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We perform an extensive and detailed analysis of the generalized diffusion processes in deterministic area
preserving maps with noncompact phase space, exemplified by the standard map, with the special emphasis on
understanding the anomalous diffusion arising due to the accelerator modes. The accelerator modes and their
immediate neighborhood undergo ballistic transport in phase space, and also the greater vicinity of them is still
much affected (“dragged”) by them, giving rise to the non-Gaussian (accelerated) diffusion. The systematic
approach rests upon the following applications: the GALI method to detect the regular and chaotic regions and
thus to describe in detail the structure of the phase space, the description of the momentum distribution in terms
of the Lévy stable distributions, and the numerical calculation of the diffusion exponent and of the corresponding
diffusion constant. We use this approach to analyze in detail and systematically the standard map at all values
of the kick parameter K , up to K = 70. All complex features of the anomalous diffusion are well understood
in terms of the role of the accelerator modes, mainly of period 1 at large K � 2π , but also of higher periods
(2,3,4, . . .) at smaller values of K � 2π .
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I. INTRODUCTION

The question of transport in Hamiltonian systems goes back
to the early works by Chirikov [1], Rechester and White [2],
Rechester et al. [3], Cary et al. [4], Meiss et al. [5], Karney [6],
Horita et al. [7], Ishizaki et al. [8], Ouchi et al. [9], Mori
et al. [10], MacKay et al. [11,12], Zaslavsky [13] (and the
references therein), Stefancich et al. [14], and many others.
In particular, it has been shown that in cases of sufficiently
strong chaoticity the transport can be diffusive, in the sense
of exhibiting normal diffusion, where the distribution of the
relevant quantity, e.g., angular momentum, in the phase space
is Gaussian with the variance growing linearly with time, char-
acteristic of stochastic diffusion processes and random walks.
In the Chirikov map [1], which is describing the classical
kicked rotator, called also standard map [see the Eq. (3) below],
such normal diffusion has indeed been observed in the very
early days. This finding can be immediately understood by
realizing that once the jumps in the value of (rotation) angle
θ are big enough, the increments of (angular) momentum P

become essentially uncorrelated and thus random, resulting in
a Gaussian or Brownian random walk. This is quite easy to
understand qualitatively and also to calculate the approximate
diffusion constant as a function of the kick parameter K , which
turns out to be approximately D1 = K2/2, with the definition
in Eq. (4) below, and this estimate is valid for sufficiently
large K , but not too large. Namely, as found by Rechester
and White [2], Rechester et al. [3], and using the Fourier
transform technique introduced by Abarbanel [15], Abarbanel
and Crawford [16] in a refined theory, there are substantial
corrections to this simple estimate and the diffusion constant
as a function of K displays well known and well understood
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oscillations, approximately described in Eq. (5) below. For a
review, see [13,17–19].

However, even this picture, not easy to derive theoretically,
is too simple, as there are intervals of K in which the diffusion
is not normal, but is instead anomalous, mainly superdiffusion,
such as described in Eq. (4) below with μ > 1. The reason
lies in the phenomenon observed and correctly interpreted
first by Chirikov [1], called accelerator modes: within some
intervals of K at K � 2π there exist stable (regular) regions
(islands) in the phase space surrounding the periodic orbits
of period 1 in the compact phase space, corresponding to
the jumps in P equal to 2π or integer multiples of 2π .
If we decompactify the phase space, making it an infinite
cylinder, we observe infinite transport along the cylinder.
The orbits inside such accelerator regions are thus simply
ballistically (linearly in time) transported along the cylinder,
in both directions P → ±∞. Thus all orbits trapped inside the
accelerator modes display ballistic diffusion with the diffusion
exponent μ = 2. Moreover, those orbits that either originate
from the neighborhood of the accelerator modes, or come close
to them in the course of time, becoming trapped there for a
while due to the stickiness of the neighborhood (containing
cantori), get “dragged,”or accelerated by them, and therefore
display anomalous diffusion with μ > 1 (superdiffusion).
Furthermore, apart from the accelerator modes of period 1,
there exist also accelerator modes of higher periods, 2,3,4, . . .,
which we also observe in this work, but their role becomes less
important with increasing K much faster than for period 1.

There have been many attempts to account for the anoma-
lous diffusion in the area preserving maps, most notably by
Venegeroles [20–22], but it seems still largely impossible to
predict the diffusion exponent μ (see also [23]) for a set of
initial conditions at a given K .

In this paper we study the diffusion properties in area
preserving maps, exemplified by the standard map of Chirikov.
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This work is actually motivated by our extensive study [24,25]
of the quantum kicked rotator introduced by Casati et al. [26],
in which—at the semiclassical level—it is necessary to
understand in detail the classical diffusion, in order to set up a
theory of (exponential) quantum (or dynamical) localization.
Our previous work was stimulated by the series of pioneering
and classic papers by Izrailev [27–29]. Thus we set out to
understand in detail the diffusion process for all K in the
interval 0 � K � 70, which encompasses a sufficiently large
interval, where rich dynamics with islands of stability, weak
and/or strong chaotic seas, and effects due to accelerator modes
still play a significant role. In this sense, we calculate at each K

the diffusion exponent μ, the corresponding diffusion constant
Dμ, and the parameter α of the relevant Lévy stable distribution
in the case of non-Gaussian (anomalous, super-) diffusion.

The role of accelerator modes in anomalous diffusion has
been already discussed broadly in all the articles mentioned
before. However, in almost all cases, the authors study these
phenomena in a rather local way. In more detail, they focus
either on the effect of the isolated accelerator modes, by
studying the diffusion properties of ensembles evolved under
their effect, or sometimes together with a sample of nearby
chaotic initial conditions. Here, we attempt a systematic
approach by studying the detailed diffusion properties for a
great variety of ensembles of initial conditions.

Being motivated originally by the quantized standard map,
and, in order to associate the above classical transport proper-
ties with the quantum characteristic time scales (e.g., Heisen-
berg and localization time), we restrict the upper limit of the fi-
nal number of iteration to the order of few thousands (in most of
the cases up to n = 5000). Moreover, we do this not only for an
ensemble of initial conditions covering the entire phase space,
but also locally, for small cells on a fine grid. By doing this,
we reveal interesting structures in the phase space, all of them
directly correlated with the degree of chaos as detected and
measured by the generalized alignment index (GALI) method,
and we claim to understand them in detail in terms of the
accelerator modes of period 1, and also of periods 2,3,4, . . ..
Hence we manage to resolve anomalous diffusion even in tiny
regions of the phase space by quantifying the different degree
of the local and global diffusion when the kick parameter K

varies. In this way we classify the different kinds of stable
regions according to the different transport processes which
are associated to islands of stability or/and accelerator modes.

The paper is structured as follows. In Sec. II we define
and describe briefly the model (standard map); in Sec. III
we present the methods of analysis, namely (i) the GALI
method for the accurate and detailed distinction between
chaotic and regular motion in the model’s phase space and
(ii) the Lévy stable distributions for the study of the diffusive
variable momentum. In Sec. IV we present our main results
on the dynamical effect of accelerator modes on the diffusion
exponent and the α-Lévy parameter. Finally, in Sec. V we
summarize and conclude the main findings of this work.

II. MODEL

One of the main models of time-dependent systems is the
kicked rotator introduced by Casati et al. [26]. We introduce
it here in detail for the purpose of defining and fixing the

variables and the notation. The Hamiltonian function is

H = p2

2I
+ V0δT (t) cos θ. (1)

It is one of the most important paradigms of classical
conservative (Hamiltonian) systems in nonlinear dynamics.
Here p is the (angular) momentum, I the moment of inertia,
V0 is the strength of the periodic kicking, θ is the (canonically
conjugate, rotation) angle, and δT (t) is the periodic Dirac δ

function with period T . Since between the kicks the rotation is
free, the Hamilton equations of motion can be immediately
integrated, and thus the dynamics can be reduced to the
standard mapping, or so-called Chirikov-Taylor mapping,
given by

pn+1 = pn + V0 sin θn+1,

θn+1 = θn + T

I
pn, (2)

and introduced in [1,30,31]. Here the quantities (θn,pn) refer
to their values just immediately after the nth kick. Then, by
introducing new dimensionless momentum Pn = pnT /I , we
get

Pn+1 = Pn + K sin θn+1,

θn+1 = θn + Pn, (3)

where the system is now governed by a single classical
dimensionless kick parameter K = V0T/I , and the mapping
is area preserving.

The generalized diffusion process of the standard map
[Eq. (3)] is defined by

〈(�P )2〉 = Dμ(K)nμ, (4)

where n is the number of iterations (kicks), the exponent μ

is in the interval [0,2), and all variables P , θ , and K are
dimensionless. Here Dμ(K) is the generalized classical diffu-
sion constant. In the case μ = 1 we have the normal diffusion,
and D1(K) is then the normal diffusion constant, whilst in the
case of anomalous diffusion we observe subdiffusion when
0 < μ < 1 or superdiffusion if 1 < μ � 2. In the case μ = 2
we have the ballistic transport, which is associated strictly with
the presence of accelerator modes.

In the case of the normal diffusion μ = 1 the theoretical
value of D1(K) is given in the literature, e.g., in [29] or [17],

D1(K)

=
{

1
2K2 {[1 − 2J2(K) [1 − J2(K)]} , if K � 4.5,

0.15(K − Kcr)3, if Kcr < K � 4.5,

(5)

where Kcr � 0.9716 and J2(K) is the Bessel function. Here
we neglect higher terms of order K−2. However, there are
many important subtle details in the classical diffusion further
discussed below.

The dependence of the diffusion constant for the growth
of the variance of the momentum on K is very sensitive, and
described in the theoretical result [Eq. (5)], and fails around
the period 1 accelerator mode intervals

(2πn) � K �
√

(2πn)2 + 16, (6)
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FIG. 1. (Color online) Classical diffusion constant Deff =
〈(�P )2〉/n for the standard map as a function of K (δK = 0.05) for
three discrete times n, i.e., the number of the iterations of the standard
map, n = 1000 (lower red dashed line), n = 5000 (intermediate blue
solid line), and n = 10 000 (upper black dot-dashed line). In the
background we have plotted the classical diffusion constant D1 (gray
dotted line) [Eq. (5)]. The presence of accelerator modes at certain
intervals of K (and the sticky objects around) generate anomalous
diffusion which is rendered by peaks. Here we used ≈100 000
(314 × 314) initial conditions uniformly distributed in a grid on the
entire phase space [0,2π ] × [0,2π ].

with n any positive integer. In these intervals for the acceler-
ator modes n = 1 we have two stable fixed points located
at p = 0, θ = π − θ0 and p = 0, θ = π + θ0, where θ0 =
arcsin(2π/K). There are two unstable fixed points at p =
0, θ = θ0 and p = 0, θ = 2π − θ0. For example, in the case
K = 6.5 we have θ0 ≈ 1.311 79. Moreover, as the diffusion
might even be anomalous, we have recalculated the effective
diffusion constant Deff = 〈(�P )2〉/n numerically, which in
general is not equal to the Dμ defined in Eq. (4). In Fig. 1
we show the Deff for the standard map as a function of K for
three discrete times n, i.e., the number of the iterations of the
standard map, n = 1000 (lower red dashed line), n = 5000
(intermediate blue solid line), and n = 10 000 (upper black
dot-dashed line). In the background we have plotted the
theoretical diffusion constant D1 taking into account only
the normal diffusion (gray dotted line) [Eq. (5)]. The presence
of accelerator modes at certain intervals of K (and the
sticky objects around) generates anomalous diffusion which is
rendered by peaks. Here we used ≈100 000 (314 × 314) initial
conditions uniformly distributed in a grid on the entire phase
space [0,2π ] × [0,2π ]. We see that the dotted theoretical curve
stemming from Eq. (5) describes the diffusion constant well
outside the accelerator mode intervals. In general, however, the
diffusion might be non-normal, described in Eq. (4). There are
also accelerator modes of higher period (2,3,4, . . .) observed
and examined in this paper.

In Fig. 2 we show the variance of the momentum P

in the standard map [Eq. (3)] with K = 6.5 (red crosses),
where small islands and accelerator mode of period 1 are
present, and K = 10.0 (blue stars), where the phase space
is fully chaotic for the same initial conditions as in Fig. 1
as a function of the discrete time n (number of iterations),
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FIG. 2. (Color online) Variance of the momentum P in the
standard map [Eq. (3)] with K = 6.5 (red crosses), where small
islands and accelerator mode of period 1 are present, and K = 10.0
(blue stars), where the phase space is fully chaotic for the same initial
conditions as in Fig. 1 as a function of the discrete time n (number
of iterations), in log-log representation. The two slopes associated
with different types of diffusion are μ(K = 6.5) = 1.612 52 (dotted),
μ(K = 10.0) = 0.991 334 (solid) with standard deviation errors
±0.012 71 (0.7881%) and ±0.000 953 7 (0.0962%), respectively.

in log-log representation. The two slopes associated with dif-
ferent types of diffusion are μ(K = 6.5) = 1.612 52 (dotted)
and μ(K = 10.0) = 0.991 334 (solid) with standard deviation
errors ±0.012 71 (0.7881%) and ±0.000 953 7 (0.0962%),
respectively.

III. METHODS OF ANALYSIS

A. GALI method

Let us consider a discrete time t = n ∈ N conservative
dynamical system defined by a 2N -dimensional (2ND) sym-
plectic map F . The evolution of an orbit in the 2ND space S
of the map is governed by the difference equation

x(n + 1) ≡ xn+1 = F (xn). (7)

In this case, the evolution of a deviation vector w(n) ≡
wn, with respect to a reference orbit xn, is given by the
corresponding tangent map

w(n + 1) ≡ wn+1 = ∂F

∂x
(xn) · wn. (8)

For 2ND maps (and N degrees of freedom flows) the
Generalized ALignment Index of order k (GALIk), 2 �
k � 2N , is determined through the evolution of k initially
linearly independent deviation vectors wk(0). To avoid over-
flow problems, the resulting deviation vectors wk(t) are
continually normalized, but their directions are kept intact.
Then, according to Skokos et al. [32], GALIk is defined as
the volume of the k parallelogram having as edges the k

unit deviation vectors ŵi(t) = wi(t)/‖wi(t)‖, i = 1,2, . . . ,k,
determined through the wedge product of these vectors as

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖, (9)
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with ‖ · ‖ denoting the usual norm. From this definition it
is evident that if at least two of the deviation vectors become
linearly dependent, the wedge product in Eq. (9) becomes zero
and the GALIk vanishes. The GALI method is a generalization
of the Smaller ALignment Index (SALI) introduced in [33],
while practically the GALI2 is equivalent to the SALI which
also requires two deviation vectors for its calculation [32].

The behavior of GALIk for regular and chaotic orbits was
theoretically studied in [32,34], where it was shown that all
GALIk(t) tend exponentially to zero for chaotic orbits, with
exponents that depend on the first k Lyapunov exponents of
the orbit [35,36]. In the case of regular orbits, GALIk remains
practically constant and positive if k is smaller or equal to
the dimensionality of the torus on which the motion occurs;
otherwise, it decreases to zero following a power-law decay. In
the particular case of two-dimensional (2D) maps the GALI2

tends to zero both for regular and for chaotic orbits, following
however completely different time rates (exponential vs power
law), which again allows us to distinguish between the two
cases [33], as explained below.

Before studying the global dynamics of the map (3) let us
examine in more detail the behavior of GALI2 for regular and
chaotic orbits of a 2D map. In the case of a chaotic orbit,
any two deviation vectors will be aligned to the direction
defined by the largest Lyapunov exponent λ1, and consequently
GALI2 will tend to zero following an exponential decay of
the form SALI/GALI2 ∝ e−2λ1n, with n being the number of
iterations [37]. In the case of regular orbits any two deviation
vectors tend to fall on the tangent space of the torus on which
the motion lies. For a 2D map this torus is a 1D invariant curve,
whose tangent space is also 1D and consequently any two
deviation vectors will become aligned. Thus, even in the case of
regular orbits in 2D maps, the GALI2 tends to zero. This decay
follows a power law [33] having the form GALI2 ∝ 1/n2 [32].

It is exactly this different behavior of the index that allows
us to use GALI2 for a fast and clear distinction between regions
of chaos and order in the 2D phase space of the standard map.
From the results of Fig. 3(a), we see that only after n > 10 000
iterations the value of GALI2 of a regular orbit becomes of
the order of 10−8, while for a chaotic orbit [Fig. 3(b)] the
GALI2 has already reached extremely small values (only after
≈20 iterations). Thus the percentage of chaotic orbits for a
given value of K can be computed as follows. We follow the
evolution of orbits whose initial conditions lie on a 2D grid
of 500 × 500 equally spaced points on the 2D phase space
of the map [dividing in this way the (θ,P ) plane in squares]
and register for each orbit the value of GALI2 after n = 50
iterations. All orbits having values of GALI2 significantly
smaller than 10−8 at n = 50 are characterized as chaotic,
while all others are considered as nonchaotic.

The aforementioned threshold 10−8 has been broadly used
and explained in previous works (see, for example, [38–40])
as a rather efficient threshold. Let us point out that the 10−8

is in practice the “zero” for single precision, while the 10−16

for double. The results regarding the chaotic or regular nature
of a trajectory under study are not so sensitive to the chosen
threshold and they still stand if it is varied. It has been tested
thoroughly that, in this system, the n = 50 iterations are
sufficiently long for the distinction between the exponential
(chaotic motion) or power-law (regular motion) decay.
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FIG. 3. Evolution of GALI2 for (a) the regular orbit with initial
condition (θ,P ) = (3.5,0.0) and (b) the chaotic orbit with initial
condition (θ,P ) = (1.0,0.0) of the standard map [Eq. (3)] for K =
3.1, with respect to the number of iterations n.

As for the classical system [Eq. (3)], we mention that the
fraction of the regular part of the classical phase space has been
systematically explored using the SALI-GALI method for the
distinction between chaotic and regular classical motion and
its quantification for simple (and even for coupled) standard
map(s) (see [38–40] and references therein), showing that this
fraction decreases with K following the power laws found by
Dvorak et al. [41] and Contopoulos et al. [42]. However, there
are important subtleties about the classical diffusion process
and Dμ(K), which we now discuss.

B. Lévy stable distribution

The physical origin and relevance of the Lévy stable
distribution to this kind of problem, like the standard map, is
well summarized in, e.g., Zaslavsky [13], Zaslavsky et al. [19],
Klafter and Zumofen [43], Geisel et al. [44], and Zaslavsky
and Edelman [23]. In probability theory, an α-Lévy skew stable
distribution is a four parameter family of continuous probabil-
ity distributions, characterizing the location, scale, skewness,
and kurtosis. Following Nolan [45], for a random variable
X with distribution function F (x), the characteristic function
is defined by φ(u) = E exp (iuX) = ∫ ∞

−∞ exp (iux)dF (x).
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Then, a random variable X is stable if and only if X
δ= aZ + b,

with a > 0, b ∈ R, and Z a random variable with characteristic
function

E exp (iuZ) =
{
e−|u|α[1−iβ tan πα

2 (sgnu)], α = 1,

e−|u|[1+iβ tan 2
π

(sgnu)] log |u|, α = 1,
(10)

where 0 < α � 2 and −1 � β � 1 (the symbol
δ= indicates

that both expressions have the same probability law). We then
adopt the parametrization1 k = 0, S(α,β,γ,δ; 0) for which the
random variable X given by

X
δ=

{
γ
[
Z − β tan

(
πα
2

)] + δ, α = 1,

γZ + δ, α = 1
(11)

has characteristic function

S(α,β,γ,δ; 0)

≡ E exp (iuX)

=
{

eiuδ−γ α |u|α[1+iβ(−1+|uγ |1−α )sgn(u) tan( πα
2 )], α = 1,

eiuδ− γ |u|[π+2iβ log(|uγ |)]sgn(u)
π , α = 1,

(12)

where Z = Z(α,β) is defined as described in Eq. (10), α ∈
(0,2] is the index of stability or characteristic exponent, β ∈
[−1,1] the skewness parameter, γ > 0 the scale parameter,
and δ ∈ R the location parameter. For the fits with data we
used the Stable Distribution package of Mathematica [46].
Two important special cases are the Gaussian distribution with
α = 2 and the Cauchy-Lorentz with α = 1, which are the only
ones with an explicit closed formula.

IV. RESULTS: THE DYNAMICAL EFFECT OF
ACCELERATOR MODES ON THE DIFFUSION
EXPONENT AND THE α-LÉVY PARAMETER

In this section we discuss the role of the accelerator modes
in the local and global dynamics of the phase space of the
standard map [Eq. (3)]. In more detail, we draw our attention
to the way they affect the diffusion process and also how they
are reflected in the momenta probability distribution.

In Fig. 4 we show the diffusion exponent μ as a function
of K after n = 5000 iterations, using a fine grid of 314 × 314
(≈100 000) initial conditions on the plane (θ,P ) = (0,2π ).
The μ is calculated by the slopes, of the lines of the variance of
the momentum P as a function of iterations, as it is described in
Sec. II [Eq. (4)] and for a grid of cells on the entire phase space.
The intervals on the black horizontal line μ = 0.9 indicate the
intervals of stable accelerator modes of period 1 [Eq. (6)]. All
intervals of K with exponent μ ≈ 1 are associated with normal
diffusion processes. The large peaks (appearing mainly for
K > 2π marked with full black circles) reflect the anomalous
diffusion due to accelerator modes [of period 1, being located

1There are several parametrizations notated by different k for stable
laws [45], which originate from the study of different problems at
different historical periods. The one with k = 0 is considered to
be the best choice for numerical computations having the simplest
form for the characteristic function and being continuous in all four
parameters.
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FIG. 4. (Color online) Diffusion exponent μ as a function of
K after n = 5000 iterations and for ≈100 000 (314 × 314) initial
conditions on the plane (θ,P ) = (0,2π ). The intervals on the black
horizontal line μ = 0.9 indicate the intervals of stable accelerator
modes of period 1 [Eq. (6)]. All intervals of K with exponent μ ≈ 1
are associated with normal diffusion processes. The large peaks
(appearing mainly for K > 2π marked with full black circles) reflect
the anomalous diffusion accelerator modes (mainly of period 1). The
smaller peaks for K < 2π (more clearly presented in the inset panel)
originate by accelerator modes of higher period together with those for
2π < K < 4π marked with empty circle and a few typical examples
close to those peaks [marked with the symbol (×)], for which the
diffusion is normal, are studied thoroughly later on. The blue dotted
line corresponds to the power law which describes the decay of the
exponent μ of the main peaks’ amplitude due to accelerator modes
of period 1 (see text for more details).

inside the intervals predicted by Eq. (6)]. However, there
is a number of relatively smaller peaks for K < 2π (more
clearly presented in the inset panel of Fig. 4), whose origin is
accelerator modes of higher period as we will see later, and
also for 2π < K < 4π ; both these sets are marked with empty
circles. With the symbol (×) we mark few typical examples,
close to those peaks, for which the diffusion is normal and are
also studied in detail in this section.

All the large peaks for K > 2π , marked with full black
circles in Fig. 4, correspond to regimes with accelerator modes
of period 1 and they decrease monotonically as a power law

f (x) = axb, (13)

where a = 2.416 45 and b = −0.195 896 [blue dotted line in
Fig. 4, with asymptotic standard error ±0.042 94 (1.777%) and
±0.005 37 (2.741%), respectively], indicating that for K >

70 their effect decreases significantly. On the other hand, the
size of the successive accelerator modes of period 1 intervals
decays with a power law defined simply and analytically by
Eq. (6). In order to understand the effect of the presence of
accelerator modes in the diffusion and transport properties of
the phase space in the standard map, we first picked an, as
much as possible, representative sample of K values. In more
detail, we included in our test cases all the K values which
correspond to all the main peaks appearing in Fig. 4 with
K > 2π together with a few cases from the “plateaus” of this
curve. Furthermore, we took into account the peaks occurring
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for 1 � K � 2π (see the empty black circles in the inset zoom
in Fig. 4), which are associated with accelerator modes of
higher periodicity, as it will be seen thereupon. The case with
K = 3.8, whose μ value is ≈1, is chosen for comparison
reasons from the plateau and as it turns out has no accelerator
modes in its phase space causing anomalous diffusion. Here
we should stress that we repeated the same procedure for
larger number of iterations n = 10 000 and it turns out that the
exponent μ has well converged to the values shown in Fig. 4.

For each one of these K values of the nonlinearity kick
parameter, we performed a thorough study by calculating and
comparing the following quantities.

(a) The index of stability α parameter of the Lévy stable
distribution.

(b) The diffusion exponent μ as described in Sec. I [Eq. (4)].
In principle, and, in the case of normal diffusion (Gaussian

statistics) for the above quantities, one expects to find α = 2
for the Lévy stable distribution and diffusion exponent μ = 1.

For the sake of completeness, one could also consider
studying the correlation functions characterizing the standard
map. In the literature we found statements about the inverse
power-law decay [8], and even exponential decay (e.g. [47]),
but none of them is confirmed. To be more precise, we
have defined the autocorrelation function of the momentum
increment u(t) = Pt+1 − Pt = K sin θt+1 as follows:

C(τ ) = 〈u(t + τ )u(t)〉t , (14)

where the time averaging is over a (sufficiently long) orbit
emanating from an initial condition. After many careful
attempts we concluded that C(τ ) does not depend significantly
on the initial condition, so long as it is in the chaotic sea.
The variance C(0) = 〈u2(t)〉 is equal to K2/2, within the
accuracy of about 1%, precisely as expected, if the u(t) =
K sin θt+1 are completely chaotic and uncorrelated quantities,
θt+1 being uniformly distributed in the interval [0,2π ]. This
has been inspected and confirmed for several values of K ,
those where chaos is the strongest (like K = 10) and we have
Gaussian diffusion properties, as well as for those K where
we have accelerator modes (like K = 6.5) and anomalous
superdiffusion. Moreover, C(τ ) drops from its value C(0) to
C(1) by about a factor 100, which means a very fast decay of
correlations. Indeed, C(τ ) behaves rather erratically for τ � 1,
fluctuating wildly by about three decadic orders of magnitude
around a small value, although its average value (over an
ensemble) decreases slowly, roughly exponentially, but with
an exponent close to zero, so it is almost linear decay for
times up to τ = 5000. This behavior is observed for practically
all initial conditions; also for the averages over various
ensembles of initial conditions, and also for various parameter
values K . Therefore, it is hard or practically impossible to
extract physically meaningful and useful information from the
statistical behavior of the tails of the correlation function C(τ ).
This is the reason why we have not dealt with the correlation
functions any further.

In Fig. 5 we depict the index of stability (or characteristic
exponent) α of the Lévy stable distribution for the K values
corresponding to the cases of anomalous diffusion (peaks of
the Fig. 4), where μ = 1 (with α < 2 in general) and a few
examples where α = 2 for cases with K values chosen in their
vicinity (where μ = 1). A special treatment was performed
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FIG. 5. (Color online) Index of stability (or characteristic expo-
nent) α of the Lévy stable distribution for the K values corresponding
to cases of anomalous diffusion (peaks of the Fig. 4) where μ = 1
(and generally α < 2) and few examples where α = 2 for cases with
K values chosen in their vicinity (where μ = 1). The intervals on
the black horizontal line α = 1.5 indicate the intervals of stable
accelerator modes of period 1 [Eq. (6)]. Note that, for the cases where
K < 2π , the fit was done for an ensemble in a cell around the origin
(θ,P ) = (0,0) instead of a grid uniform in the entire phase space. By
doing this, the data coming from islands of stability, whose momenta
do not diffuse at all and mix up the distribution, are excluded. The
full set of (α,β,γ,δ) fit parameters are given in Table I. In the inset we
show the α-Lévy parameter as a function of n for different cell sizes
defined by the grid choices (100 × 100, 300 × 300, and 1000 × 1000)
on the plane (θ,P ), for the case where K = 6.5 and a box in the corner
(θ,P ) = (0,0) with ≈100 000 (314 × 314) initial conditions.

for the cases where K < 2π , namely the fit was done for an
ensemble in a cell around the origin (θ,P ) = (0,0) instead of a
grid uniform in the entire phase space. In this way one manages
to exclude the data coming from islands of stability, whose
momenta do not diffuse at all and mix up the distribution. All
these values are summarized in Table I, where the whole set
of the stable Lévy distribution parameters (α,β,γ,δ) is given
in detail. The parameter α turns out to be equal to 2 for the
cases (K values) of phase spaces without accelerator modes.
On the other hand, when such modes are present, then α < 2.
The α-Lévy parameter reaches its minimum value ≈1.674 for
K = 6.5, where the effect of the accelerator mode of period 1
is the most intense, as also revealed in Fig. 4. In order to check
whether the α-Lévy parameter has well converged, we tested
for K = 6.5 several different choices of the cell defined by the
grid size (100 × 100, 300 × 300, and 1000 × 1000) on which
we take the initial conditions. It turns out that, by shrinking
the size of each box and keeping the same number of initial
conditions, the α is practically the same (see the inset panel in
Fig. 5) after a fixed number of iterations n = 5000.

In Fig. 6 we show the stable Lévy distribution with param-
eters (α,β,γ,δ) ≈ (1.59,0.164,3.7,83.63) for K = 6.5 and a
cell whose area contains ≈ 100 000 (314 × 314) mixed initial
conditions, i.e., trajectories that are transported ballistically by
the unstable accelerator mode around (θ0,P ) = (1.311 79,0)
(×) and more evidently around the stable one at (θ1,P ) =
(π − θ0,0) (∗) together with chaotic ones in their vicinity after
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TABLE I. Lévy stable distribution parameters for various values
of K up to K = 35 (indicated with full, empty circles and crosses in
Fig. 4). Note that, for the Lévy stable distribution parameters with
K < 2π the fit was done for an ensemble in a cell around the origin
(θ,P ) = (0,0) instead of a grid uniform in the entire phase space,
in order to exclude the data coming from islands of stability whose
momenta do not diffuse at all and mix up the distribution.

Lévy stable distribution

K α β γ δ

3.10 �1.962 −0.001 98.0 1.08
3.50 �1.966 0.083 99.0 3.79
3.80 �2.00 0.000 107.3 6.10
4.05 �1.979 −0.075 132.6 6.12
4.80 �1.984 0.039 170.7 4.98
5.60 �1.966 0.0577 234.5 6.76
6.50 �1.674 0.000 369.2 1.07
7.00 �1.998 −0.084 433.3 0.63
10.00 �2.000 0.000 284.4 1.56
11.90 �1.993 0.000 453.5 2.04
13.20 �1.946 −0.011 600.1 3.15
18.95 �1.963 0.062 824.7 10.19
25.20 �1.979 −0.031 1038.8 3.09
26.00 �2.000 0.000 1077.6 3.41
31.50 �1.999 0.000 1290.9 3.34
35.00 �2.000 0.000 1085.0 16.13

n = 5000. The fit here has been performed by excluding the
last peak in the positive large momenta due to the ballistic
transport by the accelerator mode. In general, there can be
two peaks in the distribution of the diffusive variable P (in the
positive and negative direction) depending on the choice of the
ensemble of initial conditions. Nevertheless, as also explained
thoroughly in [14], the distribution will become an α-Lévy
stable one and the peaks recede to infinity with amplitudes
tending to zero. The color-plot inset panel depicts the diffusion
exponent μ, calculated by the process described in Fig. 2, for
a grid of cells on the subspace (θ,P ) ∈ [π/3,2π/3] × [0,π/3]
of the phase space. The yellow (light gray in black and
white) color areas correspond to ballistic motion due to the
two accelerator modes pointed to by the symbols (×) and
(∗), respectively. The ensembles of initial conditions lying
inside the fully chaotic regime diffuse normally with μ ≈ 1.
Moreover, there is a “belt”-like darker zone in the edges of
the accelerator mode area with μ ≈ 0.8, which indicates a
sticky subdiffusive transport. In the small inset panel we show
the ballistic transport on the cylindrical phase space of the
two above-mentioned accelerator modes positioned initially
at (θ0,1,0) and boosted by δP = 2π at every (only four here)
successive kick.

In Fig. 7 we present the probability distribution function
of the momentum P after n = 5000 iterations (black filled
circles) and the fits with the α-Lévy stable distribution (solid
blue line) for a sample of K values associated with the principal
peaks (presence of accelerator modes of period 1) of the
Fig. 4, i.e., K = 6.50,11.90,13.20,18.95. In Figs. 7(a), 7(d),
7(e), 7(f), α is generally not equal to 2 and two K values
without accelerator modes, i.e., K = 7.0,10.0, are shown in
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FIG. 6. (Color online) Lévy stable distribution with parameters
(α,β,γ,δ) ≈ (1.59,0.164,3.7,83.63) for K = 6.5 and a cell (shown
in the inset) whose area contains ≈100 000 (314 × 314) mixed initial
conditions, namely trajectories that are transported ballistically by
the unstable accelerator mode around (θ0,P ) = (1.311 79,0) (×) and
more evidently around the stable one at (θ1,P ) = (π − θ0,0) (∗),
together with chaotic ones in their neighborhood after n = 5000. The
color-plot inset panel depicts the diffusion exponent μ, calculated
by the process described in Sec. II [Eq. (4)], for a grid of cells on
the subspace (θ,P ) ∈ [π/3,2π/3] × [0,π/3] of the phase space. The
yellow (light gray in black and white) color areas correspond to
ballistic motion due to the two accelerator modes pointed to by the
symbols (×) and (∗), respectively. The ensembles of initial conditions
lying inside the “pure” chaotic regime diffuse normally with μ ≈ 1.
The “belt”-like darker zone in the edges of the accelerator mode
area with μ ≈ 0.8 indicates a sticky subdiffusive transport. In the
small inset panel, we show the ballistic transport on the cylindrical
phase space of the two above-mentioned accelerator modes positioned
initially at (θ0,1,0) and boosted by δP = 2π at every successive kick.

Figs. 7(b) and 7(c), where α is equal to 2. Here, and for
comparison reasons with the best-fit function depicted in the
figures, the Gaussian distribution (red dashed line) is derived
by the S(α,β,γ,δ; 0) probability distribution by setting α = 2
and keeping all the remaining parameters the same as given
by the fits generally for α = 2. The total number of initial
conditions is ≈100 000 (314 × 314) on a uniform grid in
the entire phase plane (θ,P ) ∈ [0,2π ] × [0,2π ]. For larger
K values with accelerator modes of period 1, their effect
in the diffusion process is becoming gradually weaker, as
can also be seen by the decay of the μ value in Fig. 4,
and the probability distributions tend to Gaussian-like ones.
We have also calculated the χ2 test for all the density
distributions of Fig. 7. However, the derived quantitative
information turns out not to differ much from what the panels
show. Let us also stress that the goodness of the several
fits is not the main point here but rather the deviation from
the Gaussian profile, which is evident when the effect of
the accelerator mode is relatively strong as shown in panel
(a) and expressed by α parameter value far from 2. Moreover,
due to our main motivation, i.e., to focus on the relevant quan-
tum time scales, we do not expect to capture very accurately
the tails, which are expected to follow the theoretical curve at
much larger times. More examples and the details regarding
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FIG. 7. (Color online) Probability distribution function of the momentum P after n = 5000 iterations (black filled circles) and the fits with
the stable α-Lévy distribution for a sample of K values associated with the principal peaks (presence of accelerator modes of period 1) of
Fig. 4, i.e., K = 6.5,11.9,13.2,18.95, (a),(d),(e),(f), where α is generally not equal to 2 and two K values without accelerator modes, i.e.,
K = 7.0,10.0, (b),(c), where α is equal to 2. Here, the Gaussian distribution (red dashed line) for comparison reasons with the best-fit function,
depicted in the figures, is derived by the S(α,β,γ,δ; 0) probability distribution by setting α = 2 and keeping all the remaining parameters the
same as those given by the fits in general α = 2. The total number of initial conditions is ≈100 000 (314 × 314) on a uniform grid in the entire
phase plane (θ,P ) ∈ [0,2π ] × [0,2π ]. For larger K values with accelerator modes of period 1, their effect in the diffusion process is becoming
gradually weaker, as can be seen also by the decay of the μ value in Fig. 4, and the probability distributions tend to Gaussian-like ones.

the whole set of parameters can be found in Table I. Note that,
for K < 2π , the fit was done for an ensemble in a cell around
the origin (θ,P ) = (0,0) instead of a grid uniform in the entire
phase space, in order to exclude the data coming from islands
of stability whose momenta do not diffuse at all and mix up
the distribution.

In Fig. 8(a) we present the outcome of the calculation
of the GALI2 on the whole phase plane (θ,P ) ∈ [0,2π ] ×
[0,2π ] for K = 3.1, for 500 × 500 initial conditions uniformly
distributed. Each initial condition is colored according to the
color scale seen at the right side of the panel. Chaotic orbits
having small GALI2 value (≈10−8) are colored black, while

the yellow (light gray in black and white) color corresponds to
regular motion, found here to be ≈13.52% of the whole plane,
with high—close to zero—values (the color bar is in a loga-
rithmic scale). Thus we can clearly identify even tiny regions
of regular motion which are not easily seen in the phase-space
portraits given often by simple Poincaré surface of sections.
Having located the stable region of the phase space, the next
point of interest is to distinguish among them—those that are
due to accelerator modes from those due to islands of stability.

The distinction can be efficiently achieved with the use of
the diffusion exponent μ color plot in Fig. 8(b), where we
first consider again a grid of 500 × 500 cells (on the entire
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FIG. 8. (Color online) (a) GALI2 for K = 3.1 with 50 × 50 initial conditions on a grid 500 × 500 on the entire phase space (θ,P ) ∈
[0,2π ] × [0,2π ]. (b) The diffusion exponent μ for the same kick parameter value for 50 × 50 initial conditions on a 500 × 500 cell grid of
the entire phase space calculated after n = 5000 iterations (see text for more details). (c) Two examples [marked with an empty square and
an empty circle in panel (b)] following different diffusion processes: a trajectory transported ballistically (with P < 0) by the effect of an
accelerator mode of period 4 (•) and one oscillating between islands of stability (�) of period 4 too.
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FIG. 9. (Color online) Same as Fig. 8 for K = 3.5 (first row), K = 3.8 (second row), K = 4.8 (third row), and K = 5.6 (fourth row). The
yellow (light gray in black and white version) areas scattered in the large chaotic sea in both panels of each row correspond to accelerator
modes of higher period, while those being yellow (light gray in black and white) in the GALI color plot and at the same time dark blue or
black in the diffusion exponent μ color plot are islands of stability. There are also orbits in the edges of the big islands of stability which are
transported non-normally along the cylindrical phase space. Note that K = 3.8 (second row) is chosen as a counterexample for comparison
from the interval of the kick parameter values, where the diffusion for ensembles chosen inside the chaotic sea is normal μ ≈ 1 without the
presence of accelerator modes. For the case of K = 5.6 (fourth row) the two relatively large stable areas located in their centers correspond
to small nondiffusive islands of stability, while those tiny and rather hardly visible [marked with circles in panel (g)] correspond to ballistic
accelerator modes [yellow or light gray in black and white in panel (h)].
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phase space (θ,P ) ∈ [0,2π ] × [0,2π ]) with 50 × 50 initial
conditions in each and evolve all of them together for n = 5000
iterations. Then, for each ensemble of each cell separately,
we calculate numerically the diffusion coefficient Dμ(K) as
a function of the iterations n and perform a fit procedure just
like in Fig. 2 to calculate the diffusion exponent μ [represented
in the color bar of Fig. 8(b)] that characterizes the different
kind of diffusion of this small area. Depending on the relative
location of each ensemble one may expect to find (i) normal
diffusion (μ = 1) inside chaotic regimes without the presence
of accelerator modes, (ii) subdiffusion (0 < μ < 1) inside
islands of stability, (iii) superdiffusion (1 < μ < 2) inside
chaotic regimes with the presence of accelerator modes in
the phase space, and (iv) ballistic transport (μ ≈ 2) inside and
in the very close vicinity of accelerator modes.

It turns out that the stable regions around (π/2,0), (3π/2,0),
(π/2,π ), (3π/2,π ) and (π/2,2π ), (3π/2,2π ) are indeed
islands of stability since their diffusion exponent μ is smaller
than 1. The remaining tiny stable areas correspond to stable
higher period accelerator modes with μ ≈ 2. Here we manage
to locate the accelerator modes of higher periods 2,3,4, . . .,
which in general are not so easily calculated analytically. In
Fig. 8(c) we show two examples [marked with an empty square
and empty circle in panel (b)] following different diffusion
processes, i.e., for a trajectory oscillating between islands
of stability (empty dotted boxes) and for one transported
ballistically (with P < 0) by the effect of an accelerator mode
(full circles). The period of both is 4 (when projected on the
(θ,P ) ∈ [0,2π ]), as it can be seen by iterating them for a few
steps.

In Fig. 9 we show a few more examples for K = 3.5 (first
row), K = 3.8 (second row), K = 4.8 (third row), K = 5.6
(fourth row), charting the phase space’s stable and chaotic
regions with the GALI2, and the normal or anomalous diffusion
with the exponent μ in a similar manner as in Fig. 8. The
yellow (light gray in black and white) areas scattered in the
large chaotic sea in both panels of each row correspond to
accelerator modes, while those being yellow (light gray in
black and white) in the GALI color plot and at the same time
dark blue or black in the diffusion exponent μ color plot are
islands of stability. There are also orbits in the edges of the big
islands of stability which are transported non-normally along
the cylindrical phase space, due to the accelerator modes of
higher period.

For the case with K = 3.5 (first row) and in panel (a),
we show all the stable (colored yellow or light gray in black
and white) areas as detected by the GALI method, whose
total relative fraction in the whole phase space is ≈14.12%.
When comparing to the diffusion exponent color plot of panel
(b) we can furthermore see that all the small scattered stable
regions of panel (a) are due to higher period accelerator modes
having μ ≈ 2. The case with K = 3.8 (second row) is a
counterexample for comparison from the interval of the kick
parameter values, where the diffusion for ensembles chosen
inside the chaotic sea is normal μ ≈ 1 and α-Lévy ≈ 2, since
no accelerator modes are present. The relative fraction of
regular motion here is estimated to be ≈12.29%. Obviously,
there are some accelerator modes (colored in yellow or light
gray in black and white) of higher period around the three small
islands of stability in the upper and lower part of the figure.

However, they affect only locally the diffusion, in the sense that
the vast phase space does not “feel” their presence. Regarding
the case with K = 4.8 (third row), we see that the relative
size of stable motion has become even smaller (two dominant
islands of stability in the central part with ≈2.93% of the
phase space), while only a few small scattered stable regions
in the large chaotic sea have remained compared to the case
of K = 3.8 (and K = 3.1 [Figs. 8(a) and 8(b)]). For K = 5.6
(fourth row) the stable islands in the phase space have shrunk
even more [see panel (g)] with the relative fraction of regular
motion to be now only ≈0.62%. Combining the panels (g) and
(h), it turns out that the two relatively large stable areas located
in their centers correspond to small nondiffusive islands of
stability, while those tiny and rather hardly visible [marked
with circles in panel (g)] correspond to ballistic accelerator
modes [yellow or light gray in black and white in panel (h)].
In conclusion, we see that close to the boundary but outside
the large island of stability, there might be both the accelerator
modes of higher period surrounded by tiny second-order stable
regions, and regions of stickiness which originate from the
cantori. Which of the two structures prevails in the diffusion
process is a very intricate question, which should be studied
further in a future work.

Regarding the diffusion exponent color plot for the cases
of K where accelerator modes are present in the phase space,
one can notice certain (purple) spiral features (mainly located
around them) whose ensembles of initial conditions appear to
be subdiffusive with μ ≈ 0.8 or 0.9. Their shape is originated
by a transient sticky transport process on a cylindrical phase
space which takes place around these modes. By increasing the
final number of iterations sufficiently enough, the μ for such
ensembles tends to 1 due to the mixing process between these
sticky objects and those lying in the large chaotic sea, where
normal diffusion is present. However, as discussed already in
the Introduction, in this paper we are particularly interested in
classical time scales relevant for the quantum ones.

V. DISCUSSION AND CONCLUSIONS

The main goal of the present work is to explore sys-
tematically all the dynamical and statistical aspects of the
generalized diffusion in the standard map of Chirikov (which is
the Poincaré map of the classical kicked rotator), as a paradigm
of other area preserving maps, using the various computational
methods to characterize the most important features in the
phase space and in the parameter space. In doing this we have
particularly analyzed the role of the accelerator modes, of
period one and of higher periods, in the phase-space cylinder,
in which the (rotation) angle θ is in the interval [0,2π ], thus
measured always modulo 2π , whilst the (angular) momentum
P is unlimited in (−∞, + ∞).

In our case of the standard map the control parameter is the
kick parameter K . For K < Kc � 0.9716 there is no global
transport and no diffusion in the phase cylinder, because there
exist the KAM invariant (spanning) curves acting as absolute
barriers. Nevertheless, the local diffusion is possible on the
chaotic components around and also within the islands of
stability. In such a local diffusion picture it turns out that the
diffusion is generally not normal, but typically subdiffusion,
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with the diffusion exponent μ < 1, due to the sticky objects,
mainly cantori, surrounding the islands of stability.

When K > Kc the last global invariant curve is destroyed
and the global transport and diffusion becomes possible. Due
to the great complexity of the phase space, the diffusion is
largely anomalous, both either superdiffusion with μ > 1 or
subdiffusion with μ < 1. The subdiffusion is due to the sticky
objects already mentioned. However, the superdiffusion is
governed by the same stickiness, but now around the regular
islands which are accelerator modes, that is, they increase
momentum P by 2π or integer multiple of 2π , in a finite
number of iterations (length of the period). For Kc � K � 2π

these are accelerator modes of higher periodicity, whilst for
K > 2π they are almost exclusively the period one accelerator
modes (there are just two notable exceptions, as seen in Fig. 4).
The stickiness due to the cantori and the tiny stability regions
supporting the accelerator modes of higher periodicity can
indeed coexist in the area close to but outside the edge of the
large stable islands, as is clearly seen in Fig. 9. Stickiness
near the stability islands gives rise to subdiffusion, whilst
the stickiness near the accelerator modes gives rise to the
superdiffusion. Which of the structures prevails in the diffusion
process is difficult to predict, as it depends on the details of
such structures.

Our methods of analysis include the GALI method to
characterize the structure of regular and chaotic regions, and
also to quantify the degree of chaoticity, in a much better
way than the ordinary Poincaré maps. The other measure of
statistical and diffusive behavior is the diffusion exponent
μ, which we calculate both by taking an average over a
large number of initial conditions spread uniformly over
the entire phase space (θ,P ) ∈ [0,2π ] × [0,2π ] and also by
taking an average inside the small cells, again with many
initial conditions. The “landscape” of μ clearly correlates with
the landscape of GALI2, including the tiny structures in the
phase space. Along with the μ we also calculate the effective
diffusion constant Deff , which, however, does not convey as
much information as the μ itself, but its dependence on K

exhibits well known oscillations associated with the normal
diffusion, and the peaks growing with time are positioned at
accelerating modes. We do this analysis for several different
values of K .

The central result of this paper is Fig. 4, where we plot μ as
a function of K , which is complex, well converged (increasing
the number of iterations does not change the graph), and clearly
reveals the association of the superdiffusion with the existence
of the accelerator modes, even if the average is taken over
the entire phase space and the accelerator modes are relatively
small. For K > 2π the accelerator modes are largely of period
one, whilst for K < 2π they are of higher period, and their

influence on μ decays with K much faster than for period one
accelerator modes.

In order to see more details behind the superdiffusion at the
peaks of the μ(K) plot of Fig. 4, we have also looked at the
distribution function of the momentum P after a large number
of iterations, and taking a large number of initial conditions
inside the starting cell. The result is that we observe generally
always an α-stable Lévy distribution, “equipped” with two
ballistic peaks at plus or minus large P value. These two
peaks are directly produced by the initial conditions inside the
accelerator modes. If we ignore them, that is cut them out, and
renormalize the distribution, and fit it, it is always found to be
the Lévy distribution.

We do find that for the values of K between the peaks of the
μ(K) curve, and for the great majority of the initial conditions,
the behavior is similar to that for ordinary random walk,
having the Gaussian distribution of the momenta (the special
case of the Lévy distribution with α = 2), and its variance
growing linearly with time, μ = 1.

In conclusion, we may emphasize that all features of
anomalous diffusion in the standard map can be understood
in terms of the accelerator modes, and the sticky objects
surrounding them in the form of cantori, as well as around the
regular islands. Moreover, all these features can be quantified
by the methods that we employ.

The main motivation for the present work was our recent
research on the quantum kicked rotator [24,25], which is the
quantized classical kicked rotator, described by the standard
map. For the systematic understanding of the quantum kicked
rotator and its semiclassical theory, a complete survey of the
standard map is necessary. We have achieved that by going as
far as K � 70, where it is expected that for K > 70 there are
essentially no new features, as μ(K) is almost everywhere
equal to 1, except within narrow intervals containing the
accelerator modes of period 1. As for the association of
the quantum localization and the classical diffusion, the
semiclassical theories must be improved, although the first step
has been undertaken in [24]. On the classical side, the theory
and derivation of the diffusion exponent μ, and other aspects of
anomalous diffusion, are still lacking and open for the future.
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