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Origin of the exponential decay of the Loschmidt echo in integrable systems
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We address the time decay of the Loschmidt echo, measuring the sensitivity of quantum dynamics to small
Hamiltonian perturbations, in one-dimensional integrable systems. Using a semiclassical analysis, we show that
the Loschmidt echo may exhibit a well-pronounced regime of exponential decay, similar to the one typically
observed in quantum systems whose dynamics is chaotic in the classical limit. We derive an explicit formula for the
exponential decay rate in terms of the spectral properties of the unperturbed and perturbed Hamilton operators and
the initial state. In particular, we show that the decay rate, unlike in the case of the chaotic dynamics, is directly
proportional to the strength of the Hamiltonian perturbation. Finally, we compare our analytical predictions
against the results of a numerical computation of the Loschmidt echo for a quantum particle moving inside a
one-dimensional box with Dirichlet-Robin boundary conditions, and find the two in good agreement.
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I. INTRODUCTION

Even a tiny perturbation of the Hamiltonian of a quantum
systems may significantly alter its time evolution. Changes in
the dynamics of the corresponding unperturbed and perturbed
systems can be conveniently quantified in terms of the
Loschmidt echo (LE) that is defined as

M(t) = |m(t)|2, (1)

with

m(t) = 〈
�λ2 (t)

∣∣�λ1 (t)
〉

(2)

being the overlap between two quantum states, |�λ1 (t)〉 and
|�λ2 (t)〉, resulting from the same initial state |�λ1 (0)〉 =
|�λ2 (0)〉 = |�0〉 in the course of the time evolution under
different Hamilton operators, Hλ1 and Hλ2 , respectively. The
LE equals 1 at t = 0 and is typically smaller than 1 at t > 0.
Over the past two decades, the time decay of the LE has
been addressed, both experimentally and theoretically, in a
large variety of quantum systems with nontrivial, complex
dynamics, and has been proven to be an invaluable tool in
understanding dynamical properties of these systems. A vast
body of literature on the subject is summarized in review
articles [1–3].

Most of the attention on the LE has been directed at quantum
systems whose dynamics is chaotic in the classical limit.
This has to do with the existence of a parametric regime,
commonly referred to as the Lyapunov regime, in which the
LE of a chaotic quantum system decays exponentially in
time, with the decay rate given by the average Lyapunov
exponent of the underlying classical system [4–7]. The
Lyapunov regime makes the LE a valuable tool for identifying
signatures of chaotic behavior in the dynamics of quantum
systems.

In integrable (regular) systems, unlike in chaotic systems,
the decay of the LE remains far less understood. Two robust
decay regimes have been established analytically and observed
in numerical simulations. The first regime is characterized
by a Gaussian decay of the LE, M(t) ∼ exp(−const × t2).

It occurs under sufficiently weak Hamiltonian perturbations
and takes place on a time scale inversely proportional to
the perturbation strength [8]. The second regime exhibits an
algebraic decay of the LE, M(t) ∼ t−3d/2, with d being the
dimensionality of the system. The algebraic decay occurs
when the Hamiltonian perturbation is sufficiently strong and
varies rapidly along a typical classical trajectory of the
system [9]. In general, however, the time decay of the LE
in integrable systems is nonmonotonic, may be accompanied
by revivals [10] and intervals of temporary freeze [11],
and may exhibit sharp minima and maxima on short-time
scales [12].

Surprisingly, numerical simulations have shown that, in
addition to the Gaussian and algebraic decays, integrable
systems may also exhibit exponential decay of the LE [13,14].
This finding may seem unexpected as the exponential decay
of the LE is normally regarded as a hallmark of chaotic
dynamics. To our knowledge, a theoretical model that is
able to quantitatively explain exponential decay of the LE
in integrable systems is lacking.

In this paper, we show analytically that exponential decay
of the LE may occur even in the simplest, one-dimensional
integrable systems. For such systems, we derive an explicit
formula giving the exponential decay rate in terms of spectral
characteristics of the unperturbed and perturbed Hamilton
operators and the initial state. In particular, we show that
the decay rate is directly proportional to the strength of
the Hamiltonian perturbation. This linear dependence is to
be compared with the corresponding rate-versus-strength
dependence in the case of chaotic dynamics: Under weak
perturbations, the decay rate is quadratic in the perturbation
strength (the Fermi-golden-rule regime) [5], while under
strong perturbations, the decay rate is independent of the
perturbation strength (the Lyapunov regime) [4]. Finally,
using an example system—a quantum particle moving in-
side a one-dimensional box with Dirichlet-Robin boundary
conditions—we compare our analytical prediction against the
exact (numerically computed) LE, and find the two in good
agreement.
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RÉMY DUBERTRAND AND ARSENI GOUSSEV PHYSICAL REVIEW E 89, 022915 (2014)

II. THEORY OF THE EXPONENTIAL DECAY
IN ONE-DIMENSIONAL SYSTEMS

Let Hλ be a family of integrable one-dimensional Hamil-
tonians, parametrized by some parameter λ. The eigenvalues
and eigenvectors of Hλ are respectively denoted by Eλ(n)
and |ψλ(n)〉, where n stands for the quantum number of the
one-dimensional system.

In what follows, we consider a parametric regime of
asymptotically small perturbations, in which λ1 = λ and
λ2 = λ + ε with |ε| � |λ|. The LE amplitude m(t), defined by
Eq. (2), can be expressed as a double sum over the eigenstates
of both Hλ and Hλ+ε . Using the diagonal approximation,
corresponding to the leading-order perturbation theory, one
arrives at the standard, single sum approximation to the LE
amplitude [15]:

m(t) �
∑

n

|〈ψλ(n)|�0〉|2 ei[Eλ+ε (n)−Eλ(n)]t/�. (3)

Infinite sums, mathematically similar to the one in Eq. (3), are
commonly encountered in studies of time-domain autocorre-
lation functions of quantum wave packets [16,17].

We analyze the sum in Eq. (3) in the semiclassical limit of
high energies. Motivated by the study of quantum revivals of
the autocorrelation function in Ref. [16], we consider an initial
state that is a linear superposition of a large number of highly
excited states:

|〈ψλ(n)|�0〉|2 � 1√
2π (�n)2

exp

[−(n − n0)2

2(�n)2

]
, (4)

with

1 � �n � n0. (5)

We note that, in view of the condition (5), the initial state is
normalized to unity,

∑
n |〈ψλ(n)|�0〉|2 � 1.

We now assume that, for large enough values of the quantum
number, the energy levels can be asymptotically expanded as

Eλ(n) � h(n) + g(λ) + f (λ)nν, n � 1. (6)

Here, the terms h(n) and g(λ) are, respectively, functions
of n and λ only. The term f (λ)nν depends on both n

and λ, and is the first, leading-order term of the expansion
(in powers of 1/n) whose coefficient depends on λ. The
exponent ν is a nonzero real number. We note that it is the
term f (λ)nν that will play a crucial role in the following
analysis.

Expansion (6) approximates the spectrum of a rather
broad class of quantum systems, whose energy levels in the
semiclassical (high-energy) regime can be expanded into a
power series in the quantum number. Some examples are
the motion of a quantum particle confined to the potential
well V (x) = V0|x|α with any real positive α, including the
harmonic oscillator, and the radial motion of an electron in the
hydrogenlike atom. Furthermore, we only consider smooth
perturbations that do not change the power series structure of
the energy spectrum.

In view of Eq. (6), the phase difference in Eq. (3) becomes

Eλ+ε(n) − Eλ(n) � εg′(λ) + εf ′(λ)nν, (7)

where the prime denotes the derivative. The time scale for
which this approximation holds coincides with the range of
validity of the perturbative regime. Then, expanding the right-
hand side of Eq. (7) around n0, we obtain

Eλ+ε(n) − Eλ(n)

� εg′(λ) + εf ′(λ)nν
0

∞∑
k=0


(ν + 1)


(ν − k + 1)k!

(
n − n0

n0

)k

,

(8)

where 
 denotes the Euler Gamma function generalizing the
factorial.

It is instructive to note that some well-known results for
the LE decay can be recovered by truncating the infinite sum
in Eq. (8) and substituting the truncated sum into Eq. (3).
The Gaussian decay regime is obtained if one only keeps
terms up to the linear one in (n − n0)/n0, i.e., the two terms
corresponding to k = 0 and k = 1. Retaining additionally the
quadratic term k = 2 leads to an algebraic modification of
the variance in the Gaussian regime. As we will show below,
the cubic term k = 3 gives rise to a new asymptotic decay
regime, which follows the (algebraically modified) Gaussian
decay, and in which the LE decays essentially exponentially
in time.

Substituting Eqs. (4) and (8), truncated at k = 3, into
Eq. (3), and replacing the sum by the corresponding integral,
we obtain

m(t) � eiφ

∫ ∞

−∞
exp(ian3 − bn2 + icn)

dn√
2π (�n)2

, (9)

with φ = εg′(λ)t/�,

a = ν(ν − 1)(ν − 2)

6
nν−3

0 τ,

b = 1

2(�n)2
− i

2
ν(ν − 1)nν−2

0 τ, (10)

c = νnν−1
0 τ,

and

τ = εf ′(λ)t

�
. (11)

The integral in Eq. (9) can be evaluated using the identity [18]

∫ ∞

−∞
eiax3−bx2+icxdx = 2π

|3a| 1
3

exp

(
bc

3a
+ 2b3

27a2

)

× Ai

[
sgn(a)

|3a| 1
3

(
b2

3a
+ c

)]
, (12)

valid for real a and c, and Re b > 0. Here, Ai denotes the Airy
function and sgn(x) is the sign function, defined as sgn(x) = 1
for x > 0 and sgn(x) = −1 for x < 0. Focusing on the time
scale beyond the validity range of the Gaussian decay regime,

τ � n2−ν
0 (�n)−2, (13)
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and using the identity (12) in Eq. (9), we obtain, to the leading
order in n2−ν

0 (�n)−2/τ ,

|m(t)| �
√

2π

(�n)2

∣∣∣∣ 2

ν(ν − 1)(ν − 2)nν−3
0 τ

∣∣∣∣
1
3

× exp

[
− 1

(ν − 1)(ν − 2)2

(
n0

�n

)2]

× Ai

[
sgn

(
ν − 3

ν − 1

) |ν − 3|
|ν − 1| 1

3

( |ν|nν
0τ

2(ν − 2)2

) 2
3
]
.

(14)

We now assume that ν < 1, which guarantees the argument
of the Airy function in Eq. (14), be strictly positive. Then, in
view of conditions (5) and (13), we use the large argument
asymptotics of the Airy function [19],

Ai(x) � 1

2
√

πx
1
4

exp

(
−2

3
x

3
2

)
, x � 1, (15)

and obtain the following approximate expression for the LE:

M(t) � A

t
e−γ t , (16)

with

γ = 2|ν|
3(ν − 2)2

√
|ν − 3|3
|ν − 1|

|εf ′(λ)|nν
0

�
(17)

and

A = n2−ν
0 (�n)−2

�√
ν2(ν − 1)(ν − 3)|εf ′(λ)|

× exp

[
− 2

(ν − 1)(ν − 2)2

(
n0

�n

)2]
. (18)

Equations (16)–(18) constitute the main analytical result
of the present paper. Equation (16) shows that the LE may
decay exponentially in time (not taking into account an alge-
braic prefactor) even in quantum systems whose counterpart
classical dynamics is not chaotic, and as simple as that of a
one-dimensional conservative system.

III. PARTICLE IN A BOX WITH DIRICHLET-ROBIN
BOUNDARY CONDITIONS

We now illustrate our theory by considering the dynamics
of a quantum particle trapped inside a one-dimensional box,
0 < x < 1. The particle state |�(t)〉 evolves according to the
free-particle Schrödinger equation,(

i∂t + ∂2
x

)〈x|�λ(t)〉 = 0, (19)

subject to a Dirichlet boundary condition at x = 0 and a Robin
boundary condition at x = 1 (see Fig. 1),

〈x|�λ(t)〉|x=0 = 0, (20)

(∂x + λ)〈x|�λ(t)〉|x=1 = 0. (21)

Hereinafter, we set � = 1 and m = 1/2. We address the time
decay of the LE, defined by Eq. (1), due to a small perturbation

FIG. 1. (Color online) Particle in a one-dimensional box with
Dirichlet-Robin boundary conditions.

of the real-valued control parameter λ, i.e., λ1 = λ and
λ2 = λ + ε specify the unperturbed and perturbed systems,
respectively. We take the initial state |�λ1 (0)〉 = |�λ2 (0)〉 =
|�0〉 to be given by a Gaussian wave packet

〈x|�0〉 =
(

1

πσ 2

) 1
4

exp

(
ip0(x − x0) − (x − x0)2

2σ 2

)
. (22)

Here, x0 and p0 correspond to the initial average position and
momentum of the particle, respectively, and σ quantifies the
spatial dispersion of the wave packet. Provided 0 < x0 < 1
and σ � x0 (1 − x0), the entire probability density is well
localized within the box and the boundary conditions (20)
and (21) are satisfied with exponentially high accuracy. We
use the values x0 = 0.5 and σ = 0.01 in all our numerical
examples.

Eigenstates |ψλ(n)〉 and energy levels Eλ(n) ≡ z2
λ(n) of the

system are determined by the equation[
∂2
x + z2

λ(n)
]〈x|ψλ(n)〉 = 0 for n ∈ N, (23)

along with the boundary conditions (20) and (21). Written out
explicitly, the orthonormal eigenstates are

〈x|ψλ(n)〉 =
√

2

[
1 − sin[2zλ(n)]

2zλ(n)

]− 1
2

sin[zλ(n)x], (24)

where the energy levels are determined by solutions of the
transcendental equation

zλ(n) cos zλ(n) + λ sin zλ(n) = 0. (25)

Equation (25) can be straightforwardly solved numerically, to
a high degree of accuracy, for any desired range of n. For
our purposes, it proved sufficient to compute the first 350
eigenstates and eigenlevels of the unperturbed and perturbed
systems.

In terms of the eigenstates and eigenlevels, the expression
for the LE takes the form

M(t) =
∣∣∣∣∣
∑
n,m

〈
�0

∣∣ψλ2 (m)
〉〈
ψλ2 (m)

∣∣ψλ1 (n)
〉

× 〈
ψλ1 (n)

∣∣�0
〉
e
−i[z2

λ1
(n)−z2

λ2
(m)]t

∣∣∣∣∣
2

. (26)

Here, the amplitude of the overlap between the unperturbed
and perturbed eigenstates can be written, using Eq. (24)
together with the boundary conditions (20) and (21), as

〈
ψλ2 (m)

∣∣ψλ1 (n)
〉 = (λ1 − λ2)

〈
1
∣∣ψλ1 (n)

〉〈
ψλ2 (m)

∣∣1〉
z2
λ1

(n) − z2
λ2

(m)
. (27)

We note that, for a sufficiently weak perturbation ε, the
right-hand side of Eq. (27) can be well approximated by the
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FIG. 2. (Color online) Time decay of the LE for a particle moving
inside a one-dimensional box with Dirichlet-Robin boundary condi-
tions. The system, perturbation, and the initial state are characterized
by the following set of parameters: λ = 1, ε = 0.01, x0 = 0.5,
σ = 0.01, and p0 = 300 (red), 400 (green), 500 (blue). Solid curves
represent the numerically exact LE. Straight dashed lines of the
corresponding color show the trend of the exponential decay e−γ t ,
with γ computed in accordance with Eqs. (37). See text for details.

Kronecker’s symbol δm,n, and, consequently, the expression for
the LE amplitude can be reduced to Eq. (3). More accurately,
however, the value of the LE, M(t), can be obtained by
substituting Eqs. (22), (24), and (27) into Eq. (26), and
numerically evaluating the overlap amplitudes 〈ψλ(n)|�0〉 and
the sums in Eq. (26).

Figure 2 presents three LE decay curves in the system with
λ = 1 under the perturbation ε = 0.01. The initial Gaussian
state is specified by the average position x0 = 0.5 and spatial
dispersion σ = 0.01. Three values of the average momentum
are considered: p0 = 300 (red solid curve), p0 = 400 (green
solid curve), and p0 = 500 (blue solid curve). All three
curves exhibit well-pronounced regions of nearly exponential
decay featuring a LE drop over three to four orders of
magnitude. It is interesting to note that the exponential
decay persists over very-long-time intervals, corresponding
to approximately 109–1010 periods of the underlying classical
oscillation.

In order to compare the numerically obtained LE decay
curves with the analytical predictions of the previous section,
we evaluate the exponential decay rate γ in accordance with
Eq. (17). To this end, we expand the energy eigenlevels
Eλ(n) = z2

λ(n) into a series of the form (6) for large n. We
first write zλ in terms of a new quantity ζλ as

zλ(n) = π
(
n − 1

2

) + ζλ(n). (28)

Then, substituting Eq. (28) into Eq. (25), we obtain(
π − n−1 π

2
+ n−1ζλ

)
sin ζλ = n−1λ cos ζλ. (29)

Since ζλ → 0 as n−1 → 0, we look for ζλ in the form of the
following power series in n−1:

ζλ = n−1Aλ + n−2Bλ + n−3Cλ + O(n−4). (30)

Substituting Eq. (30) into Eq. (29), expanding both sides of the
resulting equation into power series in n−1, and then matching
the expansion coefficients on both sides of the equation, we
find

Aλ = λ

π
, (31)

Bλ = λ

2π
, (32)

Cλ = λ

4π
− λ2

π3
− λ3

3π3
. (33)

Then, using Eqs. (30)–(33) into Eq. (28), we get

zλ(n) = πn − π

2
+ λ

πn
+ λ

2πn2

+
(

λ

4π
− λ2

π3
− λ3

3π3

)
n−3 + O(n−4). (34)

Raising zλ to the second power, we obtain

Eλ(n) = π2

(
n − 1

2

)2

+ 2λ −
(

1 + 2

3
λ

)
λ2

π2n2
+ O(n−3).

(35)

Comparing Eq. (35) with Eq. (6), we conclude that, for
the system of a particle moving inside a one-dimensional
Dirichlet-Robin box,

ν = −2 and f (λ) = −
(

1 + 2

3
λ

)
λ2

π2
. (36)

Finally, a substitution of Eq. (36) into Eq. (17) leads to the
following explicit formula for the decay rate:

γ = 5

6π2

√
5

3

|(1 + λ)λε|
n2

0

. (37)

The value of n0 can be computed numerically as n0 =∑
n n |〈ψλ(n)|�0〉|2. For the three cases presented in Fig. 2,

we obtain n0 � 96 for the initial state with p0 = 300 (red
curve), n0 � 128 for p0 = 400 (green curve), and n0 � 160
for p0 = 500 (blue curve). A substitution of these values of
n0, along with λ = 1 and ε = 0.01, yields the corresponding
values of the decay rate γ . Dashed lines in Fig. 2 present the
trend of the exponential decay e−γ t for each of the three cases.
It is evident that Eq. (37) [or, equivalently, Eq. (17)] provides
a very good estimate for the rate of the exponential decay of
the LE.

Finally, we note that the quantum number dispersion �n,
evaluated as (�n)2 = ∑

n(n − n0)2 |〈ψλ(n)|�0〉|2, approxi-
mately equals 23 for all three initial states considered in this
section. This value is consistent with condition (5), which is
one of the central assumptions of our theory.

IV. DISCUSSION AND CONCLUSION

In this paper we have developed an analytical theory of
the long-time exponential decay of the Loschmidt echo (or
fidelity) in one-dimensional integrable quantum systems under
the action of integrable perturbations. In particular, we have
shown that, in the integrable case, the rate of the exponential
decay γ is proportional to the perturbation strength |ε|. This
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is to be contrasted with the γ vs ε dependence typically
observed in quantum systems whose dynamics is chaotic in the
classical limit: γ ∝ |ε|2 for weak perturbation (Fermi-golden-
rule regime) and γ ∝ |ε|0 for strong perturbations (Lyapunov
regime). It is interesting to note that the linear dependence of
the decay rate on the perturbation strength, γ ∝ |ε|1, has been
also observed in a quantum system with a chaotic classical
counterpart under the action of a local perturbation [20]. We
think it is important to explore the connection between this
work and our results.

As a test of our analytical formulas we have applied our
theory to the system of a quantum particle moving inside a
one-dimensional box with Dirichlet boundary condition on
one end and Robin boundary condition on the other. The Robin
control parameter was used to induce a perturbation. We have
shown the system to exhibit a well-pronounced regime of an
exponential decay of the Loschmidt echo, and found a good
agreement between the analytically predicted and numerically
observed values of the decay rate.

Exponential decay of the Loschmidt echo in integrable
systems has been previously addressed by numerical simu-
lations. The exponential decay regime was clearly observed
in Ref. [13], however, no clear relation between the decay
rate and the perturbation strength was found. We attribute this
to their particular choice of the initial state, at variance with
the semiclassical condition (5). In Ref. [14], the exponential

decay regime was found to be a transient from the short-
time Gaussian to the long-time power law decay. This is
not in contradiction with our result. Our theory, in addition
to explaining the physical origin of the exponential decay
regime, provides an explicit formula for the decay rate, and,
in particular, gives the dependence of the decay rate on the
perturbation strength.

More generally, the current study emphasizes the benefit
of using the Loschmidt echo as a tool for analyzing the long-
time asymptotics of quantum dynamics in the semiclassical
regime. We have found that the Loschmidt echo may decay
exponentially even in one-dimensional quantum systems. This
can be related to the structural instability of the corresponding
classical integrable systems. A natural way to extend our
approach is to address higher-dimensional systems. One of
the central challenges of such a study is the necessity to
account for quasidegeneracies of the energy spectrum, generic
in many-dimensional integrable systems.
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(2003).

[12] A. Goussev, Phys. Rev. E 83, 056210 (2011).
[13] Y. S. Weinstein and C. S. Hellberg, Phys. Rev. E 71, 016209

(2005).
[14] W.-ge Wang, G. Casati, and B. Li, Phys. Rev. E 75, 016201

(2007).
[15] A. Peres, Phys. Rev. A 30, 1610 (1984).
[16] M. Nauenberg, J. Phys. B: At. Mol. Opt. Phys. 23, L385

(1990).
[17] R. W. Robinett, Phys. Rep. 392, 1 (2004).
[18] See, e.g., C. Leichtle, I. Sh. Averbukh, and W. P. Schleich, Phys.

Rev. A 54, 5299 (1996).
[19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products, edited by A. Jeffrey and D. Zwillinger (Academic,
New York, 2007), 7th ed.

[20] D. A. Wisniacki, E. G. Vergini, H. M. Pastawski, and F. M.
Cucchietti, Phys. Rev. E 65, 055206(R) (2002).

022915-5

http://dx.doi.org/10.1016/j.physrep.2006.09.003
http://dx.doi.org/10.1016/j.physrep.2006.09.003
http://dx.doi.org/10.1016/j.physrep.2006.09.003
http://dx.doi.org/10.1016/j.physrep.2006.09.003
http://dx.doi.org/10.1080/00018730902831009
http://dx.doi.org/10.1080/00018730902831009
http://dx.doi.org/10.1080/00018730902831009
http://dx.doi.org/10.1080/00018730902831009
http://dx.doi.org/10.4249/scholarpedia.11687
http://dx.doi.org/10.4249/scholarpedia.11687
http://dx.doi.org/10.4249/scholarpedia.11687
http://dx.doi.org/10.4249/scholarpedia.11687
http://dx.doi.org/10.1103/PhysRevLett.86.2490
http://dx.doi.org/10.1103/PhysRevLett.86.2490
http://dx.doi.org/10.1103/PhysRevLett.86.2490
http://dx.doi.org/10.1103/PhysRevLett.86.2490
http://dx.doi.org/10.1103/PhysRevE.64.055203
http://dx.doi.org/10.1103/PhysRevE.64.055203
http://dx.doi.org/10.1103/PhysRevE.64.055203
http://dx.doi.org/10.1103/PhysRevE.64.055203
http://dx.doi.org/10.1103/PhysRevE.65.045206
http://dx.doi.org/10.1103/PhysRevE.65.045206
http://dx.doi.org/10.1103/PhysRevE.65.045206
http://dx.doi.org/10.1103/PhysRevE.65.045206
http://dx.doi.org/10.1103/PhysRevB.70.035311
http://dx.doi.org/10.1103/PhysRevB.70.035311
http://dx.doi.org/10.1103/PhysRevB.70.035311
http://dx.doi.org/10.1103/PhysRevB.70.035311
http://dx.doi.org/10.1103/PhysRevE.65.036208
http://dx.doi.org/10.1103/PhysRevE.65.036208
http://dx.doi.org/10.1103/PhysRevE.65.036208
http://dx.doi.org/10.1103/PhysRevE.65.036208
http://dx.doi.org/10.1209/epl/i2003-00289-y
http://dx.doi.org/10.1209/epl/i2003-00289-y
http://dx.doi.org/10.1209/epl/i2003-00289-y
http://dx.doi.org/10.1209/epl/i2003-00289-y
http://dx.doi.org/10.1103/PhysRevE.68.036216
http://dx.doi.org/10.1103/PhysRevE.68.036216
http://dx.doi.org/10.1103/PhysRevE.68.036216
http://dx.doi.org/10.1103/PhysRevE.68.036216
http://dx.doi.org/10.1088/1367-2630/5/1/109
http://dx.doi.org/10.1088/1367-2630/5/1/109
http://dx.doi.org/10.1088/1367-2630/5/1/109
http://dx.doi.org/10.1088/1367-2630/5/1/109
http://dx.doi.org/10.1103/PhysRevE.83.056210
http://dx.doi.org/10.1103/PhysRevE.83.056210
http://dx.doi.org/10.1103/PhysRevE.83.056210
http://dx.doi.org/10.1103/PhysRevE.83.056210
http://dx.doi.org/10.1103/PhysRevE.71.016209
http://dx.doi.org/10.1103/PhysRevE.71.016209
http://dx.doi.org/10.1103/PhysRevE.71.016209
http://dx.doi.org/10.1103/PhysRevE.71.016209
http://dx.doi.org/10.1103/PhysRevE.75.016201
http://dx.doi.org/10.1103/PhysRevE.75.016201
http://dx.doi.org/10.1103/PhysRevE.75.016201
http://dx.doi.org/10.1103/PhysRevE.75.016201
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1088/0953-4075/23/15/001
http://dx.doi.org/10.1088/0953-4075/23/15/001
http://dx.doi.org/10.1088/0953-4075/23/15/001
http://dx.doi.org/10.1088/0953-4075/23/15/001
http://dx.doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1016/j.physrep.2003.11.002
http://dx.doi.org/10.1103/PhysRevA.54.5299
http://dx.doi.org/10.1103/PhysRevA.54.5299
http://dx.doi.org/10.1103/PhysRevA.54.5299
http://dx.doi.org/10.1103/PhysRevA.54.5299
http://dx.doi.org/10.1103/PhysRevE.65.055206
http://dx.doi.org/10.1103/PhysRevE.65.055206
http://dx.doi.org/10.1103/PhysRevE.65.055206
http://dx.doi.org/10.1103/PhysRevE.65.055206



