − n) φ2
αnĪα(t ′). (F2)

In the spatial sum, we expand S(x − n) around x − Xα to the
second order as follows:∑

n

S(x − n) φ2
αn =

∑
n

S(x − Xα) φ2
αn

− dS(x − Xα)

dx

∑
n

(n − Xα)φ2
αn

+ d2S(x − Xα)

dx2

∑
n

(n − Xα)2

2
φ2

αn.

(F3)

The second term vanishes by the definition of Xα , and in the
last term the first factor gives 1/�2, while the sum over n is
∼ξ 2.

Equations (57a) and (57b) follow from the fact that for any
smooth function A(x), depending on x on the scale � 	 ξ ,∑

α

A(Xα) =
∫

A(x) dx[1 + O(ξ 2/�2)]. (F4)

This can be seen by first noting that∑
α

A(Xα) =
∑

n

A(n)
∑

α

φ2
αn[1 + O(ξ 2/�2)], (F5)

obtained analogously to the previous paragraph. Then∑
n

A(n) =
∫

A(x) dx, (F6)

with exponential in � precision if A(x) is infinitely differen-
tiable.

APPENDIX G: TOY MODEL OF AN
ELECTRIC RC CIRQUIT

It is instructive to see how the formalism of Sec. V works
for a very simple toy model, that of an electric RC cirquit,
shown in Fig. 13. The dynamics of the charge qn on the nth

Rn  1/2 q n Rn+1/2

Cn

q 
n+1

q n-1

FIG. 13. (Color online) The electric circuit with resistors and
capacitors, described by Eq. (G1). The bottom plate of each capacitor
is grounded.

capacitor is governed by the equation

dqn

dt
= 1

Rn+1/2

(
qn+1

Cn+1
− qn

Cn

)

+ 1

Rn−1/2

(
qn−1

Cn−1
− qn

Cn

)
. (G1)

Indeed, ϕn ≡ qn/Cn is the electrostatic potential on the upper
plate of the nth capacitor, and (ϕn−1 − ϕn)/Rn−1/2 is the
current flowing through the resistor between the capacitors
n and n − 1. In equilibrium, the potential is constant along the
chain.

For the simple model of Eq. (G1), the exact relation between
the current and the macroscopic charge density or potential
gradient can be derived straightforwardly. Indeed, noticing
that in a stationary situation the currents through all resistors
should be the same, we the potential drop is determined by

ϕn+1 − ϕn

Rn+1/2
= −J = const, (G2)

so the potential difference between any two capacitors n and
n + � is given by

ϕn+� − ϕn = −J

n+�−1∑
n′=n

Rn′+1/2. (G3)

Taking � 	 1, from this we can calculate the macroscopic
potential gradient

∂ϕ

∂x
≈ ϕn+� − ϕn

�
= −JR, (G4)

where R is the average resistance,

R = lim
�→∞

1

�

n+�−1∑
n′=n

Rn′+1/2. (G5)

The “thermodynamic equation of state,” relating the charge
density ρ to the potential, is

ρ = 1

�

n+�∑
n′=n

qn′ = 1

�

n+�∑
n′=n

Cn′ϕ = Cϕ, (G6)

where C is the average capacitance, defined analogously to R.
As a result, we obtain the sought relation between the current
and the gradient of the potential or charge density as follows:

J = − 1

R

∂ϕ

∂x
= − 1

R C

∂ρ

∂x
. (G7)

Let us now see how the approach of Sec. V works for
Eq. (G1). The macroscopic density and current are defined as

ρ(x,t) =
∫

dt ′ T (t − t ′)
∑

n

S(x − n) qn(t ′), (G8a)

J (x,t) =
∫

dt ′ T (t − t ′)
∑

n

S̃(x − n)
dqn(t ′)

dt ′

=
∫

dt ′ T (t − t ′)
∑

n

S̃(x − n)

[
1

Rn+1/2

×
(

qn+1

Cn+1
− qn

Cn

)
+ 1

Rn−1/2

(
qn−1

Cn−1
− qn

Cn

)]

022921-20



KINETIC THEORY OF NONLINEAR DIFFUSION IN A . . . PHYSICAL REVIEW E 89, 022921 (2014)

=
∫

dt ′ T (t − t ′)
∑

n

S̃(x − n) − S̃(x − n − 1)

Rn+1/2

×
(

qn+1

Cn+1
− qn

Cn

)

≈
∫

dt ′ T (t − t ′)
∑

n

S(x − n − 1/2)

Rn+1/2

×
[
qn(t ′)
Cn

− qn+1(t ′)
Cn+1

]
. (G8b)

To find the current response to a small gradient of the potential,
let us look for a stationary solution of Eq. (G1) in the
form

qn = Cn(ϕeq − χn + rn), (G9)

with the requirement rn = 0. The corrections rn can be found
from the equations

rn+1 − rn

Rn+1/2
− rn − rn−1

Rn−1/2
= χ

Rn+1/2
− χ

Rn−1/2
, (G10)

which are satisfied when

rn+1 − rn

Rn+1/2
= χ

Rn+1/2
+ C. (G11)

The constant C should be chosen to ensure rn = 0. This
condition yields C = −χ/R and the solution

rn = r0 +
n−1∑
n′=0

χ

(
1 − Rn′+1/2

R

)
. (G12)

With this solution, the current is obtained from Eq. (G8b),
which gives J = χ/R.
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[9] J. Fröhlich, T. Spencer, and C. E. Wayne, J. Stat. Phys. 42, 247

(1986).
[10] M. Johansson, G. Kopidakis, and S. Aubry, Europhys. Lett. 91,

50001 (2010).
[11] V. Oganesyan, A. Pal, and D. A. Huse, Phys. Rev. B 80, 115104

(2009).
[12] D. M. Basko, Ann. Phys. 326, 1577 (2011).
[13] A. Pikovsky and S. Fishman, Phys. Rev. E 83, 025201(R) (2011).
[14] M. Mulansky, K. Ahnert, A. Pikovsky, and D. L. Shepelyansky,

J. Stat. Phys. 145, 1256 (2011).
[15] D. M. Basko, Phys. Rev. E 86, 036202 (2012).
[16] Ch. Skokos, I. Gkolias, and S. Flach, Phys. Rev. Lett. 111,

064101 (2013).
[17] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N.

Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906
(2008).

[18] E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti,
M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, and G.
Modugno, Phys. Rev. Lett. 106, 230403 (2011).

[19] S. Fishman, Y. Krivolapov, and A. Soffer, Nonlinearity 25, R53
(2012).

[20] S. Flach, D. O. Krimer, and Ch. Skokos, Phys. Rev. Lett. 102,
024101 (2009).

[21] Ch. Skokos and S. Flach, Phys. Rev. E 82, 016208 (2010).
[22] T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer, Ch. Skokos, and

S. Flach, Europhys. Lett. 91, 30001 (2010).

[23] J. D. Bodyfelt, T. V. Laptyeva, Ch. Skokos, D. O. Krimer, and
S. Flach, Phys. Rev. E 84, 016205 (2011).
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