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Distribution of zeros of the Husimi function in systems with degeneracy
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The distribution of zeros of the Husimi function of energy eigenstates has proven to be a very useful tool
for the characterization of the quantum transition from order to chaos in systems without degeneracy. In this
paper, we show, by means of calculations on the Hénon-Heiles Hamiltonian system, that the quantum order-chaos
transition in systems with degeneracy can also be characterized through the distribution of the Husimi function
zeros, providing that the appropriate linear combination of degenerate eigenstates is used. If using an arbitrary
linear combination, spurious results can be achieved, suggesting a wrong premature quantum transition to chaos.
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I. INTRODUCTION

In the seminal paper of Lebœuf and Voros [1], the
distribution of zeros of the Husimi function was shown as
a meaningful indicator of the regular or chaotic character
of an energy eigenstate from a quantum map. Specifically,
the distribution of zeros is one dimensional, the zeros being
distributed along a line, for regular eigenstates, while it is two
dimensional, with the zeros spreading out in Husimi phase
space, for chaotic eigenstates.

Thereafter, different studies have extended the properties
of the distributions of zeros in quantum maps [2–4], and
also these properties have been established in more realistic
systems. Thus, the regular or chaotic behavior of the quantum
states has been characterized through the distributions of
the Husimi zeros in the spin-boson interaction model [5,6],
in quantum billiards [7,8], in one-dimensional autonomous
(therefore integrable) systems [9,10], in spin Stern-Gerlach
apparatus [11] (where the possibility of experimental mea-
surement of the zeros by means of a Stern-Gerlach apparatus
is shown), in acoustic waveguides [12], and also in molecular
systems [13–16].

Nevertheless, in all these studies only nondegenerate energy
eigenstates have been regarded, so that the behavior of the dis-
tributions of Husimi zeros of degenerate eigenstates remains
unknown. In the present work, the behavior of the Husimi
zeros of degenerate eigenstates in the order-chaos transition is
examined by means of calculations on a well known system
with degeneracy: the Hénon-Heiles Hamiltonian system.

The Hénon-Heiles system is a paradigmatic chaotic system,
initially proposed by Hénon and Heiles as a model for galactic
motion [17], and widely used thereafter in the study of
different features of nonlinear dynamical systems. Thus, recent
works resort to the Hénon-Heiles Hamiltonian for studying
generalized bifurcation diagrams in conservative systems [18],
the amplitude death phenomena in delay-coupled Hamiltonian
systems [19], the symmetry properties of orthogonal and
covariant Lyapunov vectors and their exponents [20], the
weakly noisy chaotic scattering [21], and the second-order
normal forms of Hamiltonian systems relative to periodic
flows [22].
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The organization of the paper is as follows. In Sec. II the
Hénon-Heiles Hamiltonian and also the performed classical
and quantum calculations are described. Next, the obtained
results are presented and discussed in Sec. III. Finally, the
conclusions are summarized in Sec. IV.

II. SYSTEM DESCRIPTION AND CALCULATIONS

A. The Hénon-Heiles Hamiltonian

The Hénon-Heiles system [17] is defined by means of the
Hamiltonian function

H = 1

2

(
p2

x + p2
y

) + ω2

2
(x2 + y2) + λ

3
(3x2y − y3), (1)

where (x,y,px,py) are Cartesian coordinates and its conju-
gated momenta, ω > 0 is the harmonic frequency, and λ > 0
the chaos parameter. Notice that the Hamiltonian in Eq. (1)
tends to the (integrable) isotropic harmonic oscillator as
λ → 0, leading to a separable in (x,px) and (y,py) coordinates
Hamiltonian function H0 = H0x + H0y , with two motion
constants corresponding to the energy for each Cartesian
degree of freedom, Ex = H0x and Ey = H0y .

The Hénon-Heiles system can also be expressed in polar
coordinates (r,θ,pr,pθ ) by using the canonical transformation

r = +
√

x2 + y2, pr = (xpx + ypy)/(x2 + y2),

θ = arctan(y/x), pθ = xpy − ypx, (2)

leading to the following Hamiltonian function:

H ′ = 1

2

(
p2

r + p2
θ

r2

)
+ ω2

2
r2 + λ

3
r3 sin(3θ ). (3)

Note that, at the integrable limit λ → 0, the Hamiltonian in
Eq. (3) has two motion constants: the total energy E = H ′

0 and
the angular momentum pθ (indeed, for λ = 0 the coordinate θ

is cyclic).
As can be observed in Fig. 1, the potential energy function

of the Hénon-Heiles system V (x,y) has a minimum at the
origin, where V (0,0) = 0, and three symmetric saddle points
at (xs,ys) = (0,1),(±√

3/2, − 1/2) in ω2/λ units, where Es ≡
V (xs,ys) = ω6/6λ2. For a total energy below the saddle points
energy Es, the system is classically bounded. In this work,
we will focus on the bounded region of the potential energy
surface.
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FIG. 1. (Color online) Potential energy function V of the Hénon-
Heiles system, with parameter values ω = 1 and λ = √

0.0175,
depicted as contour lines spaced one unit from V = 0 to V = 16.
The symmetry elements corresponding to the C3v point group have
been also represented: the ternary axis C3 (�), and the three vertical
planes σ1, σ2, and σ3 (thick line).

The concavity-convexity analysis of Toda [23] applied to
the Hénon-Heiles system leads to the order-chaos circular
boundary rb = ω2/2λ, which is reached at the threshold energy
Eb = ω6/12λ2. Observe that the threshold energy Eb is exactly
half of the escape energy Es.

In addition, the Hénon-Heiles potential belongs to the C3v

(Schönflies notation) symmetry point group, whose symmetry
elements, the ternary axis C3 and the three vertical planes
σ1, σ2, and σ3, are represented in Fig. 1. Note that the C3v

symmetry of the Hénon-Heiles potential is shown clearly in
the polar representation in Eq. (3).

B. Classical calculations

The Hamilton equations of motion corresponding to Eq. (1)
with parameter values ω = 1 and λ = √

0.0175 have been
built, and standard numerical integration has been used to
obtain solution trajectories for the Hénon-Heiles system.
In order to get a suitable graphical representation of the
phase space structure, we have calculated composite Poincaré
surfaces of section (PSSs) on a symmetry plane for increasing
energies up to the saddle points energy Es = 9.524.

For this purpose, the symmetry plane σ1 has been used by
making x = 0, and the positive value of momentum px > 0
chosen, leading to the (y,py)E representation of the PSS for
a total energy E. Notice that, due to symmetry constraints,
a bounded trajectory in configuration space contained in a
symmetry plane is necessarily periodic. Then, the motions
along the σ planes correspond to periodic orbits (POs).
Particularly, the symmetry plane σ1 defining the PSS contains
a PO, and this orbit does not cross the plane at x = 0 because

it is contained in the plane. Thus, the representation of this PO
on the PSS corresponds to the energy boundary, given by the
condition H (x = 0,y, px = 0,py) = E for a total energy E.

C. Quantum calculations

In order to obtain the Husimi functions, first the eigenener-
gies and quasibounded1 eigenstates of the Hamiltonian opera-
tor corresponding to the Hamiltonian function in Eq. (1) (with
parameter values ω = 1, λ = √

0.0175, and Planck’s constant
� = 0.5) have been calculated, and then the corresponding
Husimi functions obtained by means of a basis set change in
Hilbert space.

The eigenenergies and eigenstates calculation has been
performed by using a two-dimensional Gaussian basis set
{χk}Nk=1, where

χk(x,y) =
√

2α

π
e−α[(x−xk )2+(y−yk )2], (4)

distributed over a C3v hexagonal grid at points (xk,yk), as
in the calculations of Hamilton and Light [24], bounded
by the energy contour corresponding to the saddle points
energy Es = 9.524, and leading to a basis set with N =
6 × 169 Gaussian functions. The exponential parameter is
set to α = −2 log(Smax)/	2, where Smax = 0.8 and 	 = 1/4
are, respectively, the maximum overlap and the minimum
length between Gaussian functions in the grid, thus optimizing
the numerical linear dependence prevention.2 The matrix
representation of the Hamiltonian operator in the Gaussian
basis set has been built and then diagonalized by using the
LAPACK routine DSYEV [25]. In this way, the 140 low lying
eigenstates 〈xy|n〉 (n = 1, . . . ,140) with its eigenenergies En

converged to within 4 × 10−4 have been obtained. Notice that
all eigenvectors calculated by means of the routine DSYEV

are real.
As is well known, the C3v symmetry of the potential energy

function induces the same symmetry in the eigenstates, so that
they must belong to one of the irreducible representations of
the C3v symmetry point group (Mulliken notation): A1 (one
dimensional), A2 (one dimensional), or E (two dimensional).
Note that the symmetry adapted hexagonal grid simplifies the
irreducible representation assignment of the eigenstates, so it
is only necessary to verify the symmetry relations between the
appropriate expansion coefficients for each eigenstate, as did
Hamilton and Light in Ref. [24].

Moreover, the Husimi function H(x̄,ȳ,p̄x,p̄y) of the eigen-
state |n〉 can be defined as the probability density in the

1Strictly speaking, the eigenstates of the Hénon-Heiles system
are unbounded and therefore their eigenenergies are unquantized.
However, there exists a measure zero subset of eigenstates which are
localized into the well, with negligible amplitudes in the unbounded
region except perhaps for eigenenergies near the escape energy or
above it.

2Notice that the overlap between Gaussian basis functions is
given by 〈χi,χj 〉 = exp{− α

2 [(xi − xj )2 + (yi − yj )2]}, so that the
parameter value α = −2 log(Smax)/	2 ensures a maximum overlap
〈χi,χj 〉max = exp{− α

2 	2} = Smax.
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coherent states |x̄p̄x ȳp̄y〉 representation

H(x̄,ȳ,p̄x,p̄y) = 1

(2π�)2
|〈x̄p̄x ȳp̄y |n〉|2, (5)

where 〈x̄p̄x ȳp̄y |n〉 is calculated by means of the following
basis set change in Hilbert space:

〈x̄p̄x ȳp̄y |n〉 =
∫

dx

∫
dy〈x̄p̄x ȳp̄y |xy〉〈xy|n〉, (6)

being 〈x̄p̄x ȳp̄y |xy〉 the harmonic oscillator coherent packet
given by

〈x̄p̄x ȳp̄y |xy〉 =
√

ω

π�
e−ω[(x̄−x)2+(ȳ−y)2]/2�

× ei[(x̄−2x)p̄x+(ȳ−2y)p̄y ]/2�. (7)

In order to get a suitable graphical representation, and to be
able to compare with the classical calculations, a quantum
Poincaré surface of section (QPSS) for the eigenenergy
En, Hs(ȳ,p̄y ; En), based on the Husimi function has been
calculated by setting, similarly to the classical PSS, x̄ = 0 and
p̄x > 0, namely,

Hs(ȳ,p̄y ; En) = H(0,ȳ,P +
x (0,ȳ,p̄y ; En),p̄y), (8)

where P +
x (0,ȳ,p̄y ; En) is the positive classical momentum in

x coordinate obtained from the Hamiltonian function at the
surface of section, that is,

P +
x (0,y,py ; E) = +[

2E − p2
y − y2

(
ω2 − 2

3λy
)]1/2

. (9)

The zeros of the QPSS Hs(ȳ,p̄y) have been computed by
using the properties of the index of a curve [26]. LetT : x 	→ x′

be a continuous transformation R2 T→ R2, then the index of a
closed curve defined in the source space x equals the number of
zeros in the target space x′ enclosed by that curve. Moreover,
the index of a curve is the winding number of the transformed
curve around the coordinate origin of the target space. Thus,
taking into account that the Husimi QPSS, same as the Husimi
function, is the squared modulus of a complex number z, i.e.,

Hs(ȳ,p̄y) = (Re2(z) + Im2(z)), (10)

the transformation

T : (ȳ,p̄y) 	→ (Re(z),Im(z)) (11)

has been considered. Then, the source space (ȳ,p̄y) has
been divided into square cells, and the number of zeros
contained in each cell numerically calculated by counting the
winding number of the transformed cell in the target space
(Re(z),Im(z)).

Finally, it is interesting to note that by using the Gaussian
basis set defined in Eq. (4), the integrals involved in the
calculation of the matrix representation of the Hamiltonian
operator, and also in the basis set change in Eq. (6), are analytic,
so that there are no further numerical approximations in our
calculations than the finite size of the basis set.

III. RESULTS AND DISCUSSION

A. Classical dynamics

The classical behavior of the bounded region of the Hénon-
Heiles system, as total energy increases, is summarized in
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FIG. 2. (Color online) Composite Poincaré surfaces of section,
with x = 0 and px > 0, of the bounded region of the Hénon-Heiles
system depicted in Fig. 1 for total energies Es/4 (top left), Es/2 (top
right), 3Es/4 (bottom left), and Es (bottom right), where Es = 9.524
is the escape energy.

Fig. 2, where the corresponding composite PSSs for the escape
energy Es = 9.524 and also for 3Es/4, Es/2, and Es/4 are
shown.

At energy Es/4 the system is completely regular, with a
very simple phase space structure. As can be seen in top left
panel of Fig. 2, there are two principal tori families, around
the two elliptic fixed points with py = 0 (rotations), separated
by a chain of islands (librations). The two rotation POs have
the same graph in configuration space (x,y), a closed curve
traveled clockwise or counterclockwise. Consequently, both
principal tori families are topologically equivalent. Observe
that, as is clear from the canonical transformation to polar
coordinates in Eq. (2), the angular momentum pθ for the
rotation POs at the PSS, where x = py = 0, fulfills pθ > 0
(counterclockwise) for the fixed point with y < 0 and pθ <

0 (clockwise) for y > 0. Moreover, the two libration POs
corresponding to the elliptic fixed points in the chain of islands
are contained in the symmetry planes σ2 (for the fixed point
with py > 0) and σ3 (for py < 0). Notice that the angular
momentum for these POs at the PSS, where x = y = 0, is
pθ = 0. There is a third PO contained in the symmetry plane
σ1 but, as was pointed out in Sec. II B, the corresponding
fixed point is degenerate over the energy boundary. Lastly,
the three libration PO’s corresponding to the hyperbolic fixed
points in the chain of islands have a “smile”-shaped graph in
configuration space for the fixed point with py = 0, and the
C3 symmetry rotations of the smile-shaped graph for the other
two fixed points.

For energy Es/2 the phase space structure remains very
regular, although some new chains of islands have appeared,
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FIG. 3. (Color online) Quantum Poincaré surfaces of section
based on the Husimi function, with x̄ = 0 and p̄x > 0, corresponding
to two characteristic samples of the quasibounded nondegenerate
eigenstates A1 of the Hénon-Heiles system. Eigenstates 6A1 (left) and
22A1 (right) have their eigenenergies En = 3.410,7.040, respectively,
below and above the classical order-chaos threshold energy Eb =
4.762. Minima and maxima are represented, respectively, as darker
and lighter regions in the color scale, the zeros being marked with
filled circles (•). Also, the principal fixed points for each eigenenergy
have been superimposed as open circles (©) and crosses (×),
corresponding, respectively, to the elliptic and hyperbolic fixed points.

and also a very thin stochastic band around the separatrix
related to the smile-shaped POs is present. Notice that, as was
shown by Toda [23], Eb = Es/2 = 4.762 corresponds to the
energy threshold in the order-chaos transition.

At energy 3Es/4 the system has a mixed phase space
with regular regions (tori and chains of islands) and
also chaotic regions. Finally, for the escape energy Es

chaos is fully developed, the two principal elliptic fixed
points have suffered a pitchfork bifurcation becoming hy-
perbolic, and only two little islands arisen from each
pitchfork bifurcation remain as regular structures in phase
space.

B. Quantum eigenstates

The behavior of the distributions of zeros of the Husimi
function for the nondegenerate energy eigenstates is the
expected one, i.e., the distributions are one dimensional for
states below the classical order-chaos threshold energy Eb and
they are basically two-dimensional for states above it.

In Fig. 3 the distributions of Husimi zeros for two samples
of nondegenerate states below (6A1) and above (22A1) the
classical threshold energy Eb are depicted. Observe that state
6A1 has the Husimi zeros distributed along the line p̄y = 0
around the principal elliptic point with ȳ > 0, and along a cross
line around the principal elliptic point with ȳ < 0. As energy
increases, new Husimi zeros are located in the same manner
as state 6A1. However, beyond threshold energy Eb some
zeros break this one-dimensional pattern. Thus, state 22A1

has two zeros around the principal elliptic point ȳ > 0 located
perpendicular to line p̄y = 0, leading to a two-dimensional
distribution.

We have verified that, as chaos parameter λ tends to
zero, some A1 nondegenerate energy eigenstates tend to
the angular momentum P̂θ (and energy) eigenstates of the

isotropic harmonic oscillator, so that it is possible to assign the
corresponding quantum numbers to the states at λ = √

0.0175.
Thereby, the states 6A1 and 22A1 in Fig. 3 correspond
to three and seven, respectively, radial excitations and null
angular excitations. Note that the irregular state 22A1 is
clearly localized on the POs contained in the three symmetry
planes σi (i = 1,2,3). Due to the symmetry of the system,
when the number of angular excitations is a multiple of 3,
the nondegenerate energy eigenstates do not correspond to
angular momentum eigenstates but they correspond to sum and
difference combinations of angular momentum eigenstates,
resulting in a pair (A1,A2) of nondegenerate states with
very close eigenenergies. In this case, the Husimi zeros are
distributed around the principal chain of islands instead of
around the two principal tori families.

On the other hand, the behavior of the distribution of Husimi
zeros for the degenerate eigenstates E is not clear. As shown
in Fig. 4, where three samples of degenerate states below
(6E), similar (17E), and above (42E) the classical threshold
energy Eb are represented, the distributions are apparently two
dimensional and without a clear pattern in all three cases.

However, due to the degeneracy, the pairs of eigenstates E

shown in Fig. 4 can be linearly combined to obtain different
pairs of eigenstates E, with the same eigenenergies but
different distributions of Husimi zeros. Namely, these pairs of
degenerate eigenstates come directly from the diagonalization
procedure, and hence they do not necessarily characterize the
degree of chaos in the system. We should search for linear
combinations that have an approximate second constant of
motion (in addition to energy). Considering the behavior of
the nondegenerate eigenstates as the chaos parameter λ tends
to zero described above, the angular momentum P̂θ sounds
a reasonable choice for the approximate second constant of
motion.

Thus, the orthogonal transformation of each pair of real
degenerate eigenstates (|n1〉,|n2〉), obtained directly from the
diagonalization procedure, have been regarded(|n′

1〉|n′
2〉

)
=

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

)(|n1〉
|n2〉

)
, (12)

where 0 � ϑ � π
2 , and the angular momentum uncertainty

�P̂θ for the resulting eigenstates (|n′
1〉,|n′

2〉) calculated as a
function of mixing angle ϑ . Curiously, the uncertainty �P̂θ

does not depend on mixing angle ϑ .
Nevertheless, we are not taking into account all possible

linear combinations. The Hilbert space of quantum mechanics
is, in general, not real but complex. Therefore, the most
general transformation to be regarded is not the orthogonal
transformation but the unitary transformation(|n′

1〉|n′
2〉

)
=

(
cos ϑ

2 eiη sin ϑ
2−e−iη sin ϑ

2 cos ϑ
2

)(|n1〉
|n2〉

)
, (13)

where 0 � ϑ � π and 0 � η < 2π . By using the unitary
transformation, the angular momentum uncertainty for the
resulting eigenstates is really a function of both mixing angles,
ϑ and η, as shown in Fig. 5. Mixing angles define a sphere of
unit radius, the so called Bloch sphere, where opposite points
represent orthonormal vectors. In Fig. 5 the Bloch sphere has
been represented as a rectangle, so that left and right sides are
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FIG. 4. (Color online) Same as described in the caption of Fig. 3 for three characteristic samples of the quasibounded degenerate eigenstates
E of the Hénon-Heiles system obtained directly from the diagonalization procedure. Eigenstates 6E (left), 17E (middle), and 42E (right) have
their eigenenergies En = 2.937,4.875,7.573, respectively, below, similar, and above the classical order-chaos threshold energy Eb = 4.762.

the same, the top side collapses into a point corresponding to
the nadir of the sphere, and the bottom side collapses into
a point corresponding to the zenith (standard orientation).
Observe that meridians η = 0 and η = π divide the sphere
in two symmetric parts, where the points (ϑ,η) = (π

2 , π
2 ) and

(π
2 , 3π

2 ) represent the two orthonormal eigenstates with the
same minimum uncertainty �P̂θ . In addition, note that
the orthogonal transformation in Eq. (12) corresponds
to the unitary transformation along the meridian η = 0,
where the uncertainty �P̂θ is maximum and constant, and
also the resulting eigenstates remain real.

The Husimi QPSSs corresponding to the degenerate
eigenstates 6E, 17E, and 42E, with minimum uncertainty
�P̂θ , are represented in Fig. 6. Now, the behavior of the
distributions of Husimi zeros is the expected one, similarly

to the nondegenerate eigenstates case. Thus, the eigenstates
6E, with eigenenergy below the classical threshold energy
Eb, have their zeros aligned in one-dimensional distributions
around both principal families of tori. In the case of the
eigenstates 17E whose eigenenergy is similar to, albeit above,
the threshold energy, the Husimi zeros are beginning to spread
out. Finally, the eigenstates 42E, with eigenenergy well above
the classical threshold energy, have their zeros clearly spread,
leading to a two-dimensional distribution.

Notice that the pairs of degenerate eigenstates with mini-
mum uncertainty �P̂θ correspond to states with expectation
value of angular momentum given by 〈n′|P̂θ |n′〉 = (n+ −
n−)�, where n− and n+ are the number of Husimi zeros around
the two principal elliptic points at py = 0 with y < 0 and
y > 0, respectively. Thus, states 6E in Fig. 6 have expectation

η

ϑ

n = 16, 17 (6E)

0 π/2 π 3π/2 2
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FIG. 5. (Color online) Standard deviation of angular momentum in Planck’s constant units �P̂θ/� over the Bloch sphere, corresponding
to the unitary transformation of the degenerate eigenstates 6E (left), 17E (middle), and 42E (right). The color scale has been adjusted between
minimum and maximum value for each case. In addition, equally spaced contour lines from the minimum to the maximum value, both included,
have been superimposed on the figures and also on the color bars.
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FIG. 6. (Color online) Same as described in the caption of Fig. 3 for the unitary transformation of the degenerate eigenstates 6E (left), 17E

(middle), and 42E (right), shown in Fig. 4, corresponding to the minimum standard deviation of angular momentum.

value 〈P̂θ 〉 = ±�, states 17E have 〈P̂θ 〉 = ±5�, and states
42E also have 〈P̂θ 〉 = ±5�, albeit in the latter case, due to the
spreading of zeros, the assignment of zeros to n− or n+ is not
clear. Accordingly, at the integrable limit λ → 0 minimum
uncertainty states 6E correspond to two radial excitations
and one angular excitation, states 17E correspond to two
radial excitations and five angular excitations, and states 42E

correspond to five radial excitations and also five angular
excitations.

IV. CONCLUDING REMARKS

The distribution of zeros of the Husimi function of
energy eigenstates has proven to be a useful tool for the
characterization of quantum transition from order to chaos
in systems with nondegenerate eigenstates [1–16].

We have studied the behavior of the distributions of
Husimi zeros for systems with degeneracy by means of
calculations on a QPSS of the Hénon-Heiles Hamiltonian
system, whose potential energy function belongs to the C3v

symmetry point group, with two nondegenerate irreducible
representations (A1 and A2) and a doubly degenerate one (E).

For the nondegenerate energy eigenstates, the distributions
of Husimi zeros behave as expected: They are one dimensional
for states below the classical order-chaos threshold energy and
they are two dimensional for states above it.

For the doubly degenerate states, however, we have shown
that it is necessary to consider a quantum observable for
an approximate second constant of motion (the angular
momentum, in our case), and obtain the linear combination of
degenerate states with minimum uncertainty in this quantum
observable. In this way, the distributions of Husimi zeros of
the degenerate states behave as in the nondegenerate case.

Finally, it should be noted that the linear combination
of degenerate states should be the most general unitary
transformation rather than the standard orthogonal transfor-
mation, particularly when the observable corresponding to
the approximate second constant of motion has complex
eigenstates (as it is in our case with the angular momentum).
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