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Visualization and comparison of classical structures and quantum states of four-dimensional maps
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For generic 4D symplectic maps we propose the use of 3D phase-space slices, which allow for the global
visualization of the geometrical organization and coexistence of regular and chaotic motion. As an example, we
consider two coupled standard maps. The advantages of the 3D phase-space slices are presented in comparison
to standard methods, such as 3D projections of orbits, the frequency analysis, and a chaos indicator. Quantum
mechanically, the 3D phase-space slices allow for the comparison of Husimi functions of eigenstates of 4D maps
with classical phase-space structures. This confirms the semiclassical eigenfunction hypothesis for 4D maps.
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I. INTRODUCTION

Understanding higher-dimensional, dynamical systems,
even with just a few particles, is a challenging task. Such sys-
tems are relevant in many areas of physics and chemistry [1],
ranging from the dynamics of the solar system [2–4], dynamics
of particle accelerators [5], to atoms and molecules [6–9].
Particular topics of interest concern the quantum signatures
of Arnold diffusion [10–12] and quantum-classical correspon-
dence in higher-dimensional mixed systems [13,14].

A standard example would be autonomous Hamiltonian
systems with three degrees of freedom, which have a 6D
phase space, which can be reduced to a 5D manifold due to
energy conservation. Introducing a Poincaré section leads to a
4D symplectic map. This type of map also arises from time-
periodically driven, Hamiltonian systems with two degrees
of freedom, where a stroboscopic Poincaré section leads to
a symplectic map acting on the 4D phase space. Such 4D
maps are prototypical for the behavior of higher-dimensional
systems, as they have the smallest possible dimension showing
the essential difference to 2D symplectic maps: In 2D maps tori
are one-dimensional and thus lead to absolute barriers of mo-
tion. In contrast, in 4D maps regular tori are two-dimensional
manifolds in the 4D phase space, which cannot divide the
phase space into dynamically distinct regions. One of the most
fundamental consequences of this topological structure of
4D (and higher-dimensional) maps is that generically chaotic
orbits can get arbitrarily close to any point in phase space,
even if regular tori are present. One possible mechanism was
constructed by Arnold [15], leading to the so-called Arnold
diffusion [1,4,16,17]. Another striking phenomenon is the
occurrence of power-law trapping of chaotic orbits in higher-
dimensional systems with a mixed phase space [18–21], for
which the mechanism is still an open question. While most of
the analytical and numerical results about higher-dimensional
systems have been obtained for the near-integrable case, many
practical applications are concerned with generic systems,
which cannot be described by perturbative methods; see, e.g.,
Refs. [22–24] and references therein.

For the lowest-dimensional Hamiltonian systems with
regular and chaotic dynamics, such as 2D billiards or time-
periodically driven 1D systems, the dynamics can be reduced
to 2D symplectic maps. Their phase space can be easily
visualized, providing substantial insight and intuition of the

dynamics in phase space, such as chaotic motion, regular
regions formed by 1D regular tori around stable periodic orbits,
stable and unstable manifolds of unstable periodic orbits,
nonlinear resonances, and hierarchical regions due to partial
barriers at the border of the regular island. Also the time-
evolution of trajectories can be visualized straightforwardly.

Such a direct visualization of the classical dynamics in
phase space is also very useful when trying to understand
the properties of the corresponding quantum mechanical sys-
tem. According to the semiclassical eigenfunction hypothesis
[25–27], one expects that eigenstates semiclassically concen-
trate on those regions in phase space that a generic orbit
explores in the long-time limit. For ergodic systems this is
proven by the quantum ergodicity theorem stating that almost
all eigenfunctions become equidistributed in the semiclassical
limit [28–30]. For systems with a mixed phase space one thus
expects that (almost all) eigenstates either concentrate in the
chaotic region or within the regular regions on the invariant
tori. Away from the semiclassical limit this can be violated
due to dynamical tunneling [31–34] and partial transport
barriers [35]. The semiclassical eigenfunction hypothesis has
been confirmed in several studies for 2D billiard systems and
maps; see, e.g., Refs. [36–40] and references therein. In order
to study this question for 4D maps, it is necessary to visualize
the organization of phase space and in particular to display
sets of individual tori.

For higher-dimensional systems a direct visualization of
phase space is not possible.1 Starting with the pioneering work
of Froeschlé [43,44], several methods have been introduced to
obtain a reduction to understand the dynamics. For example,
two-dimensional plots of multisections [44,45] or projections
to two [2,43,46,47] or three [48–50] dimensions, also including
color to indicate the projected coordinate [51,52], frequency
analysis [53–56], and action-space plots [57] . Further tools
to investigate higher-dimensional phase spaces are chaos
indicators to distinguish regular from chaotic motion, like
finite-time Lyapunov exponents [58–60], fast Lyapunov indi-
cator (FLI) [45,61,62], and many more; see, e.g., Refs. [63–65]
and references therein.

1You’re just not thinking fourth dimensionally! – Right, right. I have
a real problem with that. (Quote from Back to the Future Part III).
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FIG. 1. (Color online) 3D phase-space slice |p2| � ε of the 4D
map given by two coupled standard maps, Eq. (2), at strong coupling
ξ12 = 1. Regular tori are given by 1D lines (red, cyan, violet, pink,
green, orange, and brown). They are surrounded by chaotic orbits
(blue dots). The central regular region (red) around the elliptic-
elliptic fixed point is predominantly filled with regular tori (not
shown for visual reasons). For a rotating view see the Supplemental
Material [42].

The aim of this paper is to obtain a direct visual approach
for an understanding of 4D symplectic maps similar to the
insights already available for 2D maps. For this we propose
the use of 3D phase-space slices; see Fig. 1 for an illustration
of regular 2D tori and one chaotic orbit. We make use of the
full dimensionality of the 3D slice by displaying and rotating
it using standard 3D graphics. Since it is very instructive to
see this rotation, for the convenience of the reader for all 3D
phase-space slices in this paper videos with rotating camera
position are given in the Supplemental Material [42]. The
reduction from 4D to 3D is obtained by selecting those points
of an orbit that lie in the 3D phase-space slice and plotting
the remaining three coordinates. Thereby, 3D phase-space
slices allow for displaying several different orbits at the same
time and provide a global visualization of their arrangement
in phase space. By this we are able to visualize quantum
eigenstates of a generic system far away from integrability
and compare them to the classical phase-space structures.
This confirms the semiclassical eigenfunction hypothesis for
regular and chaotic states in the case of 4D maps. Moreover,
a combination of the 3D phase-space slices and the frequency
analysis allows for identifying regular subregions and their
separating resonance gaps. This also explains the nature of the
so-called tube tori [50,52].

This paper is organized as follows: In Sec. II we introduce
the 3D phase-space slices and the generic 4D symplectic
map. The observations are compared with complementary
methods, namely 3D projections, frequency analysis, and

the fast Lyapunov indicator. In Sec. III we consider the
quantum mechanics of 4D maps and the visualization of
eigenstates by means of the Husimi function on the 3D
phase-space slices. Finally, Sec. IV gives a summary and an
outlook. Additionally, we discuss different slice conditions
and combine 3D phase-space slices with a normal form
transformation in the Appendix.

II. REGULAR PHASE-SPACE STRUCTURES

A. 3D phase-space slices

While the concept of 3D phase-space slices applies to
arbitrary maps, we restrict our presentation to symplectic
maps. For a symplectic map acting on a 2f -dimensional phase
space, an orbit started at an initial point leads to a sequence
of points (p1, . . . ,pf ,q1, . . . ,qf ). For f � 2 the dynamics
cannot be displayed completely in a 2D or 3D figure. To
obtain a visualization of the dynamics of higher-dimensional
systems, we use of 3D phase-space slices �ε, which are defined
by thickening a 3D hyperplane � in the 2f -dimensional
phase space. To specify �, the simplest choice is to fix
2f − 3 coordinates from p1, . . . ,pf ,q1, . . . ,qf . For 4D maps
(f = 2), one thus has to fix one coordinate, e.g., p2 = p∗

2 , to
define the slice by

�ε = {(p1,p2,q1,q2) | |p2 − p∗
2 | � ε}. (1)

Whenever a point of an orbit lies within �ε, the remaining
coordinates (p1,q1,q2) are displayed in a 3D plot. This is
different to the method by Froeschlé [43,44], which first
projects onto the 3D phase space and then uses 2D slices to
visualize this projection. Slice conditions like Eq. (1) have been
considered, e.g., in Ref. [45], but without 3D visualization.

By the parameter ε the resolution of the resulting plot is
controlled. Decreasing ε gives a tighter slice condition but also
requires numerically computing longer trajectories as the slice
condition is fulfilled less often. This also shows the necessity to
consider a thickened hyperplane as in the limit ε = 0 a typical
orbit will have no points in �ε. Moreover, for a larger number of
degrees of freedom this means that the orbit returns less often to
the slice and also only a small part of phase space can be seen.
Still it can be useful, if the dynamics is dominated by a few
degrees of freedom. Using 3D visualization techniques [66],
one can interactively explore the structure and dynamics of
orbits in the 3D phase-space slice. Throughout this paper we
focus on 4D symplectic maps and use ε = 10−4.

For 4D symplectic maps we now discuss the expected visual
appearance of the different objects in phase space: A typical
chaotic trajectory fills a 4D volume in the 4D phase space.
In the 3D phase-space slice this leads to a sequence of points
filling a 3D volume. A typical regular torus is a 2D object
embedded in the 4D phase space. In the 3D phase-space slice
this will either lead to no points at all (i.e., the slice does
not intersect the torus) or typically lead to two or more 1D
lines. Periodic orbits usually will not be visible in the 3D
phase-space slice. Only an appropriate choice of � will directly
show periodic orbits; see Appendix 3 b. To understand this
reduction from the 4D phase space to the 3D phase-space
slice the analogous reduction of a 2D phase space to a 1D
slice is helpful: Depending on the position of the slice, regular
tori, which are 1D invariant curves, will either lead to 0 (no
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FIG. 2. (Color online) Phase space of the uncoupled standard
maps, Eq. (2) with ξ12 = 0: (a) K1 = −2.25 and (p2,q2) = (0,0).
The regular island (red and cyan) contains a 4 : 1 resonance (orange).
Chaotic orbits (blue dots) appear outside of the regular island and
inside a thin chaotic layer around the 4 : 1 resonance. (b) K2 = −3.0
and (p1,q1) = (0,0).

intersection), 1 (tangential intersection), 2 or more points.
Periodic orbits, however, will typically not be in the slice.

As a concrete example we consider the prototypical system
of two coupled standard maps [44],

p′
1 = p1 + K1

2π
sin(2πq ′

1) + ξ12

2π
sin[2π (q ′

1 + q ′
2)]

p′
2 = p2 + K2

2π
sin(2πq ′

2) + ξ12

2π
sin[2π (q ′

1 + q ′
2)]

(2)
q ′

1 = q1 + p1

q ′
2 = q2 + p2,

where p1,p2,q1,q2 ∈ [−1/2,1/2) and periodic boundary con-
ditions are imposed in each coordinate. The parameters K1

and K2 control the nonlinearity of the individual 2D standard
maps in (p1,q1) and (p2,q2), respectively. The parameter ξ12

introduces a coupling between the two degrees of freedom.
We choose as parameters of the uncoupled standard maps
K1 = −2.25 and K2 = −3.0 such that at each of the origins
(p1,q1) = (0,0) and (p2,q2) = (0,0) one has an elliptic fixed
point; see Fig. 2. Note that for positive values of K1 and K2 the
phase space would be shifted by 1/2 in the q1 and q2 directions.
In both cases, Figs. 2(a) and 2(b), one has a large regular region
formed by invariant tori (red lines), which is surrounded by a
region formed by chaotic orbits (blue dots). For K1 = −2.25
the regular island contains a large 4 : 1 resonance. Note that
the regular tori form absolute barriers to the motion, such that
orbits starting in the chaotic region cannot enter the regular
island and vice versa. For example, the blue chaotic orbit
surrounding the 4 : 1 resonance in Fig. 2(a) is not dynamically
connected to the large chaotic region also shown in blue.

We choose a strong coupling ξ12 = 1.0 to obtain a
generic 4D phase space, which is far from being integrable.
In this case the origin �ufp = (p1,p2,q1,q2) = (0,0,0,0)
remains an elliptic-elliptic fixed point, which follows from
linearization [1,67–69].

We use the slice condition p∗
2 = 0; see the Appendix for

a variation of p∗
2 and other choices. By numerically iterating

several initial conditions until for each of them 8 000 points
are contained in the 3D phase-space slice, we obtain Fig. 1.
Chaotic trajectories lead to sequences of irregularly spread

points; examples are shown as blue dots. Regular tori, which
generically are 2D objects in the 4D phase space, appear as 1D
lines in the 3D phase-space slice. They are shown in red, cyan,
violet, pink, green, orange, and brown, depending on which
structure in phase space they belong to. All these structures
are given by families of 2D tori forming approximately 4D
volumes with a 3D surface toward the chaotic domain if we
neglect the Arnold web and the fractal structure of phase space.
The initial conditions leading to the 1D lines shown in Fig. 1
are chosen such that they sample the surface of these structures
in phase space evenly. This is accomplished by choosing the
initial conditions manually based on FLI calculations [70];
see Sec. II B 3. By not starting orbits in the inside of the
regular regions or too close to each other one ensures a clear
representation of the underlying phase-space structures.

The regular tori in Fig. 1 appear to form a kind of regular
region embedded in the large chaotic sea, similar to the case of
a two-dimensional map. However, it is important to emphasize
that this regular region is actually not a region but just a
collection of regular tori with chaotic trajectories interspersed
on arbitrarily fine scales. One such chaotic orbit is shown as a
dense cloud of blue dots. The crucial difference between 2D
and 4D maps is that this blue orbit in the chaotic layer will
eventually spread into the main chaotic sea if iterated long
enough. As regular tori are no longer absolute barriers in phase
space [1], the thin chaotic zones and the main chaotic sea are
connected with each other. Thus, all such chaotic trajectories
close to the center will eventually enter the outer chaotic sea.
Regular orbits of the central region are shown in red in Fig. 1.
Other structures given by regular tori are indicated in different
colors. Most of them appear twice (cyan) or four times (violet).
This general feature of tori in 3D phase-space slices of a
4D phase space can be understood from an analogy in 3D
space: Here, a 2D section of a 2D torus will typically give two
1D lines. Furthermore, there are two groups of tori (orange
and brown), which are in the vicinity of two elliptic-elliptic
period-7 orbits. [This is analogous to the case of a 2D map with
a resonance chain; see Fig. 2(a).] Note that in each case only
three points are close enough to the considered 3D phase-space
slice such that their surrounding tori are visible in the slice.
The other four points are further away; see Appendix 1. The
orange structure will be investigated in detail in Appendix 3 b.

Figure 1 together with its rotated view [42] demonstrates
that using a single 3D phase-space slice provides a lot of
insight into the structures in phase space, in particular their
relative locations are revealed and sizes can be inferred by
varying the slice condition. This information is essential to
predict the number of quantum eigenfunctions that localize in
the different subregions of phase space; see Sec. III.

B. Comparison with other methods

We now compare the 3D phase-space slices with other
common methods, namely 3D projections of orbits, the
frequency analysis, and a chaos indicator. It turns out that they
provide a complementary view of the classical phase-space
structures. However, only the 3D phase-space slices allow for
a visualization of quantum eigenstates in comparison with
individual regular tori; see Sec. III.
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FIG. 3. (Color online) 3D phase-space slice for |p2| � ε of two coupled standard maps with 3D projections for different regular tori from
Fig. 1: (a) red, (b) cyan, (c) violet, (d) pink, (e) green, and (f) orange. For the projection, the p2 coordinate is encoded in color corresponding
to the color bar. For a rotating view see the Supplemental Material [42].
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1. 3D projections

Using 3D phase-space slices provides a global view of the
geometry of the underlying 4D phase space by displaying
several objects in the same plot. Alternatively, one can
concentrate on one or few orbits and display all points by
a 3D projection [43] and encode the value of the projected
coordinate by a color scale; see Fig. 3. This approach has been
called method of color and rotation; see Refs. [51,52,71]. The
plots of the orbit projections reveal the underlying topology,
i.e., which structures of the 3D phase-space slice �ε (black) are
connected. Figures 3(a)–3(c) show projected orbits belonging
to the red, cyan, and violet region from Fig. 1. The projection
shows that they indeed share the same topology. A closer
investigation reveals that the torus (pink) shown in Fig. 3(d)
is also of the same type and just bent in a more complicated
way. The highlighted tori shown in Figs. 3(a)–3(d) have been
called rotational [50,52].

Figure 3(e) shows the projection of an orbit from the green
structure around the central regular region. Such tori have been
called tube tori [50,52]. A frequency analysis, see Sec. II B 2,
shows that the orbits of the green structure belong to the stable
vicinity of the elliptic −1 : 3 : 0 rank-1 resonance [72]. Hence,
we conclude that the tube tori result from coupled rank-1
resonances.

Finally, Fig. 3(f) shows the projection of an orange orbit
from the elliptic-elliptic vicinity of the period-7 orbit of Fig. 1.
Seven parts can be seen in the projection at the same time, while
just three fulfill the slice condition of Fig. 1.

Only one or a few orbits can be displayed simultaneously
using 3D projections, while many can be visualized in the
3D phase-space slice. Hence, using 3D phase-space slices and
projections of orbits in combination is very instructive for the
understanding of higher-dimensional maps.

2. Frequency analysis

We now compare the 3D phase-space slices with the
frequency analysis [53–56]. This method associates each
regular torus with its two fundamental frequencies (ν1,ν2) ∈
[0,1[2, which are displayed in the 2D frequency plane; see
Fig. 4. In the plot, the black points represent regular tori
obtained by starting 108 initial conditions (with randomly
chosen p1,p2 ∈ [−0.2,0.2] and q1,q2 ∈ [−0.2,0.2]) in the 4D
phase space. Note that for strongly coupled maps far from
integrability a sampling on 2D planes is not sufficient as this
will typically miss some regions with regular motion. Each
frequency pair is calculated from N = 4 096 iterations using a
fast, analytical interpolation method (Sec. 4.2.4 in Ref. [73]).
The error of this method scales with N−4 like the original
method of Laskar [54]. To decide whether an orbit is regular
we use the frequency criterion

max(|ν1 − ν̃1|,|ν2 − ν̃2|) < 10−7, (3)

where the frequency pair (ν̃1,ν̃2) is calculated from N further
iterations. Note that the frequencies (ν1,ν2) are only defined
up to a unimodular transformation (Sec. 15 in Ref. [74] and
Refs. [75,76]). Using the 3D phase-space slices we can choose
the frequencies consistently such that regular tori, which are
close in phase space, are also close in the frequency plane.
Explicitly, we make the following transformations: (i) if νi >

0.5 then νi �→ 1 − νi , (ii) if ν2 > ν1 then (ν1,ν2) �→ (ν2,ν1),
(iii) for tori of the type shown in Fig. 3(d) with ν2 > 0.25 we
use (ν1,ν2) �→ (ν1,−4ν1 + ν2). The resulting frequency pairs
reside in a small region of the frequency plane; see Fig. 4.

Additionally, the frequencies of the regular tori shown in
Fig. 1 are displayed as squares with the corresponding color.
This provides a connection between phase-space structures and
areas in the frequency plane; e.g., the red points indicate that
the area to the right corresponds to the central regular region. In
fact, the linearization of the central elliptic-elliptic fixed point
�ufp gives frequencies (ν1,ν2) = (0.30632, 0.12173), which
coincide with the rightmost tip in the frequency plane. The
sharp edges emanating from the tip correspond to elliptic 1D
tori, i.e., the limiting case of 2D tori for which one action
becomes zero [77].

The frequency plane is organized by rank-1 resonance lines,
on which the frequencies fulfill [54]

m1ν1 + m2ν2 = n (4)

with m1,m2,n being integers. The most important ones are
displayed in Fig. 4, abbreviating Eq. (4) by m1 : m2 : n. We
stress that the resonance lines lead to gaps in the 4D phase
space, clearly visible in the 3D phase-space slices; see Fig. 1.
For example, the −1 : 2 : 0 resonance separates the red and the
cyan region and the 3 : 1 : 1 resonance separates the red and
the pink region. The tori of the type shown in Fig. 3(d) (green in
Fig. 1) demonstrate an advantage of the 3D phase-space slices:
Performing a frequency analysis for these tori gives frequency
pairs far away from the frequency region shown in Fig. 4. If
one ignores a fundamental frequency with small amplitude
and instead chooses two frequencies with large amplitude, the
frequency pairs reside within the frequency region displayed in
Fig. 4. However, they collapse on the resonance line −1 : 3 : 0.

0.05
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0.13

0.17

0.27 0.29 0.31ν1

ν2
0:7 :1

7
:0

:2

−1:2 :0

−1:3 :0

3:1 :1

FIG. 4. (Color online) Frequency plane of two coupled standard
maps at strong coupling ξ12 = 1.0. The colored squares correspond
to the colored regular tori of Fig. 1. The black points correspond to
additional regular tori.
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In contrast, the representation of these tori in the 3D phase-
space slice highlights both their relative location to other tori
and that they are a two-parameter family of tori. The same is
also true for the tori in the vicinity of the elliptic-elliptic period-
7 orbits (orange, brown in Fig. 1). Choosing two frequencies
with large amplitude in this case results in all frequency pairs
collapsing to the point (ν1,ν2) = (2/7,1/7).

These results demonstrate how the frequency plane with its
resonance lines relates to the structures of the 4D phase space.
The 3D phase-space slices reveal the topology and geometrical
relevance of the resonance gaps. In particular, the 3D phase-
space slices help to consistently assign frequencies to the
regular tori in systems that are far away from integrability.

3. Fast Lyapunov indicator

We now compare the 3D phase-space slices with one
example of a chaos indicator. Such chaos indicators associate
with each initial condition a value describing the chaoticity
of the corresponding trajectory [63–65]. We consider as an
example the FLI [45,61,62]; see Fig. 5. To interpret the
results of this indicator we calculate a histogram for a set
of initial conditions in the 4D phase space. Small values
correspond to regular motion and large values correspond to
chaotic motion, which allows for adjusting the color scale;
see Fig. 5. In this plot the FLI is displayed on three mutually
perpendicular planes. These are placed such that most of the
regular region is visible. The FLI is calculated using 4 096
iterations averaging over the last 50 values. The initial tangent
vector is [1, 1, 0.5 (

√
5 − 1),1] inspired by Ref. [70]. The color

scale is chosen such that red regions coincide with regions of
regular motion as can be seen from the orbits (black) in the
3D phase-space slice. Regions with intermediate FLI values
are shown in green. Large FLI values correspond to strongly
chaotic motion and are shown in blue.

Such a FLI representation is also useful for selecting regular
orbits for the 3D phase-space slice. For Fig. 1, orbits from the
border of the regular regions are used.

Another application of the FLI is the estimation of the
size of the regular region. For this one starts trajectories on
a grid in the 4D phase space and determines the fraction
of orbits with a small FLI value, i.e., corresponding to
the red regions of Fig. 5. Using 1284 initial points and a
maximum FLI value of 30 we find the approximate regular
phase-space fraction to be 1.4 × 10−3. Quantum mechanically
this gives an estimate of the number of regular eigenstates;
see Sec. III C.

Figure 5 shows that the plot for the regular tori in the 3D
phase-space slices complements the plot of chaos indicators
like the FLI. An advantage of 3D phase-space slices is that the
geometry of individual tori is visible, which is particularly
important when considering the quantized map, for which
regular eigenstates concentrate on such tori.

III. STRUCTURE OF QUANTUM STATES

By means of the 3D phase-space slices, we are able to relate
the quantum mechanical properties of higher-dimensional
systems with the underlying classical structures. For this
we first introduce the corresponding quantum map and the

−q1 p1

q2

|p2| ≤ ε

FIG. 5. (Color online) 3D phase-space slice for |p2| � ε of two
coupled standard maps at strong coupling ξ12 = 1.0 with three 2D
FLI planes. The color map is chosen such that points with FLI < 30
are shown in red, points with FLI > 150 are shown in blue, and
intermediate values are marked green. The three planes are chosen
away from the central elliptic-elliptic fixed point for better visibility.
For a rotating view see the Supplemental Material [42].

computation of eigenstates. Then the Husimi representation
of eigenstates is visualized on the 3D phase-space slices to
investigate the semiclassical eigenfunction hypothesis.

A. Quantized map

The classical map Eq. (2) arises from the stroboscopic view
of a kicked Hamiltonian of the form

H ( �p,�q ) = T ( �p ) + V (�q )
∑
n∈Z

δ(t − n), (5)

where the period of the driving is 1. Quantum mechanically
the time evolution

|ψ(t + 1)〉 = Û |ψ(t)〉, (6)

of a state |ψ(t)〉 after one time period is fully determined by
the unitary operator Û . The usual quantization for 2D maps,
see, e.g., Refs. [78–81], straightforwardly carries over to the
4D case, see, e.g., Refs. [82,83]. Explicitly we have

Û = exp

[
− i

�eff
V ( �̂q )

]
exp

[
− i

�eff
T ( �̂p )

]
, (7)

where V (�q ) = K1
4π2 cos(2πq1) + K2

4π2 cos(2πq2) + ξ12

4π2 cos[2π

(q1 + q2)] and T ( �p ) = 1
2 (p2

1 + p2
2). Here, heff = 2π�eff is

the effective Planck’s constant, which is Planck’s constant h

divided by the f th root of the size of one unit cell V unit cell
fD in

phase space,

heff = h(
V unit cell

fD

)1/f
, (8)

where in our case we have the number of degrees of freedom
f = 2.
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Of particular interest are the stationary states, i.e., the
eigenstates |ψj 〉 of Û , defined by

Û |ψj 〉 = eiϕj |ψj 〉, (9)

with the eigenphases ϕj . Due to the periodicity of the classical
phase space in the pi directions, one can express the time
evolution operator Û in a discrete position basis |�q�n〉 ≡ |�qn1,n2〉
with 0 � ni � N − 1, where N is the number of grid points
in each direction. This gives rise to a N2-dimensional Hilbert
space and the quantization condition

heff = 1

N
. (10)

With this, the grid in position space reads

�q�n = �q0 + 1

N
�n, (11)

with �q0 = (−1/2, − 1/2).
Now we can express the propagator Û by a finite N2 × N2

unitary matrix (for even N ),

U�n�k ≡ 〈�q�n|Û |�q�k〉

= h2
eff e− i

�eff
V (�q�n)

N−1∑
j1=0

N−1∑
j2=0

e− i
�eff

[T ( �p �j )+ �p �j (�q�n−�q�k )]
, (12)

where �p �j = �p0 + 1
N

�j . Finding the solution of Eq. (9), i.e., the
eigenphases and eigenstates of the system, therefore reduces
to the numerical diagonalization of the unitary matrix Eq. (12).
The matrix size scales like h−2

eff , in contrast to 2D maps, where
it scales like h−1

eff . This shows that numerical studies of higher-
dimensional systems in the semiclassical limit of small heff
require much more computational effort.

B. Lanczos algorithm

For the semiclassical behavior of eigenstates, i.e., in the
limit of small heff , we have to consider large matrices.
This makes it necessary to use appropriate diagonalization
schemes, which allow for computing a few rather than all
eigenstates. One possibility is the Lanczos algorithm [84],
which transforms U into tridiagonal form. The method is
particularly efficient if the application of the unitary operator
to a vector can be performed fast, in our case by a fast
Fourier-transform as in Ref. [85]. This leads to a computational
effort of N4 ln N instead of N6 for the direct diagonalization.

In order to use this approach for the computation of
eigenstates concentrated on a specific region in the classical
phase space, the initial vector of the Lanczos algorithm has
to be chosen appropriately. Usually a random vector is used
as the initial state |χ〉. Instead we choose a coherent state
|χ〉 = |coh( �p0,�q0)〉,

〈�q|coh( �p0,�q0)〉 = 1√
π�eff

exp

(
− (�q − �q0)2

2�eff
+ i

�p0 �q
�eff

)
,

(13)

concentrated at a point ( �p0,�q0). By this it is possible to
selectively calculate those eigenstates, which have a large
overlap with |χ〉: After the transformation to tridiagonal form

we sequentially [86] calculate all eigenvectors |ψj 〉. By con-
struction of the Lanczos algorithm, the first component of each
eigenvector gives the overlap with the initial coherent state
〈ψj |χ〉. We select the states with largest overlap and transform
them back to position space representation. Finally, one has
to verify whether the resulting state really is an eigenstate as
the Lanczos algorithm introduces spurious solutions due to
round-off errors. As a criterion, the residuum

‖(Û − eiϕj )|ψj 〉‖2 (14)

is computed and we only consider states having a value smaller
than 10−10. Note that for weakly coupled systems the initial
state for the Lanczos algorithm could, instead of a coherent
state, also be a direct product of eigenstates of the uncoupled
2D systems.

C. Husimi representation of eigenstates

While the eigenstates of a 4D map can still be visualized in
position representation, this does not allow for understanding
where the eigenstates concentrate in phase space. One possible
phase-space representation of a state is the Husimi represen-
tation (see Refs. [38,87,88] and references therein),

Hψ( �p,�q ) = 1

h2
eff

|〈coh( �p,�q )|ψ〉|2, (15)

which is the projection of the state |ψ〉 onto coherent states
coh( �p0,�q0), where also the periodicity of the phase space has
to be taken into account by periodizing the coherent states.

To visualize the Husimi function on the 3D phase-space
slice, i.e., Hψ (p1,p2 = 0,q1,q2), semitransparent isosurfaces
are used with a color association such that red corresponds to
high intensity; see Fig. 6. While classical orbits are displayed in
a 3D phase-space slice �ε, the Husimi function is computed on
the hyperplane �. As the fraction of the volume of the regular
phase-space region can be estimated to be 1.4 × 10−3, we
expect for heff = 1

500 approximately 350 regular and 249 650
chaotic eigenstates.

Figure 6(a) shows the “ground state” of the central regular
region (red in Fig. 1), which concentrates around the elliptic-
elliptic fixed point. It is approximately given by a Gaussian
shape in the Husimi function Hψ . In the position-space
probability-density |ψ(�q )|2, it is also approximately given by a
Gaussian distribution. Figure 6(b) shows an excited state of the
central region. Its Husimi function nicely shows that this state
predominantly lives on the classical torus, which corresponds
to two 1D lines in the 3D phase-space slice. The quantum
numbers (4,6) of this state can be read off from the nodal lines
in the position-space probability density.

Figures 6(c)–6(e) show eigenstates concentrating on more
complicated phase-space structures, corresponding to the
regular tori shown in Fig. 1 (pink, green, and orange). Note
that the eigenstate concentrating on the period-7 orbit extends
over both chains (orange and brown in Fig. 1). This is also the
reason why the position-space probability-density plot shows
eight maxima: These are given by two period-7 orbits, each
of which shows four distinct points in the projection onto the
(q1,q2) plane. Finally, Fig. 6(f) shows a chaotic state, which
is concentrated on the chaotic sea and decays rapidly into the
regular region. Looking at the eigenstates on a logarithmic
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−q1 p1

q2

|p2| ≤ ε

(a) (b)

(c) (d)

(e) (f)

|ψ|2

q1

q2

− 0.25

0.25

−0.25 0.25

0

max

H

0

max

|ψ|2

FIG. 6. (Color online) Husimi representation H of eigenstates of the time-evolution operator Û for heff = 1
500 in the 3D phase-space slice

and position-space probability-density |ψ |2 (insets). (a) Ground state |ψ0,0〉 of the central regular region. (b) Excited state |ψ4,6〉. (c) State
concentrated on pink structure shown in Fig. 1. (d) State concentrated on green structure shown in Fig. 1. (e) State concentrated on vicinity of
period-7 orbit (orange and brown structure in Fig. 1). (f) Chaotic eigenstate where the octant in the front has been removed for better visibility.
For a rotating view see the Supplemental Material [42].
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representation reveals tunneling tails of chaotic states into the
regular region and of regular states into the chaotic sea (not
shown).

Figure 6 clearly shows that the eigenstates either concen-
trate on regular tori or within the chaotic sea providing visual
confirmation of the semiclassical eigenfunction hypothesis for
4D maps. This is made possible by the use of 3D phase-space
slices.

IV. SUMMARY AND OUTLOOK

To understand the dynamics of 4D symplectic maps, we
use 3D phase-space slices. They provide the basis for a similar
level of understanding as for 2D maps. Such a visualization
is of particular importance for generic systems being far
away from integrability. Classically, the 3D phase-space slices
reveal a regular region embedded in a large chaotic sea for
the prototypical example of two coupled standard maps; see
Fig. 1. The regular region consists of several substructures
of different topology, which are separated by gaps. The
geometrical relation of these substructures in phase space
enables us to consistently assign frequencies to the regular
tori and allows for interpreting the results of the frequency
analysis. We identify resonance gaps by a combination of
3D phase-space slices and frequency analysis. Moreover, we
conclude that the so-called tube tori result from coupled rank-1
resonances.

A comparison of the 3D phase-space slices with orbit
projections and a chaos indicator shows that they nicely
complement each other. However, an important motivation for
the use of 3D phase-space slices is the investigation of quantum
mechanical properties in higher-dimensional systems. To
relate the structure of eigenstates with corresponding classical
structures, the comparison has to be done in phase space.
The 3D phase-space slices are best suited for this purpose,
since they visualize both several individual orbits at the same
time and the global geometry in phase space. We display
several eigenstates of the time-evolution operator in the Husimi
representation on the 3D phase-space slice together with
classical orbits. By this we can confirm the semiclassical eigen-
function hypothesis, namely that eigenstates either concentrate
on regular tori or in the chaotic region. Based on this, an
investigation of dynamical tunneling between a regular and
the chaotic region is possible.

The 3D phase-space slices also allow for displaying families
of elliptic 1D tori that provide the skeleton around which the
2D tori are organized [21,77]. In the future, the 3D phase-space
slices may be used to display invariant phase-space structures,
such as 1D tori or stable and unstable manifolds of fixed
points and periodic orbits. Another important application of 3D
phase-space slices is the determination of those phase-space
structures at which trapping of chaotic orbits occurs in systems
far away from integrability [21]. These long-trapped orbits are
the key to the understanding of power-law recurrence-time
statistics.

We hope that the method of 3D phase-space slices will be
useful for the understanding of the phase-space structure and
the dynamics of 4D maps and possibly higher-dimensional
systems.

ACKNOWLEDGMENTS

We thank Srihari Keshavamurthy and Peter Schlagheck for
stimulating discussions. We further acknowledge discussions
with Jacques Laskar, Haris Skokos, and Matthaios Katsanikas.
We thank the Center for Information Services and High
Performance Computing (ZIH Dresden) for access to the com-
puting facilities. Furthermore, we acknowledge support by the
Deutsche Forschungsgemeinschaft within the Forschergruppe
760 “Scattering Systems with Complex Dynamics.” All 3D
visualizations were created using MAYAVI [66].

APPENDIX: GENERAL 3D PHASE-SPACE SLICES

As only a part of phase space is visible in a 3D phase-space
slice it is instructive to consider other 3D phase-space slices,
e.g., by shifting the slice condition, choosing other coordinates
for the slice, or by using adapted nonorthogonal coordinates.
This is illustrated in the following sections.

1. Shifting the slice condition

A global view of the dynamics in the full phase space is
obtained by varying the value of p∗

2 of the slice condition
Eq. (1). This is illustrated in the sequence of plots in Fig. 7,
where p∗

2 = 0.0,−0.0875,−0.14,−0.1925 is chosen and
only regular tori are shown. Thereby, the slice condition p∗

2
is shifted away from the fixed point (p2 = 0) and we observe
that the visible regular region shrinks and finally vanishes (not
shown). The outermost tori at p∗

2 = 0 (violet and cyan) persist
the longest. Both features can be understood from a 2D analogy
where a 1D slice of a regular island is shifted away from the
fixed point. Furthermore, we observe the appearance of two
other members of the period-7 subregion (orange and brown)
in Figs. 7(b) and 7(d). Varying p∗

2 to positive values yields
qualitatively the same sequence of pictures.

While typically tori appear twice in the 3D phase-space
slice, under variation of p∗

2 every pair of 1D lines finally
coalesces into a single 1D line before it disappears; see, e.g.,
central violet tori in Fig. 7(d). This can again be understood
from an analogy in 3D space when a 2D section is shifted out
of a 2D torus.

2. Slice condition with different coordinates

Instead of choosing p2 as the coordinate for the slice
condition Eq. (1), one can choose any of the other coordinates
to obtain a complementary view of the underlying phase
space. If, however, the system under consideration is strongly
coupled, then the single degrees of freedom (pi,qi) are heavily
intertwined. Therefore, usually none of the slices along any of
the qi or pi has an advantage over any other possible choice.

Note that more generally one can define a rotated 3D phase-
space slice by the slice condition

|�u · �n − D| � ε, (A1)

for points �u in phase space, where �n is the normal vector to the
chosen slice and D is the distance of the slice to the origin.
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−q1 p1

q2(a) (b) (c)

|p2 − p∗2| ≤ ε

(d)

FIG. 7. (Color online) 3D phase-space slices for |p2 − p∗
2 | � ε of two coupled standard maps at strong coupling ξ12 = 1.0 for varying

p∗
2 = 0.0, −0.0875, −0.14, and −0.1925, (a)–(d), respectively. The color of the orbits is the same as in Fig. 1. For a rotating view of each

picture and a video showing the variation of p∗
2 see the Supplemental Material [42].

3. Adapted 3D phase-space slices

When focusing on the vicinity of fixed points �ufp or periodic
orbits �up, one can choose a more appropriate slice than the
one given by Eq. (1). For this we use the properties of the
linearized system at �ufp or �up to define the phase-space slice.
For simplicity we will describe this approach for fixed points
as it trivially extends to periodic orbits.

For an elliptic-elliptic fixed point �ufp, the four eigenvectors
appear in pairs ( �χ1, �χ∗

1 ) and ( �χ2, �χ∗
2 ) corresponding to the

eigenvalue pairs (λ1,λ
∗
1) and (λ2,λ

∗
2) [1]. The spaces spanned

by the pairs

�eα ∝ Re �χ1

�eβ ∝ Im �χ1

and �eγ ∝ Re �χ2

�eδ ∝ Im �χ2

(A2)

are invariant under the linearized dynamics. In order to
introduce a more appropriate slice for �ufp, we first note that
every point �u in phase space can be uniquely decomposed into

�u = α�eα + β�eβ + γ �eγ + δ�eδ, (A3)

using the dual basis to the vectors from Eq. (A2): Given the
matrix built columnwise from the vectors �eα, �eβ, �eγ , �eδ the dual
basis vectors �̃eα, �̃eβ, �̃eγ , �̃eδ can be obtained numerically via

(�̃eα|�̃eβ |�̃eγ |�̃eδ

) = (�eα|�eβ |�eγ |�eδ

)−1T
. (A4)

This provides the components α = �̃eα · �u,β = �̃eβ · �u,γ = �̃eγ ·
�u, δ = �̃eδ · �u. Although the vectors �eα , �eβ , �eγ , �eδ are nonorthog-
onal, we can use any subset of them to define an adapted 3D
phase-space slice: For example, using the slice condition

|δ − D| � ε, (A5)

the coordinates α, β, and γ can be plotted into an orthogonal
3D coordinate system. This slice is orthogonal to the dual
vector �̃eδ . Although this 3D plot is not angle-preserving, it
displays the features of the phase space in the vicinity of the
elliptic-elliptic fixed point �ufp very clearly.

Moreover, these adapted 3D phase-space slices could also
be used to examine the vicinities of elliptic-hyperbolic and

γ

α β

(a)

α

γ δ

(b)

FIG. 8. (Color online) Adapted 3D phase-space slices of two coupled standard maps for the vicinity of the central fixed point �ufp, for (a)
coordinates α, β, γ and slice condition |δ| � ε and (b) coordinates α, γ, δ and slice condition |β| � ε. Shown are the orbits from Figs. 1 and 7
using the same color code. For a rotating view see the Supplemental Material [42].
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γ

α β

(a) α

γ δ

(b)

FIG. 9. (Color online) Adapted 3D phase-space slices of two
coupled standard maps for the vicinity of an elliptic-elliptic period-7
orbit, with slice conditions (a) |δ| � ε and (b) |β| � ε. For a rotating
view see the Supplemental Material [42].

hyperbolic-hyperbolic points. Note that adapted 3D phase-
space slices are equivalent to slices through the phase space of
a system after a normal form transformation. We now briefly
discuss two situations for using adapted 3D phase-space slices:

a. Elliptic-elliptic fixed points. First, we consider the central
elliptic-elliptic fixed point �ufp. Figures 8(a) and 8(b) show the
results for the slice conditions |δ| � ε and |β| � ε. In Fig. 8(a)
the degree of freedom spanned by (�eα, �eβ ) is completely
visible, and in Fig. 8(b) the one spanned by (�eγ , �eδ) is
completely visible. Note that the slice conditions |γ | � ε or
|α| � ε lead to qualitatively similar pictures, respectively.

Both Figs. 8(a) and 8(b) give a very clear representation
of the regular phase-space region where the central part (red)
shows 2D tori as two separate 1D lines each. They are nicely
stacked vertically on top of each other as would be the case
for an uncoupled, purely integrable system. Figures 8(a) and
8(b) together provide a complementary visualization of the
4D phase space: Structures which are concentrated on the α-β
plane in Fig. 8(a) are localized along the α axis in the other

slice in Fig 8(b) and analogously objects on the γ -δ plane lie
on the γ axis in Fig. 8(a). For example, the cyan part of the
regular region (and also the blue chaotic orbit) in Fig. 8(a) is
above and below in α direction in Fig. 8(b). This is true the
other way around for the violet and pink continuation of the
central regular region and the green structure.

The adapted 3D phase-space slices yield very organized
phase-space pictures, even though their advantage is present
mainly locally, close to the fixed point used for defining the
slice. Figure 8 shows that away from the central elliptic-elliptic
fixed point �ufp, the phase-space structures become more
involved, which is similar to 2D maps if one moves outside of
the center of the main island (compare with Fig. 2). Also, not
all phase-space structures have to be present; e.g., the stable
vicinity of the period-7 orbit is shown in orange in Fig. 8(b)
but is not visible in Fig. 8(a).

b. Elliptic-elliptic periodic orbits. Suitably adapted phase-
space slices can also be used to study periodic orbits of
higher period, in order to see the self-similar structure of
the phase space. In Fig. 1 the vicinity of an elliptic-elliptic
periodic orbit of period 7 is shown in orange. One of its points
is located at �up = (0.0, 0.0, 0.083438087, 0.118666288) and
is therefore already visible in Fig. 1. For this point the
adapted 3D phase-space slice is shown in Figs. 9(a) and 9(b):
The stable vicinity now looks very similar to the central
regular region in Fig. 8 as it is again given by 1D lines
inside the 3D phase-space slice vertically stacked on top
of each other. This is not obvious from the nonadapted 3D
phase-space slices shown in Fig. 1. One could proceed from
this sevenfold map further down in the hierarchy of periodic
orbits.

Note that the fundamental frequencies of the tori shown
in Fig. 9 lie far away from the frequency region shown in
Fig. 4. Taking the frequencies with the largest amplitude leads
to (ν1,ν2) = (2/7,1/7) in Fig. 4.
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