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Experimental observation of extreme multistability in an electronic system
of two coupled Rossler oscillators
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We report the first experimental observation of extreme multistability in a controlled laboratory investigation.
Extreme multistability arises when infinitely many attractors coexist for the same set of system parameters.
The behavior was predicted earlier on theoretical grounds, supported by numerical studies of models of two
coupled identical or nearly identical systems. We construct and couple two analog circuits based on a modified
coupled Rossler system and demonstrate the occurrence of extreme multistability through a controlled switching
to different attractor states purely through a change in initial conditions for a fixed set of system parameters.
Numerical studies of the coupled model equations are in agreement with our experimental findings.
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I. INTRODUCTION

Multistability is a common occurrence in many nonlinear
dynamical systems, corresponding to the coexistence of more
than one stable attractor for the same set of system parameters
[1]. A large number of theoretical and experimental studies
have explored this phenomenon in a variety of physical [2-5],
chemical [6,7], and biological [8,9] systems. A curious and
novel manifestation of this phenomenon arises when a system
can have an infinite number of coexisting attractors, where each
attractor is associated with a particular set of initial conditions
[10,11]. Extreme multistability was first demonstrated in a
system of two coupled identical Lorenz oscillators by Sun et al.
[10] and was subsequently investigated in the three-variable
autocatalator model by Ngonghala et al. [11]. More recently,
Hens et al. [12] have demonstrated the existence of extreme
multistability in a system of two coupled Rossler oscillators
and in a chemical autocatalator model [13].

In all these studies, a special coupling was applied between
two three-variable chaotic systems to form six-variable cou-
pled systems. Numerical simulations of the synchronization of
the coupled systems were carried out for a fixed set of system
parameters and only the initial conditions were changed.
The synchronized systems were found to evolve to different
attractor states (fixed points, limit cycles, chaotic states) purely
through changes in initial conditions, typically with a change
in the initial condition of just one of the state variables.
The origin of this behavior lies in the synchronization
dynamics of the two coupled subsystems. Two properties are
essential for the appearance of extreme multistability in two
coupled n-dimensional nonlinear systems: (i) the complete
synchronization of n — 1 state variables of the two systems and
(ii) the synchronization of the remaining state variable in
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each subsystem according to a conserved quantity K in the
long-term limit # — oo. The conserved quantity has a pro-
found effect on the synchronization dynamics; it characterizes
the synchronization manifold. It also leads to a neutrally stable
direction in the steady states and orbits which gives rise to a
dependence on the initial conditions of the asymptotic state at
t — oo. In addition, perturbations give rise to new dynamical
states, as the system is shifted from one synchronization
manifold to another.

Extreme multistability might have important consequences
in the reproducibility of certain experimental systems. For
example, some chemical reactions, such as the chlorite-
thiosulfate reaction [14] and the chlorite-iodide reaction [15],
consistently exhibit irreproducibility: despite great care to
ensure reproducibility, these reactions show a random long-
term behavior for the same set of experimental conditions.
The cause of the irreproducibility is not known; extreme
multistability offers a possible mechanism for the behavior.
However, to the best of our knowledge, there is no direct
experimental verification of this new type of dynamical
behavior in a controlled laboratory investigation. In this paper,
we report experimental observations of a coupled electronic
circuit system that displays extreme multistability.

II. MODEL SYSTEM

Our experiments are carried out on an analog circuit system
closely based on the model investigated by Hens ez al. [12],
consisting of a set of coupled Rossler equations, namely,

X1 =—y1— 2z, (la)
Y1 =x2 +ays +alx — xp), (1b)
21 = b+ 2x20 — czy, (Ic)
X2 = X1 — X2 — Y1 — 21, (1d)
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FIG. 1. (Color) (a) Plot of the maximum Lyapunov exponent
(color coded) in the (x9,Y20) space with parameter values fixed at
a =0.02,a =0.2,b =0.2,c = 5.7 and the other initial conditions
fixed at x10 = y10 = 210 = z20 = 0. (b) Maxima of x, plotted against

initial values of y, along the line x,y = —4.0.
V2 = X2 + ay, (le)
22 = b+ 2x325 — c22, (1f)

where «, a, b, and ¢ are constants (with ¢ > 0) and (x,y1,z1)
and (x,,y»,2») are the state variables of the two subsystems. If
we set x| = x3, ¥y = Y2, and z; = 2, then the two subsystems
become decoupled, and each individual subsystem represents
a Rossler oscillator. The factor of 2 multiplying the nonlinear
terms in (1c) and (1f) arises from a scaling down of the original
Rossler system variables by a factor of 2. This is done to restrict
the output signal voltage range, in the circuit implementation
of the equations, to within =15 V in order to avoid saturation
of the circuit. The coupled system (1) is a variant of the set
analyzed in [12] in that (1b) of our system is different from the
corresponding equation in [12]. Our system becomes identical
to that of [12] for « = —1. However, the basic property of
extreme multistability is still preserved in the modified system,
as can be seen from an analysis of a reduced set of equations
that govern the differences (“errors”) of the corresponding
state variables of the subsystems, namely,

e = —ey, (2a)
éz = —uey, (2b)
é3 = —ces, (2¢)
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where e} = x| — x2, ey =y, — y2, and e3 = z; — 2. Upon
complete synchronization, the error dynamics evolves to a
stationary state that defines the relationship between the
state variables. From (2) we see that e; and e3 both go
to zero asymptotically, while e, tends to a constant value,
which corresponds to the previously mentioned conserved
quantity K. It should be mentioned here that a dynamical
system made up of two coupled subsystems does not have
independent variables upon complete synchronization and
hence is overdetermined since the variables of one subsystem
are equal to the corresponding variables of the other subsystem.
This is true for all synchronization systems that attain complete
synchronization in the long-term limit + — oo [16,17]. In
the synchronization dynamics of systems that exhibit extreme
multistability, the error dynamics also evolves to a stationary
state, but now two of the corresponding variables of the
subsystems are related by a conserved quantity; that is, the
variables are related by a constant (or a more complex relation)
that depends on the initial conditions. This conserved quantity
can be introduced into one of the subsystems as a bifurcation
parameter that, while providing insights into the asymptotic
behavior, can be misinterpreted as a description of the overall
synchronization dynamics. As discussed in [12], system (1)
possesses an infinite number of attractors corresponding to
different values of K. Further, the system admits a Lyapunov
function V = 7 + e such that dV /dt < 0, ensuring stability
of the attractor states. As a numerical demonstration of the
multiple attractor states, we solve (1) for a fixed set of system
parameters (¢ = 0.02,a = 0.2,b = 0.2,c = 5.7) and vary the
initial conditions y;p from —8.0 to 7.0 and xp¢9 from —5.0
to 0.0 while keeping all the other initial conditions fixed at
X10 = Y10 = 210 = 220 = 0. Figure 1(a) shows a plot of the
maximum Lyapunov exponent (color coded) in the (x29,y20)
space. Figure 1(b) shows the attractor states that exist along
the line x,9 = —4.0.

III. EXPERIMENTAL SYSTEM AND RESULTS

We next turn to the experimental implementation of Eq. (1).
Figure 2 shows a picture of the experimental setup that was
constructed to study the dynamics of the coupled Rossler
system. A detailed circuit diagram of the system is available
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FIG. 2. (Color online) Experimental setup of the two coupled
Rossler oscillators system with relay and timer circuits to change
the initial conditions.
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FIG. 3. (Color online) Oscilloscope images of the phase plots y; vs x, of various attractor states with parameters « = 0.02,a = 0.2,b =
0.2,c = 5.7, initial conditions x19 = yj0 = z10 = 220 = 0,x20 = —4.0, and (a) y,0 = —7.0, (b) y20 = —4.0, (c) y20 = —2.0, (d) y»0 = —1.0,
and (e) yy = 0.6. The plots shown in (f), (g), (h), (i), and (j) are phase plots from numerical solutions of (1) corresponding to the initial

conditions of (a), (b), (c), (d), and (e), respectively.

as Supplemental Material [18]. A regulated power supply of
+15 V energizes the circuit, and the system parameters o, a, b,
and c are controlled with circuit resistors. As a benchmark ex-
ercise, each individual Rossler oscillator was separately tested
by varying the system parameters to obtain its various attractor
states, ranging from periodic states to chaotic dynamics, and
the behavior was then compared to numerical simulations
of the Rossler equations. Extreme care was taken to ensure
that the two oscillator systems were as nearly “identical” as
possible within practical limits. This entailed careful weaning
of all the component elements (resistors, capacitors) to match
their values as closely as possible and the removal of any
intrinsic drifts or biases within the operational amplifiers and
multipliers [19]. The two oscillators were then coupled to each
other as shown in Fig. 2, and their parameters were fixed at the
values mentioned earlier. It should be mentioned that for the
parameters chosen in our experiment the individual Rossler
oscillators (when decoupled) were in the chaotic state.

To change the initial conditions of the dynamics of the
circuit, we have employed a strategy of imposing external
voltages on selective nodes of the operational amplifiers as
well as shorting relevant capacitors of the circuit initially
to set the values of some of the state variables to zero. To
implement this combined strategy in a controlled manner we
have developed and attached an additional system of relay
circuits to the coupled Rossler circuits (indicated by a label in
Fig. 2). For details of the circuit diagram of the relay circuit,
see [18]. When this circuit is energized, the timer portion of the
circuit produces a high output for 6 s, and the relay is turned
on through the relay driver circuit. Due to this, the capacitor
responsible for generating the x; signal gets shorted in the
coupled circuit, and hence x; is set to O V initially. Similarly,
¥1,21, and z, are also set to O V. After 6 s the output of the timer
circuit falls to a low value, and the relay gets switched off. Due
to this, the capacitors no longer remain shorted, and the circuit
runs with the applied initial conditions for xy,y;,z;, and z,. The
initial conditions of x, and y, are changed using independent
external voltage sources [18]. Using the above strategy, we
have run the coupled circuit for a number of initial conditions
without changing the circuit parameters. Some typical results
in the form of oscilloscope images of phase plots of y; vs

x, are shown in the top row of Fig. 3, indicating the various
periodic attractor states as well as a chaotic state.

These states correspond to those identified in the diagram
of Fig. 1 by the labels of the images in Fig. 3. The plots in the
bottom row of Fig. 3 show corresponding numerical solution
results of Eq. (1) using the same initial conditions.

One of the remarkable aspects of the synchronization
dynamics that gives rise to extreme multistability, like in the
coupled Rossler circuit studied here, is that the coupled system
has both dissipative dynamics and conservative dynamics. The
dissipative dynamics is manifested in the nature of the dynam-
ical state, which is a true attractor, with an infinite number
of initial conditions that take the system to that attractor.
The conservative dynamics is a consequence of the conserved
quantity, which gives rise to a neutrally stable direction and,
consequently, a dependence on the initial conditions. Thus
the circuit is characterized by infinitely many attractors, each
associated with a particular value of the conserved quantity
K =y — y» (y; and y, are asymptotic values taken at very
large times), where the basin of attraction is made up of all sets
of initial conditions that evolve asymptotically to the particular
value of K associated with the attractor. One can arbitrarily
introduce a dependence on the initial conditions into any
dynamical system described by a set of differential equations;
however, in coupled systems undergoing synchronization, the
conserved quantity arises from the synchronization dynamics.

The conserved quantity gives rise to a direction of neutral
stability for the stationary states as well as the periodic
and chaotic orbits (in addition to that associated with the
direction along the orbit). Hence, if the system is in a
particular periodic orbit, say period 2, a perturbation that
does not satisfy the condition of the conserved quantity
will give rise to the evolution of the system to a new
attractor. The new attractor may differ only quantitatively;
for example, a small perturbation might shift the period-2
dynamics to a new period-2 dynamics that differs in amplitude.
However, larger perturbations give rise to the evolution of
the system to qualitatively new attractors, such as a period-4
or period-8 attractor. This characterization of the effects of
perturbations also applies to the effects of different initial con-
ditions. Because the coupled system exhibits period-doubling
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bifurcations, perturbations or different initial conditions permit
the sampling of any of an infinite number of qualitatively
different attractors. Even if the coupled system did not display
chaotic dynamics, the same mechanism would give rise
to an infinite number of quantitatively different attractors.
In principle it should be possible to visit each of these
asymptotic attractors in a continuous fashion by altering the
initial conditions in an infinitesimal manner, an extremely
challenging task in an experimental setup. However, evidence
of this continuous transition can be observed in a transient
manner by deliberately introducing a slight mismatch in the
two circuits. We have carried out such an exercise (by slightly
changing the value of one of the resistors, see details in [18])
such that the term x, — x; on the right-hand side of Eq. (1b)
is changed to x, — x| + §x,, where § is a small quantity. Then
integrating (2b), one gets e; = K — aé f dtx,(t). Thus the
value of the constant K that e, acquires changes with time,
and the rate of change is controlled by the constants « and the
mismatch value §. We have observed such a continuous drift of
the coupled system through the various states represented by
Fig. 1 when the two oscillators are slightly detuned by bringing
about such a deliberate change of a small amount. The results
can also be reproduced exactly by a numerical solution of the
mismatched system. The temporal evolution through various
states can be viewed in the video clip provided as Supplemental
Material for this paper [18]. This demonstration provides
additional support for the existence of extreme multistability
in the coupled Rossler system (1).

IV. CONCLUSIONS

To conclude, we have described an experimental demon-
stration of extreme multistability using an electronic
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circuit implementation of two coupled Rossler attractors. The
theoretical model on which the experiment is based has a
simple set of equations. In particular, the error dynamics
equations [(2a)—(2c)] of this model involve linear terms and
are easily solvable. It is possible in principle to obtain extreme
multistability from more complicated error dynamics that
includes time dependent and nonlinear terms. However, for
the sake of simplicity and in the interest of minimizing the
technical complexity of the experimental system we have
avoided dealing with complicated error dynamics.

A restrictive feature of this type of dynamical system is the
requirement that the coupled subsystems be identical or nearly
identical. This restriction and the need to devise a method
to change the initial conditions in a controlled manner pose
serious technical challenges. We have successfully overcome
these challenges in our electronic circuit system and have
demonstrated that two chaotic circuits can be sufficiently
matched to give rise to extreme multistability when appro-
priately coupled. It is likely that extreme multistability will be
a rarity in most physical, chemical, and biological systems;
however, the combined conservative and dissipative features
give rise to dynamics that might find technological uses, such
as the ability to easily select qualitatively different dynamical
states from an infinite number of possibilities. In addition,
slightly mismatched systems that might occur in natural
settings may display a temporal evolution through various
dynamical states, as observed in our experimental electronic
system.
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