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Chimera states on complex networks
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The model of nonlocally coupled identical phase oscillators on complex networks is investigated. We find the
existence of chimera states in which identical oscillators evolve into distinct coherent and incoherent groups.
We find that the coherent group of chimera states always contains the same oscillators no matter what the initial
conditions are. The properties of chimera states and their dependence on parameters are investigated on both
scale-free networks and Erdös-Rényi networks.
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I. INTRODUCTION

A chimera state refers to the spatial-temporal pattern in
which identical oscillators evolve into distinct coherent and
incoherent groups [1–6]. The state was first numerically
observed by Kuramoto and his colleagues [1,2] in simulations
of nonlocally coupled complex Ginzburg-Landau equations.
Soon after, great interest on chimera states was attracted and a
flurry of theoretical activities appeared. Abrams and Strogatz
[3] found an exact solution for the state in a ring of phase
oscillators with a cosine-kernel coupling. A clustered chimera
state in a ring of oscillators [7,8] in which spatially distributed
phase coherences are separated by incoherence and adjacent
coherent groups are in antiphase was found in nonlocally cou-
pled oscillators in the presence of time delay. In contrast, Zhu
et al. found that a two-cluster chimera state can be realized in
the absence of time-delayed coupling but with heterogeneous
phase lags [9]. Abrams and Strogatz [10] considered a model
consisting of two interacting subpopulations of oscillators and
found a breathing chimera state. Pikovsky and Rosenblum [11]
investigated an oscillator ensemble in which there are several
subpopulations of identical units and a general heterogeneous
coupling between them is assigned, and they acquired a
quasiperiodic chimera state. Laing [12,13] studied chimera
states using the Ott-Antonsen ansatz [14], which provides
a low-dimensional description of the dynamics in globally
coupled phase oscillators, and he pointed out that a breathing
chimera state may exist in a one-dimensional system when the
parameter heterogeneity is introduced to the system. Chimera
states can manifest their presence in self-organized patterns.
Kuramoto and his colleagues first observed spiral chimeras
in a two-dimensional arrays of nonlocally coupled oscillators
in which the core region of the spiral wave is occupied by
incoherent oscillators [15]. Soon after, a theoretical analysis
on spiral chimera states was presented by Martens et al. [16].
Interestingly, Gu et al. found that spiral chimeras may exist
in complex oscillatory and chaotic systems [17]. Recently the
experimental evidence on the chimera state has been presented
either in optical or in chemical setups [18,19].
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Up to now, the investigations on chimera states have
focused on regular structures where oscillators sit on either
a one-dimensional array or a two-dimensional lattice. The
emergent chimera state is thought to be directly related to
the phenomenon of unihemisphere sleep, the coexistence
of synchronized and unsynchronized brain wave activities
[20,21]. However, typical patterns in the connections among
neurons in the brain are thought to be characterized by complex
networks. Consequently, it will be interesting to ask whether
chimera phenomena can be observed on complex networks,
and that is our target in this work.

II. THE MODEL

For N identical phase oscillators nonlocally coupled to-
gether, the motion equation of the system can be described
as

dθi

dt
= ω − 1

N

N∑

j=1

Gij sin(θi − θj + α), (1)

where θi represents the phase of oscillator i (i = 1, . . . ,N),
ω is the common natural frequency of phase oscillators, and
we set ω = 0 for convenience. The angle α(0 � α � π

2 ) is
a tunable parameter that describes the phase lag between
oscillators i and j . To account for the nonlocal coupling,
we introduce the coupling function Gij depending on the
shortest length between oscillators i and j on the underlying
complex network. Generally, Gij (dij ) � 0 and decreases with
the shortest length dij . We assume that Gij follows

Gij = Ae−κdij , (2)

where A is the global coupling strength and κ describes the
strength of the nonlocal coupling. When κ = 0, the model
becomes a globally coupled Kuramoto model. On the other
hand, when κ increases, the model approaches a Kuramoto
model on networks with locally coupling, and the coupling
function G becomes the adjacent matrices of networks.
Throughout this work, we set N = 1024, α = π/2 − 0.10,
A = 1, and κ = 0.1 unless otherwise specified.
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III. RESULTS AND ANALYSIS

To show evidence for the existence of a chimera state, we
first monitor the snapshot of phases of oscillators when the sys-
tem has reached a steady state. Then we consider the effective
angular velocities of oscillators. The effective angular velocity
of oscillator i is defined as 〈ωi〉 = limT →∞ 1

T

∫ t0+T

t0
θ̇i dt . In

simulations, T = 1000 and t0 is sufficiently large such that
the system has evolved into a steady state. We also consider
the fluctuation of the instantaneous angular velocity σi of
oscillator i around its effective velocity, which is defined as
σ 2

i = limT →∞ 1
T

∫ t0+T

t0
(θ̇i − 〈ωi〉)2 dt . A zero σi indicates that

the oscillator i rotates at a constant angular velocity, which
helps to distinguish a stationary chimera state from a breathing
one.

Furthermore, singling out a chimera state on complex
networks is not trivial. On a regular network such as a
one-dimensional array or a two-dimensional lattice, a chimera
state is easily visualized since both coherent and incoherent
oscillators form compact clusters in space and the boundary
between them can be easily found. However, the concept of
the space is lost on complex networks, which makes it not
straightforward to figure out a chimera state. To have a clear
view of chimera states on complex networks, we rearrange
the order of oscillators as follows. First, we ascend oscillators
according to their effective angular velocities such that i � j

if |〈ωi〉| � |〈ωj 〉|. Second, if there exists a plateau in the graph
of |〈ωi〉| on which oscillators have the same effective angular
velocity, we will further rearrange the order of oscillators on
the plateau. We label the oscillator with the highest degree on
the plateau with 1. Then the other oscillators on the plateau
are ordered according to their distance away from the first one.
For those oscillators with the same distance from the first one,
i < j if their degrees satisfy ki > kj .

We consider two types of complex networks: Erdös-Rényi
networks (ERN) and scale-free networks (SFNs). The number
of neighbors of an oscillator follows Poission distributions
on ERNs, while, for SFNs, the number of neighbors of an
oscillator follows power law distributions. In this work, we
adopt the Barabasi-Albert model (BAM) for SFNs and, for
both ERNs and SFNs, we first let their mean degrees be 〈k〉 =
4. The numerical results are presented in Fig. 1, in which the
top panels are for ERNs and the bottom panels are for SFNs.
The snapshots of the phases of oscillators in Fig. 1(a) show the
formation of two groups, a typical pattern of chimera states.
As shown in Fig. 1(a), the left group is a coherent one in which
oscillators have nearly the same phases and the right one is an
incoherent one in which oscillators randomly distribute their
phases in the range of [−π,π ]. The relative phase differences
between oscillators in the coherent group are unchanged with
time, while those in the incoherent group change irregularly.
The effective angular velocity presented in Fig. 1(b) shows that
the oscillators in the coherent group have the same 〈ω〉, which
is around 〈ω〉 = −0.53. On the other hand, the oscillators in the
incoherent group advance their phases at a relatively low |〈ω〉|.
The observed chimera state is a stationary one as evidenced
by σ = 0 in the coherent group in Fig. 1(c).

Clearly, there do exist chimera states on complex networks
where parts of the oscillators are synchronized while others
are out of synchronization. Interestingly, though ERNs and

FIG. 1. Column (a) shows the the snapshots of the phase profile
of oscillators. Column (b) shows the effective angular velocities of
oscillators 〈ω〉 averaged over 1000 time units. Column (c) shows
the fluctuation of the instantaneous angular velocity of oscillators σ .
The top panels are for ERNs and the bottom panels for SFNs. The
mean degree of networks 〈k〉 = 4. N = 1024, A = 1, κ = 0.1, and
α = π/2 − 0.1.

SFNs are quite different in their topological properties, the
chimera states realized on these two types of networks in Fig. 1
share great similarity except for the higher effective angular
velocities in value and smaller coherent group for the chimera
state on SFNs. Actually, even the buildup of chimera states on
these two types of networks looks like each other. In Fig. 2 we
present the time evolutions of the model (1) with random initial
conditions. The transients for both networks are short, which
evolve into chimera states only after a few cycles. The time
evolutions of model 1 in Fig. 2 also show that the dynamics
of oscillators in the incoherent group is characterized by the

FIG. 2. (Color online) The time evolutions of oscillators show
the buildup of a chimera state on an ERN (a) and an SFN (b) from
random initial conditions. The parameters are N = 1024, A = 1,
κ = 0.1, and α = π/2 − 0.1.
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existence of a large amount of phase slips, which interrupt
their synchronization with those in the coherent group.

We will make several remarks on chimera states on ERNs
and SFNs. First, the coherent group is composed of oscillators
which are connected on networks, and the incoherent group is
fragmented. Simulations show that there is only one connected
cluster for the synchronized oscillators. Differently from
this, the incoherent group consists of a large number of
desynchronized clusters which are separated by the coherent
group on networks. In particular, most of desynchronized
clusters consist of only one or two oscillators. Second, chimera
states on complex networks can always be formed no matter
what the initial conditions are. The generation of a chimera
state on regular networks in previous studies always has
required special initial conditions due to its coexistence with
a trivial fully synchronized state and its narrow attraction
basin [6]. In contrast, chimera states on complex networks
can be evolved from arbitrary initial conditions in which
phases of oscillators are randomly chosen from [−π,π ]; one
example has been shown in Fig. 2. Furthermore, chimera states
on complex networks are always unique in the sense that,
under the same dynamical parameters and network parameters,
the coherent group always contains the same oscillators no
matter what initial conditions are, which can be examined by
numerical simulations. By reshuffling the phases of oscillators
when a chimera state has been built and then letting the model
evolve again, we find that the same set of coherent oscillators is
obtained on SFNs, and most of oscillators in the coherent group
on ERNs are always there. Generally, on a one-dimensional
array (or a two-dimensional lattice) with periodic boundary
conditions, the coherent group in chimera states may appear in
any locations around the array (or lattice) since oscillators are
indistinguishable due to the translation symmetry in the model.
However, oscillators on complex networks are distinguishable
according to their different neighborhoods, and, as a result,
the coherent group in a chimera state is always attracted to
the same locations on complex networks for different initial
conditions.

Though chimera states on both ERNs and SFNs seem
to be similar in the sense of their macroscopic properties,
a difference exists on the organizations of chimera states
on ERNs and on SFNs. To see it, we consider what kind
of oscillators are prone to being synchronized. Since all
oscillators are identical in the sense of their dynamics when
isolated, the difference between them results from their
locations on networks. Therefore, we focus on the number
of neighbors (the degree) of oscillators and monitor the degree
distribution of oscillators in the coherent group. The results for
different mean degrees 〈k〉 are presented in Fig. 3 in which the
degree distributions of the underlying networks are presented
as a comparison. On an ERN, the degree distributions of
oscillators in the network and in the coherent group are almost
the same. On the other hand, though the degree distribution
of oscillators in the coherent group on an SFN still follows
a power law, the exponent gets increased in value. The
difference of the degree distributions between oscillators in
the coherent groups and those on networks suggests that
all oscillators have the same probability to be synchronized
on ERN networks while oscillators with high degrees are

FIG. 3. (Color online) The degree distributions of oscillators in
the coherent group (red circle symbols) and the degree distributions
of the underlying networks (black square symbols) for different mean
degrees. The top panels are for ERNs, and the bottom panels are for
SFNs. The mean degree 〈k〉 = 4 in column (a), 〈k〉 = 6 in column
(b), and 〈k〉 = 8 in column (c), respectively. The parameters are N =
1024, A = 1, κ = 0.1, and α = π/2 − 0.1.

more prone to be synchronized than those with low degrees
on SFNs.

Generally, in coupled oscillators, the strength of interaction
of an oscillator with its environment measures its ability
to be synchronized. The difference in the organizations of
chimera states on ERNs and on SFNs can be further evidenced
by different behaviors of the interaction of oscillators with
their environments on ERNs and on SFNs. In the model
of nonlocally coupled oscillators on complex networks, the
interaction strength of oscillator i with its environment can
be defined as Si = ∑N

j=1 Ae−κdij . For an oscillator with high
degree, its interaction strength Si with the environment will
be high since the oscillator always has the shortest lengths to

FIG. 4. (Color online) The profiles of S on ERNs with mean
degree 〈k〉 = 6 (a) and 〈k〉 = 8 (b), respectively. The profiles of S

on SFNs with mean degree 〈k〉 = 6 (c) and 〈k〉 = 8 (d), respectively.
The oscillators on the left side of the red line are in the coherent group.
The parameters are N = 1024, A = 1, κ = 0.1, and α = π/2 − 0.1.
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FIG. 5. (Color online) The dependence of the size of the coherent
group P on the mean degree 〈k〉 (a), the strength of the nonlocally
coupling κ (b), and the global coupling strength A (c) for ERNs (the
black square) and SFNs (the red circles), respectively. The parameters
are N = 1024, A = 1, κ = 0.1, and α = π/2 − 0.1.

others. Under the same arrangement of oscillators in Fig. 1,
we present Si for different mean degrees 〈k〉 in Fig. 4. For
ERNs, there is no difference in Si between oscillators in the
coherent group and oscillators in the incoherent group, which
means that the formation of the coherent cluster in chimera
states on ERNs has no preference for oscillators. In contrast,

for SFNs, oscillators with the highest S are always in the
coherent group. As a result, the coherent group in chimera
states on SFNs always condensates onto those oscillators with
the highest degrees.

Now we study the dependence of chimera states on the
parameters of the model. We focus on the size of the coherent
group. For this aim, we consider the quantity P = Ns/N

with Ns the number of oscillators in the coherent group. As
shown in Fig. 5, the dependence of P on the mean degree
〈k〉 of the underlying network, the strength of the nonlocal
coupling κ , and the global coupling strength A is independent
of the type of networks. Furthermore, Fig. 5(a) shows that
P undergoes a fast growth at small 〈k〉 and, then, grows
towards P = 1 very slowly at large 〈k〉. On the other hand,
Fig. 5(a) shows that increasing κ disfavors the coherent group
in chimera states. At sufficiently strong κ where the model is
reduced to the one similar to the locally coupled oscillators,
chimera states yield to an incoherent state. Though A is
the global coupling, Fig. 5(c) shows no clear dependence
of chimera states on A provided that A is not sufficiently
weak.

IV. CONCLUSION

In summary, we have studied the dynamics of nonlocally
coupled identical phase oscillators on scale-free networks
and Erdös-Rényi networks. We found that chimera states can
spontaneously emerge out of arbitrary initial conditions for
both types of complex networks. We found that oscillators
in the coherent group tend to be those with high degrees on
SFNs, while there is no preference for degree for oscillators
on ERNs. We also found that the coherent group always
contains the same oscillators regardless of initial conditions.
We investigated the dependence of chimera states on the
system parameters and found that the size of coherent group
always increases with the mean degree of the underlying
networks and decreases monotonically with the strength of
the nonlocal coupling.
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