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Manifold structures of the Lorenz system, the Hénon map, and the Kuramoto-Sivashinsky system are
investigated in terms of unstable periodic orbits embedded in the attractors. Especially, changes of manifold
structures are focused on when some parameters are varied. The angle between a stable manifold and an
unstable manifold (manifold angle) at every sample point along an unstable periodic orbit is measured using the
covariant Lyapunov vectors. It is found that the angle characterizes the parameter at which the periodic window
corresponding to the unstable periodic orbit finishes, that is, a saddle-node bifurcation point. In particular, when
the minimum value of the manifold angle along an unstable periodic orbit at a parameter is small (large), the
corresponding periodic window exists near (away from) the parameter. It is concluded that the window sequence
in a parameter space can be predicted from the manifold angles of unstable periodic orbits at some parameter.
The fact is important because the local information in a parameter space characterizes the global information in
it. This approach helps us find periodic windows including very small ones.
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I. INTRODUCTION

Chaotic dynamical systems are interesting research subjects
which are studied not only in mathematics, physics, and
engineering but also in biology and economics [1]. In a
parameter space, there are periodic regions, regarded as
periodic windows, inside chaotic regions of chaotic dynamical
systems. The appearance of a periodic window is often related
to a saddle-node bifurcation. A stable periodic orbit in a
periodic window collides with an unstable periodic orbit
(UPO) at an edge of the window and the two periodic orbits
disappear. At the same time, the periodic window vanishes.
It is known that a great many periodic windows usually
exist in a parameter space, so that they are very common
in nonlinear systems. There are some works on a mechanism
constructing periodic windows and on the fat fractal structure
of chaos and periodic windows in a parameter space [2].
Moreover, it is known that periodic windows are useful for
controlling chaos [3]. However, there are still many open
problems concerning periodic windows (e.g., the sequence of
periodic windows). In particular, there is a difficulty in finding
small periodic windows. We clarify the relation between
a sequence of periodic windows in a parameter space and
manifold structures of UPOs, from which we can identify a
sequence of periodic windows in a parameter space. Although
the Lyapunov exponents of UPOs are useful to study chaotic
systems [4,5], manifold structures of UPOs have not been
discussed in detail so far.

We use the covariant Lyapunov vectors (CLVs) [6] to
investigate manifold structures, especially the angle between a
stable and an unstable manifold of each UPO. CLVs span the
Oseledec subspaces corresponding to the Lyapunov exponents
[7]. By using CLVs, the degree of hyperbolicity and the

*miki@wpi-aimr.tohoku.ac.jp

effective dimension of the chaotic system can be measured
[6,8]. CLVs are vectors which are given by iterating generic
vectors backward in time within a subspace spanned by
Gram-Schmidt vectors. Although the calculation of CLVs of
chaotic sets is usually time consuming, our calculation in this
paper mainly focuses on CLVs of UPOs with relatively small
calculation cost.

This paper is organized as follows. In Sec. II, we analyze
manifold structures of UPOs in the Lorenz system when we
change some parameters. We characterize the appearance of
periodic windows in terms of the manifold structures of UPOs.
In Secs. III and IV, we perform similar analyses for the Hénon
map and the Kuramoto-Sivashinsky system. Finally, in Sec. V,
we summarize our results.

II. LORENZ SYSTEM

We first discuss manifold structures of the Lorenz
system [9]:

ẋ = −σx + σy, ẏ = −xz + rx − y, ż = xy − bz.

Unless otherwise stated, we choose σ = 10 and b = 8/3,
with r being the control parameter. It was found that the
Lorenz system is (singular) hyperbolic at r = 28 [10], and
as r increases further the system comes to possess tangencies
between a stable manifold and an unstable manifold [9,11].
As in the case of general chaotic dynamical systems, there
are infinitely many periodic windows in the Lorenz system.
However, since the sizes of most periodic windows are very
small, it is difficult to detect them. A periodic window of the
Lorenz system starts via an inverse period doubling bifurcation
and finishes by a saddle-node bifurcation as r increases
from 28 [9].

The knowledge of CLVs allows calculating the angle
between a stable and an unstable manifold at some point
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FIG. 1. (Color online) Minimum manifold angle θT
min of each UPO with period T at r = 28 (left) and r = 60 (right).

by determining the angle between subspace Es spanned by
contracting CLVs and subspace Eu spanned by expanding
CLVs. The angle [0◦ � ∠(Es,Eu) < 90◦] is defined as follows
[12]:

∠(Es,Eu) = cos−1

⎡
⎣ max

|us |=|uu|=1
us∈Es,uu∈Eu

|(us ,uu)|
⎤
⎦180

π
.

We calculate the angle at every sample point along an orbit. We
will sometimes call the angle between a stable and an unstable
manifold the manifold angle.

Statistical properties of chaotic systems have been charac-
terized in terms of UPOs embedded in the attractor [4,5]. From
now on we estimate the relative positions of periodic windows
in a parameter space through the manifold structures of UPOs.
Here, the manifold structure of a chaotic attractor is captured
by the angle between a stable and an unstable manifold of
a UPO. The minimum angle θT

min between a stable and an
unstable manifold (minimum manifold angle) of each UPO
with period T is defined as

θT
min ≡ min

0�t<T
∠(Es,Eu)t ,

and is considered as a quantity representing the manifold
structure of each UPO.

Figure 1 shows the minimum manifold angles of hundreds
of numerically detected UPOs with period T at r = 28 and

r = 60. It is found that UPOs in the case of r = 28 tend to have
large minimum manifold angles, whereas some UPOs at r =
60 have very small ones. This result suggests that the tangency
of a chaotic attractor at r = 60 [11] can be characterized by
UPOs which have small minimum manifold angles, that is,
UPOs which pass near the tangency [13].

To see the changes of manifold structures of UPOs, the
parameter dependence of the minimum manifold angles for
five UPOs with periods T = 4.7986, 1.9094, 1.4514, 3.4090,
and 2.9155 detected at r = 60 [Fig. 2 (left)] is investigated.
Figure 2 (left) shows that the minimum manifold angles
decrease monotonically as r increases. The minimum manifold
angle of each UPO takes the minimum value at one of the
edges, a saddle-node bifurcation point, of the corresponding
periodic window. Note that the value of the minimum manifold
angle is not zero but a small positive value at the saddle-node
bifurcation point [14]. Figure 2 (left) also shows that the
order of the minimum manifold angles of five UPOs holds
for any parameter r . This indicates that if there is a UPO
which has a smaller minimum manifold angle at a certain
parameter, the corresponding periodic window exists closer
to the parameter. Conversely, if the minimum manifold angle
of a UPO at a certain parameter is larger, the corresponding
periodic window exists farther from the parameter. Table I
shows more examples of the relation between the minimum
manifold angles of UPOs at r = 60 and the parameter values
rSN of the edges of the corresponding periodic windows, where
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FIG. 2. (Color online) Dependence of minimum manifold angles θT
min on parameter r for five UPOs with period T at r = 60 (left).

Dependence of the maximum Lyapunov exponents λmax on parameter r for five UPOs with period T at r = 60 (right).
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TABLE I. Relation between minimum manifold angles θT
min of

stable and unstable manifolds at points on each UPO with period
T at r = 60 and the saddle-node bifurcation point (rT

SN) of the
corresponding periodic window. S and N represent the origin of UPOs
at the corresponding saddle-node bifurcation points, the saddle orbit
(S) and the node orbit (N). Periodic windows corresponding to UPOs
which have small (large) manifold angles exist near (away from) the
parameter.

θT
min T S/N rT

SN

1.00 5.2497 S 60.42
1.24 4.7767 N 60.25
1.47 5.2558 N 60.42
1.56 5.7184 S 60.51
2.32 4.7986 N 61.63
5.97 2.9737 N 76.82
6.27 1.9094 S 71.53
7.42 3.0216 N 92.51
7.97 3.3820 S 86.40
8.13 1.6127 N 100.79
13.59 1.4514 S 100.79
14.12 3.4090 S 118.13
15.37 2.9155 S 126.52
31.02 0.9773 S 312.96

the saddle-node bifurcation occurs. We select five UPOs with
small minimum manifold angles and nine UPOs with relatively
large minimum manifold angles at r = 60. The result gives us
the idea that the manifold angles of UPOs are useful to estimate
the sequence of periodic windows and the relative position of
the edges of the periodic windows in the parameter space.

It should also be noted that periodic windows are not
constructed completely in ascending order of the minimum
manifold angles of UPOs (e.g., the first two UPOs in Table I),
although periodic windows can be constructed in ascending
order at a rough estimate. This is because there are two UPOs
(e.g., the first and the third UPOs in Table I) which have the
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FIG. 3. (Color online) Chaotic attractor (small +) and some
UPOs with period T on a Poincaré section (x,y) of z = r − 1 at
r = 60. Poincaré plots of UPOs originating from saddle orbits at the
saddle-node bifurcation points exist only on the branch bs , whereas
those originating from node orbits exist on both branches bs and bn.
A saddle orbit on bs (e.g., T = 5.2497 at r = 60) and a node orbit on
bn (e.g., T = 5.2558 at r = 60) will collide near the point P.
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FIG. 4. (Color online) Relation between the minimum manifold
angle θT

min and ln �T for each UPO with period T at r = 60. The solid
line shows ln(�T ) = 0.0572θT

min + 3.83.

same symbol sequences [9] but are different orbits; one is a
saddle orbit and the other is a node orbit at the edge of the
periodic window. The order of the minimum manifold angles
of these two UPOs can change, because UPOs due to node
orbits and those due to saddle orbits exist on different branches
(see Fig. 3). However, from Table I the order of minimum
manifold angles of UPOs in a set of UPOs (S) originating from
saddle orbits [UPOs (N) originating from node orbits] cannot
change, because UPOs (S/N) due to saddle/node orbits exist
on the branch bs/bn (see Fig. 3). In general, a UPO denoted by
S/N on the branch bs/bn cannot cross another UPO (S/N) when
the parameter r changes, because the dimension of the attractor
on the Poincaré surface is almost unity. On the other hand, in
the Lorenz system at (around) r = 28, there are no UPOs with
the same symbolic sequences. Thus saddle-node bifurcation
points of periodic windows deriving from the UPOs are made
completely in ascending order of minimum manifold angles
[15].

Figure 4 shows the relation between the minimum manifold
angle θT

min and the distance �T (:= rT
SN − 13.926) from

the saddle-node bifurcation point rT
SN of each UPO with

period T to the homoclinic bifurcation point (∼13.926) [9].
The minimum manifold angles and the distances can be
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FIG. 5. (Color online) Dependence of the minimum manifold
angles θT

min on parameter δ1 for five UPOs with period T at r = 60.
Parameters r and σ are changed as r = r0 − δ1 and σ = σ0 − δ1,
where r0 = 60 and σ0 = 10.
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FIG. 6. (Color online) Dependence of the minimum manifold
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min on parameter δ2 for four UPOs with period T at r = 60.
Parameters r , σ , and b are changed as r = r0 + δ2, σ = σ0 +
5 sin(δ2π/2), and b = b0 + sin(δ2π/2), where r0 = 60, σ0 = 10, and
b0 = 8/3.

fitted by using the least-squares method, and we find that
�T = exp(αθT

min + 3.83) with α = 5.72 × 10−2 (rms error:
2.2 × 10−3). 3.83 is chosen such that when the minimum
manifold angles (θT

min) of UPOs at r = 60 are almost 0, the
value of rT

SN is 60. We can predict a parameter value of the
corresponding window from the minimum manifold angle θT

min
of some UPOs. We cannot obtain the results by employing
the maximum Lyapunov exponent, which cannot reflect local
structures, because the order of the Lyapunov exponents can
change [see Fig. 2 (right)]. Thus the minimum manifold
angle is an important quantity in analyzing chaotic dynamical
systems which will open the door to solving unexplored
problems.

In the above results, we have calculated the minimum
manifold angles of UPOs by changing only the parameter
value r . Here, we discuss the minimum manifold angles by
varying various parameters simultaneously. Figure 5 shows the
dependence of the minimum manifold angles on the parameter
δ1, where the parameters r and σ are changed as r = r0 − δ1

and σ = σ0 − δ1 (r0 = 60 and σ0 = 10). The angles in this
case also change monotonically and the order of minimum
manifold angles does not change as in the case of changing
the only parameter r .

These results imply the robustness of the order of the
minimum manifold angles. This property is consistent with

a result about saddle-node bifurcation lines in a parameter
plane of the Lorenz system [16]. On the other hand, it is
imagined that the angles do not change monotonically in some
cases. In fact, we can find such a case by changing parameters
in a complex way, i.e., r = r0 + δ2, σ = σ0 + 5 sin(δ2π/2),
and b = b0 + sin(δ2π/2), where δ2 is a control parameter, and
r0 = 60, σ0 = 10, and b0 = 8/3 (see Fig. 6). However, even in
this case, the minimum manifold angles still keep the order.

III. HÉNON MAP

Here, we consider the Hénon map of real variables:

xn+1 = a − x2
n + 0.3yn, yn+1 = xn.

We show minimum manifold angles at points on UPOs at
a = 1.4 in Fig. 7 (left). We choose four UPOs (period 13)
with various minimum manifold angles at the parameter and
calculate the parameter dependence of them [see Fig. 7 (right)].
Figure 7 (right) shows that the minimum manifold angle
along each UPO decreases monotonically as a decreases
until the corresponding branch vanishes via the saddle-node
bifurcation, and that the order of minimum manifold angles for
the four UPOs holds for any parameter a. This indicates that
if there is a UPO which has a small minimum manifold angle
at a certain parameter, the corresponding periodic window
exists near the parameter. The parameter at which the minimum
manifold angle takes the minimum value corresponds to the
saddle-node bifurcation point. We have confirmed that these
properties hold for many other branches of UPOs. Notice that
these results for the Hénon map are almost the same as those
obtained in the Lorenz system.

IV. KURAMOTO-SIVASHINSKY SYSTEM

Next, we consider the Kuramoto-Sivashinsky (KS) system
[17]. The KS system is one of the simplest partial differential
equations that can exhibit spatiotemporal chaos. It has the form

ut + 2uux + uxx + νuxxxx = 0,

where u = u(x,t) (x ∈ [0,2π ]) is a real variable and ν is
the control parameter. We impose the 2π periodic boundary
condition u(x,t) = u(x + 2π,t). To calculate the equation,
we adopt the spectral method with Fourier decomposition
u(x,t) = ∑∞

k=−∞ bk(t)eikx . To simplify the system we restrict
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FIG. 7. (Color online) Minimum manifold angle θmin of each UPO with period p at a = 1.4 (left). Dependence of minimum manifold
angles θmin on parameter a for four UPOs with period 13 at a = 1.4 (right).
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angles θT
min on parameter ν for four UPOs with period T at ν = 0.02991 (right).

our attention to the subspace of odd functions u(x,t) =
−u(−x,t), and assume bk(t) = −iak(t)/2 [18,19]. The set of
equations is given by

ȧk(t) = (k2 − νk4)ak(t) + k
∑
m

am(t)ak−m(t),

where a0 = 0, 1 � (k,m) � N , and N is the truncation
order. We choose N = 16. Here, we again investigate the
relation between positions of periodic windows and manifold
structures of UPOs in the KS system around the parameter
ν = 0.02991.

We show minimum manifold angles at points on each of
numerically detected hundreds of UPOs at ν = 0.02991 in
Fig. 8 (left). This figure indicates that there are some UPOs
which pass near the tangencies. That is, the tangencies can
be characterized by the UPOs as in the case of the Lorenz
system. Next, we calculate the parameter dependence of mini-
mum manifold angles for four UPOs with periods T = 2.6325,
4.3709, 4.3801, and 4.3920 at ν = 0.02991. Figure 8 (right)
shows that the minimum manifold angle along each UPO
decreases monotonically as ν increases until the corresponding
branch vanishes via the saddle-node bifurcation. This indicates
that if there is a UPO which has a small minimum manifold
angle at a certain parameter, the corresponding periodic
window exists near the parameter. Furthermore, Fig. 8 (right)
indicates that the order of minimum manifold angles for
four UPOs holds for any parameter ν. The parameter at
which the minimum manifold angle takes the minimum value
corresponds to the saddle-node bifurcation point. It should be
noted that the minimum manifold angle at the edge is around
0 but bounded from 0 [14]. We have confirmed that these
properties hold for many other branches of UPOs. Notice
that these results for the KS system are almost the same as
those given in the Lorenz system and the Hénon map. We
conjecture that the reason for this is the low dimensionality
of these attractors. In fact, the Kaplan-Yorke dimension of the
KS system is D = 2.2.

V. SUMMARY

In this paper, we have obtained results on the relation
between the manifold structures of unstable periodic orbits
(UPOs) and the appearance of periodic windows correspond-
ing to the UPOs for the Lorenz system, the Hénon map, and the

Kuramoto-Sivashinsky system. In these systems, the minimum
manifold angle between a stable and an unstable manifold at
each point on a UPO decreases as a parameter approaches
the edge of the corresponding periodic window, although
the minimum manifold angle does not necessarily change
monotonically in a parameter space. The most important
point is that the order of the minimum manifold angles of
UPOs that originated from the only saddle branches (only
node branches) of the saddle-node bifurcation is preserved.
This property cannot be found when we employ Lyapunov
exponents.

Furthermore, the manifold angle becomes very small but is
positive at the edge of a periodic window where the saddle-
node bifurcation occurs, suggesting that the system at the edge
of each periodic window is nonhyperbolic without tangencies.
It has been found from a different study [15] that the three
systems studied here possess tangencies at the Feigenbaum
points, where period doubling bifurcations occur infinitely
many times. A saddle-node bifurcation point locates near the
Feigenbaum point in a parameter space. Thus, the minimum
manifold angle of a UPO originating from a saddle-node
bifurcation takes the minimum value around the corresponding
bifurcation point. Furthermore, when the minimum manifold
angle of a UPO at a certain parameter is small (large), the
corresponding periodic window exists near (away from) the
parameter. This result indicates that by calculating manifold
angles of UPOs we can predict the window sequence in a
parameter space even if the corresponding periodic windows
considered are quite small. In future work, it should be clarified
whether similar results can be obtained in higher dimensional
systems.
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