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and Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049–Madrid, Spain

(Received 26 September 2013; revised manuscript received 18 December 2013; published 3 February 2014)

The vibrational dynamics of the LiNC/LiCN molecular system is examined making use of the Riemannian
geometry. Stability and chaoticity are analyzed, in this context, by means of the Jacobi-Levi-Civita equations,
derived from the Jacobi metric, and its solutions. A dynamical indicator, called stability geometrical indicator,
is introduced in order to ascertain the dynamical characteristics of stability and chaos in the molecule under
study.
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I. INTRODUCTION

The vibrational dynamics of highly excited molecular
systems, which usually has a strong chaotic component in
floppy molecules [1], is a topic of much interest due to its
relevance in many interesting chemical processes, such as
unimolecular and isomerization reactions, photodissociation,
or intramolecular energy relaxation [2]. Laser technology and
other new experimental techniques have made the experimen-
tal observation of these processes possible [3], even in real
time [4].

Although, extensive work has been published on the formal
aspects of the general theory of chaos in Hamiltonian systems,
simple chaos indicators are desirable for practical applications.
Among them, maximum Lyapunov exponents (LE) [5], fast
Lyapunov indicator [6,7], frequency map analysis [8], and the
small alignment index (SALI) [9] are worth mentioning. Also,
some applications to molecular systems have been presented
along this line in the literature [10,11].

Another interesting method consists in recasting the cor-
responding dynamics in a Riemann geometry, so that the
instability of the geodesic flow is solely determined by the
curvature of the suitable manifolds [12,13]. Different metrics
have been defined for this purpose in literature, such as
those due to Eisenhart [14], Finsler [15], Horwitz [16,17],
or Jacobi [18–23]. In our case, we choose the Jacobi metric
derived from the Maupertuis’ principle, where geodesics [24],
i.e., the natural motions, in the mechanical manifold are
identified with trajectories of the system, and their stability
can be analyzed through the study of the curvature of this
Riemannian manifold, via the Jacobi-Levi-Civita equations
(JLC) [24]. This conceptual framework allows one to un-
derstand Hertz’s curvature principle in a natural way, as
well as the importance of directions perpendicular to the
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trajectories in order to study their stability. Notice that this
geometrical interpretation is not just a mere rewriting of the
system dynamics, but more importantly, it points to what
appears to be a fundamental characterization of Hamiltonian
chaos. The reason for this is simple. A negative curvature
produces a spreading of the trajectories close to a fiducial
one, something that is related to the origin of chaos in the
Lyapunov sense. Moreover, when the curvature is positive the
chaotic behavior springs out as the result of a mechanism
originated by the fluctuation of the scalar curvature along
the fiducial geodesic [20]. The evolution for the deviation
vector, measuring the geodesic spreading, is the main criterion
for the onset of chaos. It can be described as a harmonic
oscillator equation, where the frequency is replaced by scalar
curvature, so that its fluctuation along the fiducial trajectory
is the origin of the phenomenon called parametric resonance,
as in the Mathieu’s equation [21,25]. This approach has been
successfully applied to the LE calculation for Hamiltonian
systems with many degrees of freedom [22] by doing a pre-
vious coarse-grained simplification of the corresponding JLC
equations.

The aim of this paper is the study the instability properties
of the nonlinear Hamiltonian dynamics of the LiNC and LiCN
molecular isomerization system using the geometric methods
described above. The phase-space structure for the vibrational
dynamics for the LiCN molecule has been extensively studied
in the past [26,27] using a realistic model potential [28]. For
this purpose, we introduce a stability geometrical indicator
(SGI) to quantitatively gauge the stability of different vibration
trajectories, chosen as representative examples of the LiNC
dynamics.

The organization of the paper is as follows. In Sec. II the
geometrical approach for a Hamiltonian system is described,
relating chaos with the JLC equations. In Sec. III the model
used for LiNC and LiCN is discussed and the corresponding
metrics and specific JLC expressions are given. In Sec. IV we
present our results for representative trajectories of LiNC and
LiCN for both the dynamical and geometrical descriptions, as
well as the SGI criterion. Finally, the main conclusions are
summarized in Sec. V.
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II. GEOMETRICAL APPROACH
FOR A DYNAMICAL SYSTEM

A. Dynamics recast into geodesics: The Riemannian manifold

We start by considering a generic Lagrangian (hereafter we
use Einstein’s summation convention),

L(q̇,q) = 1
2 aij (q) q̇i q̇j − V (q), (1)

where the mass tensor fulfills aij a
ik = δk

j , and the conjugate
momenta are defined as Pi = dL/dq̇i .

As it is well known, Maupertuis’ principle establishes that
the natural motions for this system are those whose trajectories
make extremal the action integral

∫
γ (t) Pidqi . In a case, like the

one considered here, where the energy, E = W (P) + V (q), is
conserved, this is equivalent to

δ

∫
γ (t)

√
2[E − V (q)] aij (q) q̇i q̇j dt = δ

∫
γ (s)

ds = 0, (2)

so that the trajectories correspond to geodesics in a Riemannian
differentiable manifold endowed with the metric defined by

ds2 = gij (q) dqidqj = 2[E − V (q)] aij (q) dqidqj , (3)

where gij corresponds to what it is known as the Jacobi metric.
The system configuration space is the previous Riemannian
manifold where {q} represents the local coordinates, and is
often referred to as the mechanical manifold [M,gij (q)]. It can
be shown that the trajectory followed by a particle affected by
the potential V (q) in the Euclidean space is equivalent to the
motion of a free particle in the mechanical manifold. In this
way, there is a correspondence between the dynamics in an
Euclidean space (zero curvature) and the kinematics in a non-
Euclidean space with curvature. Geodesics are autoparallel
curves described by

∇γ̇ γ̇ = ∇ dγ

ds

(
dγ

ds

)

= D

ds

(
dγ

ds

)
= d2qi

ds2
+ �i

jk

dqj

ds

dqk

ds
= 0, (4)

where D/ds is the covariant derivative along the curve γ (s),
s is the arc-length parameter, and �i

jk are the so-called
Christoffel symbols associated to the metric gij , which are
given by

�i
jk = 1

2
gim (∂jgkm + ∂kgmj − ∂mgjk)

= − 1

2W

[
δi
k∂jV + δi

j ∂kV − ∂lV aliajk

]
+ 1

2
ail[−∂l ajk + ∂k alj + ∂j alk], (5)

where W is the kinetic energy. Finally, by changing from s to t

in Eq. (4), we obtain the differential equation for the geodesics
as

d2qi

dt2
+ 1

W

(
∂V

∂ql

dql

dt

)
dqi

dt
+ �i

jk

dqj

dt

dqk

dt
= 0. (6)

We conclude this subsection by presenting in Table I the
equivalence between some relevant magnitudes in the
dynamical and geometrical views of the classical mechanics.

TABLE I. Equivalence between some relevant magnitudes in the
dynamical and geometrical views of the classical mechanics.

Dynamics Geometry

Time, t Arc-length, s

Potential, V Metric, gij

Force, ∂V Christoffel symbols, �i
jk

Trajectories Geodesics
Conserved quantities Symmetries
Instability Curvature

B. Curvature and chaos: The JLC equations

The sectional curvature K(p,σ ) at point p ∈ M and tangent
plane σ ⊂ TpM on the Riemannian manifold M at this point
determines the spreading rate for the geodesics starting at point
p and tangent to M . (Notice that K corresponds to the Gaussian
curvature in the bidimensional case.)

The evolution of this geodesic deviation, J(s), from the
fiducial trajectory γ (s) is given by the so-called JLC equations,

D2J
ds2

+ R[γ̇ (s),J(s)] γ̇ (s) = 0, (7)

with γ : s ∈ [0,a] → M geodesic in M , γ̇ (s) = dq/ds, and
R(X,Y) : TpM −→ TpM , given by R(X,Y )Z = ∇X∇Y Z −
∇Y ∇XZ − ∇[X,Y ]Z, with X,Y,Z ∈ TpM , is the so called
Riemann-Christoffel curvature tensor.

In actual applications, local coordinates {ei} are used, and
Eq. (7) takes the form

D2J i

ds2
= −Si

jkl γ̇
j γ̇ lJ k = −Si

kJ
k, (8)

with Si
k being the stability tensor. In this reference frame,

R(ei ,ej )ek = Rl
ijkel , (9)

with

Rl
ijk = �s

ik�
l
js − �s

jk�
l
is + ∂�l

ik

∂xj

− ∂�l
jk

∂xi

. (10)

Furthermore, Eq. (7) can be expressed in a more convenient
moving frame, formed by an orthonormal vectors set {e(1),e(2)}
transported in a parallel way along γ (s)

e(i) = ej

(i)ej , i = 1,2, (11)

where ∇e(i)/ds ≡ De(i)/ds = 0. Again, in local coordi-
nates these expressions simplify, becoming equivalent to
[(deα

(i)/dt) + eμ

(i)�
α
μβ(dqβ/dt)]eα = 0. As a result, the com-

ponents eα
(i) for the parallel transported vectors e(i) can

be calculated using a Taylor expansion: eα
(i)|t = eα

(i)|t0 −
eμ

(i)�
α
μβ(dqβ/dt)|t0 (t − t0) + O(t − t0)2. The previous process

is equivalent, only in dimension two, to imposing the orthonor-
mality condition

gij (q) ei
(a)e

j

(b) = δab. (12)

Setting the tangent vector to the fiducial trajectory, e(1)(s) =
γ̇ (s), as the initial vector, at any point on this curve one obtains
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the new moving frame as

e(1)(s) = γ̇ 1(s) e1(s) + γ̇ 2(s) e2(s)
(13)

e(2)(s) =
√

a22/a11 γ̇ 2 e1(s) −
√

a11/a22 γ̇ 1 e2(s).

Notice that these conditions only depend on the tangent vector
and the point, which is not so in higher dimensions. In the
new frame, {e(1),e(2)}, the vector field J(s) is expressed as
J(s) = J i(s)e(i)(s),i = 1,2, and then Eq. (7) becomes(

d2J 1

ds2

d2J 2

ds2

)
+

(〈R(v,e(1))v,e(1)〉 〈R(v,e(2))v,e(1)〉
〈R(v,e(1))v,e(2)〉 〈R(v,e(2))v,e(2)〉

) (
J 1

J 2

)
= 0,

(14)

where 〈,〉 is the inner product, and 〈ei ,ej 〉 = gij are the
metric coefficients (first fundamental form). Now, if v =
e(1) = γ̇ and considering the curvature tensor symmetries, i.e.,
〈R(ei ,ej )ek,el〉 = Rijkl = Rklij = −Rjikl = −Rijlk , Eq. (14)
can be reduced to(

d2J 1

ds2

d2J 2

ds2

)
+

(
0 0

0 〈R(e(1),e(2))e(1),e(2)〉
) (

J 1

J 2

)
= 0. (15)

Taking into account that

|e(1) ∧ e(2)| =
√

|e(1)|2|e(2)|2 − 〈e(1),e(2)〉2 = 1, (16)

where ∧ denotes the outer product, we can write that

〈R(e(1),e(2))e(1),e(2)〉 = 〈R(e(1),e(2))e(1),e(2)〉
|e(1) ∧ e(2)|2

= K(e(1),e(2)) ≡ K(σ ), (17)

where K(σ ) is the sectional curvature for the plane generated
by e(1) and e(2) at γ (s), which can also be expressed in local
coordinates as

K(σ ) = K(e(1),e(2)) = Rljhke
l
(1)e

h
(1)e

j

(2)e
k
(2)

(glhgjk − glkgjh)el
(1)e

h
(1)e

j

(2)e
k
(2)

= 1

| gij |R1212 = R̂

2
, (18)

where R̂ is the scalar curvature. We can write Eq. (15) as

d2J 1

ds2
= 0

d2J 2

ds2
= −R1212

|gij | J 2 = − R̂(s)

2
J 2. (19)

The evolution of J 1 is at most linear and the stability is
determined by the scalar J 2 (from now on referred to as J )
along the fiducial curve. Notice that the stability tensor is
pointwise and does not depend on the evolution of the basis
vectors, contrary to what happens in more dimensions.

Fixing a constant length s for the trajectory, we define, in
the spirit of the exponential separation implied by a positive
Lyapunov exponent [5–7], the dynamical magnitude SGI(s) as
a stability geometrical indicator of chaos, as

SGI(s,x0) = max
0�s ′�s

[J (s ′,x0)], (20)

with the J (s ′,x0) component J 2 for s ′, and initial conditions x0.

We will use this indicator to compare the mutual relative
stabilities for different trajectories.

III. SYSTEM AND CALCULATIONS

A. The model

The system that we have chosen to illustrate our method is
the LiNC and LiCN isomerizing system.

This molecule presents two stable isomers at the linear
configurations: Li–N–C and Li–C–N, which are separated by
a relatively modest energy barrier of only 0.0157376 a.u. The
motion in the bending coordinate is very floppy, i.e., it is a
large-amplitude motion, which samples ample nonharmonic
regions of the potential energy surface, even rotating around
the C–N fragment. In this way, chaos sets in at low values of
the excitation energy. Moreover, the vibrational frequency of
the C–N motion is very high, and then this mode is not strongly
coupled with the other vibrations in the molecule. As a result,
the vibrations of this molecular system can be adequately
studied by a two degrees of freedom model with the NC
distance frozen at its equilibrium value (re = 2.186 a.u.). The
corresponding rotationless classical Hamiltonian is given by

H = P 2
R

2μ1
+ 1

2

(
1

μ1R2
+ 1

μ2r2
e

)
P 2

θ + V (R,θ ), (21)

where R is the distance from the NC center of mass to the Li
atom, re is the NC distance, and θ is the angle defined by the
corresponding vectors. Also, PR and Pθ are the associated con-
jugate momenta, and μ1 = m−1

Li + m−1
CN and μ2 = m−1

C + m−1
N

represent the Li–CN and C–N reduced masses, respectively.
The potential energy surface, V (R,θ ), which consists of an
analytical expansion in terms of Legendre polynomials,

V (R,θ ) =
9∑

λ=0

vλ(R)Pλ(cos θ ), (22)

with coefficients fitted to ab initio quantum mechanical
calculations, has been taken from the literature [28], and it is
shown in Fig. 1 in the form of a contours plot. As can be seen,
it presents two minima at θ = 0 and 180◦, corresponding to
the two linear isomers LiCN and LiNC, respectively. The
minimum energy path, Re(θ ), connecting these two isomers
is given by the expression

Re(θ ) =
9∑

λ=0

bλ cos(λθ ), (23)

where the numerical values for the coefficients are given in
Table II, and it has also been included in Fig. 1, as a dashed
line. The corresponding energy profile, Ve = V [Re(θ ),θ ], is
given in the top panel of the plot.

B. Classical trajectories calculation

To help in the discussion we will use for comparison some
trajectory calculations. They are numerically propagated using
a fourth-order Runge-Kutta method. The motion in the angular
coordinate, θ , is very floppy, and then chaos sets in at very
modest excitation energy. These dynamics are best monitored
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FIG. 1. (Bottom) Potential energy surface for the LiNC and
LiCN isomerizing system. Contour lines have been plotted every
1000 cm−1. The minimum energy path connecting the two isomers
is shown as a dashed line. (Top) Energy profile along the minimum
energy path.

by PSOS, which are computed taking the minimum energy
path, Re(θ ), as the sectioning plane [29]. This PSOS is made an
area preserving map defining a new set of canonical variables:

ρ = R − Re(θ ), Pρ = PR ,
(24)

ψ = θ, Pψ = Pθ +
(

dRe

dθ

)
θ=ψ

Pρ .

The PSOS is defined now by the condition ρ = 0, correspond-
ing to Pρ in a predetermined branch (the negative one in

TABLE II. Numerical values of the coefficients in the Fourier
series for the minimum energy path of Eq. (23).

λ bλ (a.u.)

0 4.132 893
1 0.234 366
2 0.485 224
3 –0.016 371 9
4 –0.058 797 0
5 0.006 220 71
6 0.015 145 6
7 –0.001 780 66
8 –0.004 312 50
9 0.000 255 183

present calculations) of the second-order equation for Pρ that
arises from the Hamiltonian conservation H (ρ,ψ,Pρ,Pψ ) =
E. Finally, all the PSS points are folded into the interval ψ ∈
(0,180◦) to take into account the symmetry of the molecular
system [29].

C. The Jacobi metric

Given Hamiltonian Eq. (21), the inverse mass tensor is

(aij ) =
(

aRR aRθ

aθR aθθ

)
, (25)

where aRR = μ−1
1 , aθθ = (μ1R

2)−1 + (μ2r
2
e )−1, and aRθ =

aθR = 0. The Riemannian manifold, (M,gij ), is de-
fined as M = {(R,θ ) ∈ R2/V (R,θ ) < E} and gij (R,θ ) =
2W aij (R,θ ), and the Christoffel symbols for the metric are

�R
RR = − 1

2W

∂V

∂R

�R
Rθ = �R

θR = − 1

2W

∂V

∂θ

�R
θθ = μ2Rr2

e

[ − 2μ2r
2
e W + R

(
μ1R

2 + μ2r
2
e

)
∂V
∂R

]
2
(
μ1R2 + μ2r2

e

)2
W

�θ
RR =

(
μ1R

2 + μ2r
2
e

)
∂V
∂θ

2μ2R2r2
e W

�θ
Rθ = �θ

θR = 2μ2r
2
e W − R

(
μ1R

2 + μ2r
2
e

)
∂V
∂R

2R(μ1R2 + μ2r2
e )W

�θ
θθ = − 1

2W

∂V

∂θ
. (26)

Trajectories parametrized by physical time t are calculated
integrating the equations

d2R

dt2
+ 1

W

(
∂V

∂R

dR

dt
+ ∂V

∂θ

dθ

dt

)
dR

dt
+ �R

RR

(
dR

dt

)2

+ 2�R
Rθ

dR

dt

dθ

dt
+ �R

θθ

(
dθ

dt

)2

= 0,

(27)
d2θ

dt2
+ 1

W

(
∂V

∂R

dR

dt
+ ∂V

∂θ

dθ

dt

)
dθ

dt
+ �θ

RR

(
dR

dt

)2

+ 2�θ
Rθ

dR

dt

dθ

dt
+ �θ

θθ

(
dθ

dt

)2

= 0.

D. The JLC equations

Concerning the geodesic deviation vector field, J(s) =
J 1(s)e(1)(s) + J 2(s)e(2)(s), along the fiducial trajectory γ (s),
we obtain for the scalar J [remember here the change of
variable made after Eq. (19)] the following JLC equation in
terms of the physical time:

d2J

dt2
− 1

W

dW

dt

dJ

dt
+ 2W 2R̂J = 0, (28)

where the scalar curvature, R̂, at any point in the manifold
determines the local stability of the geodesics around the
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fiducial, and it is given by

R̂ = 1

2W
R̃ + (N − 1)

8W 3
{4W∇2V + (6 − N )|∇V |2}, (29)

N being the dimensionality of the system (N = 2 in our
case), R̃ = 6r2

e μ2/(r2
e μ2 + μ1R

2)2 the scalar curvature for
the space with metric aij (R,θ ), |∇V |2 = aij ∂iV ∂jV , and ∇2

the Laplacian-Beltrami operator,

∇2V = aij∇i∇jV = aij

(
∂2V

∂xi∂xj
− �̃k

ji

∂V

∂xk

)
. (30)

Here, �̃k
ji is the Christoffel symbol associated with the metric

aij (R,θ ),

�̃R
θθ = −r4

e μ2
2R(

r2
e μ2 + μ1R2

)2 , �̃θ
Rθ = �̃θ

θR = r2
e μ2(

r2
e μ2 + μ1R2

)
R

,

(31)
which render a Laplacian equal to

∇2V = aRR ∂2V

∂R2
+ aθθ ∂2V

∂θ2
+ r2

e μ2(
r2
e μ2 + μ1R2

)
μ1R

∂V

∂R
.

(32)

Substituting all these expressions into Eq. (29), we obtain

R̂ = 1

2W

6r2
e μ2(

r2
e μ2 + μ1R2

)2 + 1

2W 2

{
aRR ∂2V

∂R2
+ aθθ ∂2V

∂θ2

+ r2
e μ2(

r2
e μ2 + μ1R2

)
μ1R

∂V

∂R

}

+ 1

2W 3

{
aRR

(
∂V

∂R

)2

+ aθθ

(
∂V

∂θ

)2}
. (33)

The differential equations that need to be simultaneously
integrated in our geometrical study are Eqs. (27) and (28). This
is done numerically using a fourth-order Runge-Kutta method
written in Fortran [30].

IV. RESULTS AND DISCUSSION

A. LiNC and LiCN classical trajectories

In this work we consider the vibrational dynamics of LiNC
and LiCN at three different values of the excitation energy.
These dynamics are monitored using the PSOS described
in Sec. III B. The results are shown in the bottom panels
of Fig. 2. As can be seen, at the lowest energy considered,
E = 1510.5 cm−1 (see leftmost panel), the dynamics around

FIG. 2. (Color online) (Bottom) Composite Poincaré surfaces of section for the vibrational dynamics (see Sec. III B for details) for three
different values of the energy: (left) E = 1510.5, (center) 2964.7, and (right) 3595.06 cm−1, respectively. (Top) Numerical values of the SGI
indicator at the same energies for different trajectories started at the surfaces of section below along the θ̇ = 0 (blue) line (see discussion in
Sec. IV C).
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the LiNC (θ = 180◦) is confined to invariant tori or chains
of islands with narrow stochastic (chaotic) bands, since it is
very regular. As the energy increases to 2964.7 cm−1 (see
central panel) motion in the other well (LiCN at θ = 0) is
possible; it is very regular. Concerning the LiNC isomer
at this higher energy, a big portion of the available phase
space has become chaotic (in the most outer region), and a
conspicuous accumulation of points is observed surrounding
the regular region (inner part of the chaotic region); this being
an indication of the existence of a cantorus or partial barrier for
the flux of trajectories across [26]. Finally, at the largest energy
considered (rightmost panel), the two wells are connected by
rotating (isomerizing) trajectories. The previously mentioned
cantorus appears to be more broken up, and chaos is more
widespread, in general.

B. Geometrical method applied to LiNC and LiCN trajectories

In this subsection, we study some representative trajectories
of the LiNC and LiCN isomerizing system, which will be
analyzed using the geometrical method described in Secs. II B
and III D. In particular, the evolution of the deviation vector
will be considered.

We start with four representative trajectories propagated
at E = 1510.5 cm−1. The orbits, labeled red (a), blue (b),
green (c), and pink (d), are shown in the upper four panels
of Fig. 3, and the corresponding PSOS are presented at the
bottom panel. As can be seen, they are all regular. The first
three are located in the chain of islands associated to the
resonance νR : νθ = 1:10, being progressively [from red (a)
to blue (b) to green (c)] farther apart from the center of the
resonance. The last trajectory (d) is quasiperiodic, and it is
confined in the torus plotted in pink visible in the lower panel.
The evolution of J , the second component of vector J giving
the deviation vector field of the four previous trajectories,
are shown in the top four panels of Fig. 4. As can be seen,
this quantity oscillates wildly with s, making the amplitude
appear (approximately) modulated by two main frequencies
of very different magnitude. To follow the overall behavior,
we just take from these plots the points corresponding to
the maxima in the low-frequency oscillations. To help in the
discussion, we have marked these points with the same colors
used in Fig. 3 for the trajectories, and we have joined them
with straight connecting lines. The corresponding polylines,
showing the overall behavior of J with s, are presented
together for comparison in the bottom panel of the figure.
As can be seen, the deviation from the fiducial trajectory
is approximately constant for trajectory (a), which is very
close to periodic motion, while it grows linearly with s for the
remaining trajectories, resonant and quasiperiodic. Moreover,
the largest slope corresponds to trajectory (c), which is the
one farthest from the center of the resonance. This result
is reasonable, since such a trajectory is the closest one to
the band of stochasticity associated with this resonance, while
the rest are all embedded into more regular motion. The
extreme case is that of trajectory (a), which is almost at the
center of the resonant island. Notice also that the slope for
the quasiperiodic trajectory (d) is noticeably smaller than that
for (c), a further confirmation of the performance of J as an
indicator of regularity and chaos.

FIG. 3. (Color online) Four representative trajectories of LiNC
and LiCN, labeled red (a), blue (b), green (c), and pink (d), and
their corresponding Poincaré surface of section (bottom panel) for an
energy E = 1510.5 cm−1.

We consider next in Fig. 5 four representative trajectories
at E = 2964.7 cm−1. Three of them are regular, and they
are located again in the chain of islands corresponding to the
same 1:10 resonance discussed before; the fourth trajectory is a
chaotic one. The corresponding PSOSs are shown in the upper
left panel of the figure. Moreover, the orbit and deviation vector
field J for the chaotic trajectory [pink or (d)] are also shown in
the upper right and lower left panels of the figure, respectively.
As can be seen, J grows exponentially in this case, thus
allowing J to get a very large value at s � 800 000 a.u.
(the value at which we stop all our trajectories), in contrast
with what happens in the regular case, where the growth is
only linear. Finally, the last panel of the figure shows, in a
semilog scale, the overall behavior of J for the four trajectories
we are considering. The same comments made above for E =
1510.5 cm−1 apply here for the regular trajectories. In contrast,
the growth for the chaotic trajectory is here, as expected,
much bigger and exponential (as opposed to the linear growth
observed for the regular regime) than in all other cases.

Moreover, a close examination of the behavior of J for the
chaotic trajectory reveals a very interesting behavior, showing
the existence of three different regions having different values
of the slope. Namely, up to s � 2.5 × 105 a.u. the trajectory
starts with a definite value of the slope, after that the value of
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FIG. 4. (Color online) Evolution of the deviation vector field J

with s for the four LiNC and LiCN trajectories (a)–(d) shown in Fig. 3
(same color code is maintained). The overall behavior, ascertained by
taking the maxima in the oscillations of J , is presented in the bottom
panel.

the slope diminishes, and later for s � 5.5 × 105 a.u. the slope
increases recovering again the original value. This conspicuous
change clearly indicates the existence of a peculiarity in the
dynamics of this chaotic trajectory, which seems to evolve
from a more chaotic regime to a less chaotic one, alternatively.
To prove this conjecture, we have followed the (phase space)
evolution of the trajectory in the three periods with the
same value of the slope described above. The results are
shown in Fig. 6, where it is clearly seen that in the different
periods the trajectory is actually confined into very different
regions of phase space. Namely, in the first and third periods,
corresponding to 0 � s � 2.5 × 105 a.u. and 5.5 × 105 � s �
8 × 105 a.u., respectively, the trajectory is confined in the outer
part of the chaotic phase space region (see upper left panel of
Fig. 5). However, in the intermediate period between them,
i.e., 2.5 × 105 � s � 5.5 × 105 a.u., the trajectory is confined
into a narrow, inner part of that region, which is moreover
closer to the regular part of phase space, this justifying why
here the value of the slope of J is significantly smaller.

Obviously, the boundary between these two regions is the
cantorus described by us in Refs. [26] and [27], which acts as a
partial dynamical barrier in phase space [31,32]. These phase
space structures are very important in the vibrations of small
molecules since they may play a key role in the control of the

FIG. 5. (Color online) Same as described in the legends of Figs. 3
and 4 for E = 2964.7 cm−1. The Poincaré surfaces of section are
given in the upper left panel, the orbit of the chaotic [pink or (d)]
trajectory and the corresponding J vs. s plot are presented in the upper
right and lower left panels, respectively, and the overall behavior of
J for the four trajectories can be seen in the lower right panel (notice
the semilog scale here).

intramolecular energy relaxation that usually leads to chemical
reactivity. Actually, they are responsible for many nonstatis-
tical effects that should be taken into account in statistical
theories, such as that of Rice-Ramsperger-Kassel-Marcus [33].
The presence of cantori implies the existence of long time
correlations and slow relaxation of the dynamics in chaotic
regions of phase space. This causes some trajectories to
become temporarily trapped inside or outside these barriers
for many vibrational periods. This time is usually long
compared to that dictated by the Lyapunov exponential
separation of trajectories.

C. The SGI for the LiNC and LiCN molecular system

In this subsection we discuss the performance of the SGI
introduced in Sec. II B. We calculate and compare this indicator

FIG. 6. (Color online) Influence of the cantori existing at E =
2964.7 cm−1 [26,27], which acts as a partial barrier for the flux of
trajectories in phase space, implying that a typical trajectory visits
alternatively the corresponding outer and inner regions with different
dynamical characteristics. This effect is responsible for the slope
changes found in the corresponding J vs. s plot shown in Fig. 5.
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for trajectories with different values of the vibrational energy
and initial conditions, in a systematic way. For this purpose,
we examine a set of trajectories extracted from those used to
construct the PSOS in the bottom panels of Fig. 2. In particular,
we take the orbits starting with ρ = 0, i.e., on the minimum
energy path of the LiNC and LiCN potential energy surface
(dashed line in Fig. 1) and null angular velocity, θ̇ = 0. This
choice is equivalent to taking

Pψ (θ̇ = 0) = −
√

2{E − V [Re(θ ),θ ]} aRR

dRe(θ )

dθ
, (34)

and the corresponding values are shown as a function of ψ

(blue lines) in the bottom panels of Fig. 2. The values of
the SGI are computed after each trajectory has completed a
total length of s = 8 × 108 a.u. In this way, a global map
for the stability of the system is obtained, which can also
be compared in our case with the results of the corresponding
composite PSOSs. The results are presented in the top panels of
Fig. 2.

Let us start the discussion with the left panel of Fig. 2,
which corresponds to the lowest energy considered, E =
1510.5 cm−1, where the dynamics is almost all regular, as
ascertained from the PSOS observation. This fact is reflected
in the low values observed for the SGI. Moreover, the SGI is
continuous, showing also a (relatively) smooth variation with
the variable ψ . The exception occurs in the neighborhoods of
the resonance, where the value at the center is smaller (local
minimum) and it gets sharply larger at the sides (as discussed
in the previous subsection), thus forming a kind of (very
irregular) “M” shape figure. This behavior is more conspicuous
in the middle and left part of the curve, and it can probably
be made into a method to locate the corresponding periodic
orbits. When considering the middle panel, corresponding to
an energy of E = 2964.7 cm−1, we have the same behavior
in the regular regions, i.e., in the right end of the curve
corresponding to the LiNC isomer and also the new part at the
extreme left corresponding to the LiCN isomer. In the latter,
the M-shape corresponding to the 1:4 resonance is clearly
visible. However, at this energy we have a large region of
irregular or chaotic behavior, where the SGI is much bigger and
appears completely noncontinuous due to wild oscillations.
Finally, in the rightmost panel we consider the biggest energy,
E = 3595.6 cm−1, which corresponds to the largest observed
chaotic region, now including the region associated to the

saddle in the potential energy surface separating the two
isomers. The two potential wells are connected at this energy,
which implies the appearance of isomerizing trajectories. As a
result, the dynamics are more chaotic, particularly in this latter
region, and accordingly the SGI values are larger. Actually, two
distinct parts in the chaotic region, with different values of this
index, are clearly distinguished. In the left part located over
the saddle of the potential energy surface, where the dynamics
are more irregular due to the presence of the corresponding
unstable fixed point, the SGI is bigger than in the part at the
right, which is closer to the LiNC isomer, which has a regular
dynamics.

V. CONCLUSIONS

In this work, we have studied the vibrational dynamics of
the LiNC and LiCN isomerizing system described by a realistic
2D model from a geometrodynamical perspective, studying the
stability of representative trajectories of this system at different
values of the excitation energy.

For this purpose, we have defined a stability geometrical
indicator, SGI, which is able to clearly distinguish regular
from chaotic behavior. Indeed, in the former case, the SGI is
continuous and bounded, while in the latter the values for the
SGI are noncontinuous and unbounded. This SGI can also be
used to efficiently compute periodic orbits, since it presents
local minima around the associated chain of islands.

Finally, let us remark that the approach presented here
can be extended in a natural way to study this, and other
similar realistic systems, in more than two dimensions. As
discussed above, this type of study is interesting and important
to ascertain intramolecular vibrational relaxation mechanisms
and processes, as well as chemical reactivity. However, this
extension is not straightforward, since in this case the evolution
of J depends on the dynamics, and then on the knowledge
(history) of the plane (which rotates along the trajectory) in
which the curvature is computed.
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